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On the Rank-One-Convexity Domain
of the Saint Venant-Kirchhoff Stored Energy Function.

BERNARD BRIGHI - MAHMOUD BOUSSELSAL (*)

ABSTRACT - The goal of this paper is to give a characterization of the rank-one-
convexity domain of the Saint Venant-Kirchhoff stored energy function.

1. Introduction.

For a homogeneous, isotropic, elastic material, whose reference con-
figuration is a natural state, one can show that the response function as-
sociated to the second Piola-Kirchhoff stress tensor is of the form

for a matrix F e neighbouring of the identity matrix I e M3 and
where

For n E ~T* , we denote by the set of all n x n real matrices and by 1~+
the subset of of the matrices A verifying det A &#x3E; 0. For A E A T is
the transpose of the matrix A and trA the trace of A.

The positive constants ~, andu are called the Lame constants of the
material under consideration (see [Ci.1] or [Ci.2 ] for a complete point of
view about these notions).

Now, we call Saint Venant-Kirchhoff material, a homogeneous,
isotropic, elastic material, whose response function ± associated to the
second Piola-Kirchhoff stress tensor is defined by (1.1) where we have

(*) Indirizzo degli AA.: Université de Metz, U.F.R. «M.I.M.» D6partement
de Math6matiques et Informatique, Ile du Saulcy, 57045 Metz Cedex 01
(France).
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neglected the term o (E), that is to say such that

One can prove that such a material is a hyperelastic material and that
its stored energy function W is given by

(see [ Ci.l ] Th. 4.4-3, p. 155 or [ Ci.2 ] Th. 1.4-7, p. 76).

« ... Since Saint Venant-Kirchhoff materials are the simplest
among the nonlinear models (in the sense that they are the simplest
that are compatible with (1.1)), they are quite popular in actual compu-
tations ... but the relative simplicity of their practical implementation
is more than compensated by various shortcomings.

... their associated stored energy function is not (P.
G. Ciarlet - 1988).

See [B.], [Ci.l ], [Ci.2 ] or [D.] for details about polyconvexity, and
[Ra.] for the non-polyconvexity of the stored energy function of a Saint
Venant-Kirchhoff material.

On the other hand, if W: R is the stored energy function as-
sociated to some hyperelastic material, it is suitable for physical rea-
sons, that one has

(see [Ci.1] or [Ci.2 ]). In this case, it is usual to extend W to a continuous
function defined of into R U { + m ) by

The Saint Venant-Kirchhoff stored energy function does not satisfy
(1.4) and thus we can not obtain an extension as above.

« ... At their best, Saint Venant-Kirchhoff materials can be only ex-
pected to be useful in a narrow range of ’small’ strains E, as indeed
they should be from their very definition ; this is why such materials
are often referred to as ’large displacement-small strain’ models. In
spite of these various inadequacies, ,Saint Venant-Kirchhoff materials
can be nevertheless expected to perform better than the linearized mod-
els that are so o, f len used... » (P. G. Ciarlet - 1988).
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It turns out that we can consider the equality (1.3) as a definition of
W which is not only valid on a neighbourhood of I, but on and even
on the whole set 

As we have said above, the function W is not polyconvex on 
fact, we know more since the Saint Venant-Kirchhoff stored energy
function is not rank-one-convex on (see [A.] or [Br.]). In this paper,
we are interested in the rank-one convexity domain of W, in other
terms in the greatest subset of M7 on which W is rank-one-convex, and
we are going to characterize exactly this domain.

So, from now on, we will denote by W the function defined on 
(with n ~ 2) by the equality (1.3).

2. The «Legendre-Hadamard» condition for W.

First, let us recall the definition of rank-one-convexity on a subset
U of Mn . A function W : fiI" - R is said rank-1-convex on U if

VF, G E U such that [F, G] c U and rank (F - G) = 1

one has

It is well known that, if W is twice continuously differentiable, then
W is rank-1-convex on U if and only if one has

(Legendre-Hadamard condition on U) (see [B.] Th. 3.3, p. 352).
Now, let us introduce some notation; for F, G E we set

F: G = tr (FT G) the matrix inner product in and IF I = (F: F)112 the
corresponding norm.

Next, if a, b E let us denote by a ® b the n x n matrix defined
by

Therefore, if the vectors a and b are column matrices one has
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and the euclidean inner product in Rn (respectivly the euclidean norm
in can be written

Using (2.2) et (2.3) it is easy to verify that, for F E and a, b, c, d E
E the following identities hold:

Since it is clear that the Saint Venant-Kirchhoff stored energy func-

tion W is indefinitly differentiable we can compute and use

the criterion (2.1) to study the rank-1-convexity of W. We have the fol-
lowing result:

LEMMA 2.1. For F E and a, b E Run one has
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PROOF. Let us consider F E and a, be RB First, since E = E T
(where E is defined by (1.2)), we can write

Next, for a matrix H E the quantity

is the second-order term of the Taylor expansion in H of W (F + H).
We have

thus

then the second-order term in . is

On the other hand, by using (2.13) and the equality I
+ ~ B ~ 2 + 2A : B we see that the second-order term in H of 1 J

therefore we deduce that for any matrix H E one has
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Now, for a, b E and H = a ® b, (2.14) can be written

which becomes, by using the equalities (2.4)-(2.11)

But, one has

and

in such way that (2.15) gives

The proof is now complete.
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Before to go on, let us recall what are the singular values of a ma-
trix. Let if we denote by a 1, ... , a n the eigenvalues of the
symmetric matrix FT .F, one has Vi = 1, ... , n, a e R+ and the n non-
negative numbers vi = are called the singular values of F. Then,
for some orthogonal matrices Q1 and ~2, we have

Next, we set

PROPOSITION 2.1. Let F E Mn and vl , ... , vn the singular values
of F. Then

where fvl , . , . , vn ( a, b) is given by

PROOF. Since the functions

are homogeneous polynomials of degree 2, we can write

by using, for a, b E sn -1, the identity (2.12) of the previous lemma.
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Now, if we use (2.16) and denote by V the matrix

we get

So, we have (2.17). 0

Now, we are able to obtain some results about the rank-1-convexity
domain of W.

3. The rank-one convexity domain of W. -

Let us denote by t the rank-1-convexity domain of W. The

Legendre-Hadamard condition (2.1) implies that
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which can be written, by using proposition 2.1

where vi , ... , vn are the singular values of F.
For a matrix F E we would like to obtain necessary and suffi-

cient conditions, in terms of its singular values, in order to have
F E t.

Our main result will rely on the following lemma:

LEMMA 3.1. Let vl , ... , Vn be some real numbers such that 0 ~ Vi 5
 ...  vn , and g be the function defined on x W by

Next, let us denote by K the following set

then

PROOF. First of all, let us denote by e 1, ... , e n the canonical basis of
and recall that the constantes A, y are positive.

If VI = 0, then e 1 ) = 0 and since g ~ 0, we get gg = 0, in such
way that the lemma is proved in this case.

So, from now on, we will assume VI &#x3E; 0, and we will denote by
I,, ... , I p the subsets of 11, ... , n ~ defined by I, U ... U I p = ~ 1, ... , ~}
and
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Since Sn - 1 X Sn - 1 is a compact set,

for some (c~&#x26;)e~~x ~’~
Now, let us divide the rest of the proof in two steps.

Step 1. Here we are going to give necessary conditions in order to
have (3.2). So, let (a, b) ESn-1 satisfying (3.2); then, there exist
Lagrange multipliers a and {3 such that Vi = 1, ..., n one has

Therefore, Vi = 1, ... , n one has

and

where we have set I

Now, multiplying (3.3i) by bi /vi and adding for i = 1, ... , n we
get

From (3.4i) we obtain, by the same way

So, (3.5) and (3.6) imply that
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- In a first case, let us assume that one has then by

(3.5), c = 0. Therefore, (3.3i) and (3.4i) can be written

and thus, since this equalities are valid for all i = 1, ... , n, and that a
(respectivly fl) does not depend on i, we get necessarily, for 

Consequently, since c = 0 and a, b E sn -1, we easily deduce

- Now, let us assume that a = P; then we can suppose c ~ 0 (in-
deed, if c = 0, then thanks to (3.3i ), we obtain a ~ 0 and by (3.5),

which brought us back to the previous case). Next, if we

multiply (3.3i) by bi and (3.4i) by ai, we get by substraction

(3.8) (A + It) cvi ( b 2 - = 0 implying that b 2 = a? Vi.

Let i E ~ 1, ... , n ~; using (3.8), one has, either

Let us remark that the equality
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implies (v~ - = 0 and vi if we multiply (3.3i )

by ai , and add for i = 1, ... , n, we get ,
and a ~ 0).

Consequently, if we denote by A and B the following subsets of
f nj

we get for some k, 1 E ~ 1, ... , ~ }

- and B # 0 (indeed, if k = L, then (3.9) im-
plies c = 0, but we have supposed the opposite). So, a and b are of the
form

and thus, if i E Ik and j E we have i ~ j and

But, using (3.9), we can write

which gives easily

On the other hand, by definition of c and since y 2 = 1 - x 2, we
have
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implying that

By using (3.13), (3.14) and (3.15) we get

So, we have proved that, if ~9 = g ( a, b ) then necessarily, g ( a, b ) is given
by (3.7), (3.10), (3.11) or (3.16).

Step 2. Now, we can compute gg according to the values of

v1/v2.

First, let us denote by h the function

Now, let us remark that, if K = 0, then (3.15) is not possible for 
and thus (3.12) does not hold. Consequently, thanks to (3.7), (3.10), (3.11)
and (3.16) we get

- If ( 1, 2 ) E K then

the last inequality arising from the following identities
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So, by using (3.17) we obtain

- If (1, 2) E K then

1

Therefore, taking into account of (3.17), we can write when

(1,2)~

Finally, to conclude, it remains to show that

holds when K # 0 and ( 1, 2 ) ~ K.
Let (i, j),E K; then

Next, ( 1, 2 ) ~ K and thus

By using (3.19) and (3.20) we get

that we can write

Consequently,
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since v~ ~ vi and vl .

So, (3.18) holds, and the proof is complete.

The following theorem gives the requested characterization of t.

THEOREM 3.1. Let F E l~n and ...  vn be the singular values
of F. Let us denote by K(F) the following set

(i) If (1, 2) qt K(F) then, F E Ö if and only if

(ii) If ( 1, 2) E K(F) then, F e C if and only if

PROOF. This follows immediatly from (3.1), Proposition 2.1 and
Lemma 3.1.



40

REMARK 3.1. Clearly, one can see that is a neighbourhood of the
identity matrix of 

4. Characterization of 0 in the two-dimensional case.

In this last section, we will assume that n = 2. We would like to pre-
cise the results of the previous part, and to give a representation in
R+ x R+ of the following set

(where ® ( 2 ) is the set of all the 2 x 2 orthogonal matrices).
The first theorem is the two-dimensional version of Theorem 3.1.

THEOREM 4.1. Let F E W and vl, v2 be the singular values of F.

PROOF. This follows immediatly from Theorem 3.1. Let us note
that we have not assumed v2, which explains the three cases (i), (ii)
and (iii). 0

On each of the following figures, the region located above the curve
represent the set v for some values of the quotient 
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when

when

when

Figure 1.
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when

when

when

Figure 2. ~
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when

when

when

Figure 3.
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Now, for F E M2 and v2 its singular values, one has

Moreover, if we denote by 11.11 the matrix norm defined on M2 by

where 1.1 denotes the euclidean norm (see (2.3)). It is well known that
and thus

in such way that Theorem 4.1 leads to:

THEOREM 4.2. Let F E " { 0 }.
then F e 0 if and only if

, then F e 0 if and only if

PROOF. It is immediate since

REMARK 4.1. This can be express also without using the norm ll . ll;
indeed (4.1) implies that vi and v22 are the solutions of the following
equations

and thus
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