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On the Rank-One-Convexity Domain
of the Saint Venant-Kirchhoff Stored Energy Function.

BERNARD BRIGHI - MAHMOUD BOUSSELSAL (*)

ABSTRACT - The goal of this paper is to give a characterization of the rank-one-
convexity domain of the Saint Venant-Kirchhoff stored energy function.

1. Introduction.

For a homogeneous, isotropic, elastic material, whose reference con-
figuration is a natural state, one can show that the response function as-
sociated to the second Piola-Kirchhoff stress tensor is of the form

(1.1) S(F)=AQ(rE)I + 2uE + o(E)

for a matrix F e M3 neighbouring of the identity matrix I € M® and
where

12) E=EF) = -;- (FTF - 1I).

For n» e N*, we denote by M" the set of all # X n real matrices and by M";
the subset of M" of the matrices A verifying det A > 0. For A e M", AT is
the transpose of the matrix A and tr A the trace of A.

The positive constants 4 and u are called the Lamé constants of the
material under consideration (see [Ci.; ] or [Ci., ] for a complete point of
view about these notions).

Now, we call Saint Venant-Kirchhoff material, a homogeneous,
isotropic, elastic material, whose response function X associated to the
second Piola-Kirchhoff stress tensor is defined by (1.1) where we have

(*) Indirizzo degli AA.: Université de Metz, U.F.R. «M.I.M.» Département
de Mathématiques et Informatique, Ile du Saulcy, 57045 Metz Cedex 01
(France).
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neglected the term o(E), that is to say such that
S(F)=A(trE)I + 2uE .

One can prove that such a material is a hyperelastic material and that
its stored energy function W is given by

(1.3) W) = %(trE’)Z + utr (B%)

(see [Ci.;] Th. 4.4-3, p. 155 or [Ci;] Th. 1.4-7, p. 76).

«... Since Saint Venant-Kirchhoff materials are the simplest
among the nonlinear models (in the sense that they are the simplest
that are compatible with (1.1)), they are quite popular in actual compu-
tations ... but the relative simplicity of their practical implementation
is more than compensated by various shortcomings.

... their associated stored emergy function is mot polyconvex...» (P.
G. Ciarlet - 1988).

See [B.], [Ci.;], [Cip] or [D.] for details about polyconvexity, and
[Ra.] for the non-polyconvexity of the stored energy function of a Saint
Venant-Kirchhoff material.

On the other hand, if W: M3 — R is the stored energy function as-
sociated to some hyperelastic material, it is suitable for physical rea-
sons, that one has

1.4) lim W({F)= 4+
det F—»0"

(see [Ci.;] or [Ci.z ]). In this case, it is usual to extend W to a continuous
function defined of M2 into RU {+ =} by

WF)=+o if det F<0.

The Saint Venant-Kirchhoff stored energy function does not satisfy
(1.4) and thus we can not obtain an extension as above.

«... At their best, Saint Venant-Kirchhoff materials can be only ex-
pected to be useful in a narrow range of ‘small’ strains E, as indeed
they should be from their very definition ; this is why such materials
are often referred to as ’large displacement-small strain’ models. In
spite of these various inadequacies, Saint Venant-Kirchhoff materials
can be nevertheless expected to perform better than the linearized mod-
els that are so often used...» (P. G. Ciarlet - 1988).
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It turns out that we can consider the equality (1.3) as a definition of
W which is not only valid on a neighbourhood of I, but on M3 and even
on the whole set M3. ~

As we have said above, the function W is not polyconvex on M3, ; in
fact, we know more since the Saint Venant-Kirchhoff stored energy
function is not rank-one-convex on M3 (see [A.] or [Br.]). In this paper,
we are interested in the rank-one convexity domain of W, in other
terms in the greatest subset of M" on which W is rank-one-convex, and
we are going to characterize exactly this domain.

So, from now on, we will denote by W the function defined on M"
(with n = 2) by the equality (1.3).

2. The «Legendre-Hadamard» condition for W.

First, let us recall the definition of rank-one-convexity on a subset
U of M". A function W: M" - R is said rank-1-convex on U if

VF,GeU suchthat[F,GlcU andrank(F—-G)=1
one has
Vie[O, 1], WAF+ (1 -G <AWEFE)+ (1 - A)WG).

It is well known that, if W is twice continuously differentiable, then
W is rank-1-convex on U if and only if one has

. FWF)
2.1) inf

a,beR* § G k1 an] aFkl a; b] Ay bl 0, VF e U

(Legendre-Hadamard condition on U) (see [B.] Th. 3.3, p. 352).
Now, let us introduce some notation; for F, G e M" we set
F: G = tr (FT G) the matrix inner product in M" and |F| = (F: F)'2 the
corresponding norm.
Next, if a, b € R” let us denote by a ® b the » X n matrix defined

by
(@ ®b); = a;b;.
Therefore, if the vectors a and b are column matrices one has

2.2) a®b=ab"
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and the euclidean inner product in R" (respectivly the euclidean norm
in R™) can be written

(23) ab=a’b (respectivly |a| = (aTa)'?).

Using (2.2) et (2.3) it is easy to verify that, for F e M" and a, b, ¢, d e
€ R”, the following identities hold:

24) @®b)"'=bt®a,
2.5) Fa®b)=Fa)®b,
2.6) (@a®b)F=a®FTh),
.7 (@®b)c®d) = (bc)a®d),
2.8 tr(a®b)=a.b,
(2.9) F:(a®b)=Fba=FTab,
(2.10) (a®Db): (c®d) = (a.c)(b.d),
(2.11) la®b|2=|a|?|b|.
Since it is clear that the Saint Venant-Kirchhoff stored energy func-
tion W is indefinitly differentiable we can compute 3 F‘:,(;izl and use

the criterion (2.1) to study the rank-1-convexity of W. We have the fol-
lowing result:

LEMMA 21. For Fe M"” and a, be R" one has

REWF
2 (F)

2.12 —
( ) i, 7, k, 1 an]aFkl

a; bj Qy bl =

= (£ (AR 1= 1024 PO 1517 al* Got)ET by +u  FTal? [o].
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ProoF. Let us consider F e M" and a, b e R*. First, since E = ET
(where E is defined by (1.2)), we can write

W) = %(trE)2+u|E|2.

Next, for a matrix H € M" the quantity

1 FWF) a1
2 . fh, OF,aF, Jitn= g erH)

is the second-order term of the Taylor expansion in H of W(F + H).
We have

(2.13) E(F+H)=%(FTF—I+FTH+HTF+HTH)
thus
tr (B(F + H)) = % (|F|2=n+2F:H + |H|?)
then the second-order term in H of (tr (E(F + H)))? is
T (@F:HP +2(|F|* - ) |H]?).

On the other hand, by using (2.13) and the equality |A + B|?= |A|®> +
+ |B|? + 2A: B we see that the second-order term in H of |E(F + H)|%is

% (|FTH + HTF|? + 2(FTF - I): HTH)
therefore we deduce that for any matrix H € M", one has

@14 @pH) = %(2(F:H)2 +(|F|2—mn) |H|?) +

+ —’;— (|[FTH+HTF|*+ 2(FTF —I): HTH).
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Now, for a,beR"” and H =a® b, (2.14) can be written

Pr@®b) = £ @F: @@+ (IFP-m) [a®b*) +

+ % (|FT(a®b) + (@®b)TF|2+2(FTF - I): (a ® b)T (a ® b))
which becomes, by using the equalities (2.4)-(2.11)

@.15) @r@®b)= % @FTaby + (|F|2—n)|a|2|b]?) +

+f2‘-(|(FTa)®b+b®(FTa)|2+2(FTF—I): la|2(b®b)).
But, one has
|(FTa)@b+b® (FTa)|>= |(FTa)®b|*+ [b® (FTa)|* +
+2((FTa)®b): (0 ® (FTa)) = 2|FTa|? |b]|? + 2(FTa. b)?
and
(F'F-D:[a]?(6®b) = |a|*(FTF: (0®b) —I: (b ® b)) =
= |a|®(|Fb|* - |b]*)
in such way that (2.15) gives

or(a®b) = (%(IFIZ—n)Iblzw(lFbI“’— |b|2>) laf? +

+(A+u)FTab) +u|FTal?|b]?.

The proof is now complete. =
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Before to go on, let us recall what are the singular values of a ma-
trix. Let F e M"; if we denote by a,..., a, the eigenvalues of the
symmetric matrix F7.F, one has Vi =1, ..., 7, a; e R, and the » non-

negative numbers v; = \/a_i are called the singular values of F. Then,
for some orthogonal matrices @; and @, we have

7 0

(2.16) F=e . Q.
0 Uy,

Next, we set 8" ' = {xeR"; |x| =1}.

PROPOSITION 2.1. Let Fe M" and vy, ...,v, the singular values
of F. Then

FWF)
= >
@D inf “2;,” 3 ar, Gibieb=0e it £ (6,020

where f, ., (a,b) is given by

For o 0@y )= %(vf+ o))+ u@i (@ + ) + .+ vE (a2 + b7)) +

+(A +,u)(1)1a1b1 + ... +’Unanbn)2 - (%l +,u)

Proor. Since the functions

2 FWF) a;bjapb; and b 2 FWE)

a+—
. Ei OF,;0Fy, iOF i,j k1 OF;;0Fy

a; bj Qay, bl

are homogeneous polynomials of degree 2, we can write

2.18) inf D FWF)

a;b;a;b, = 0
abEan]kl aFvaFkl v !

<« inf FWE) bia b, = 0=
a/i i Q) =
a,bes® 1 4,5,k aFyalﬂkl o

< inf [—(|F|2—n)+y(|FTa|2+|Fb|2 +(,1+,u)(FTab)2]>0

a,bes” !

by using, for a, be 8"~ the identity (2.12) of the previous lemma.
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Now, if we use (2.16) and denote by V the matrix

(%] 0

we get

2.18) « binsfn_l[%(|Q1VQ2|2—7’&)+/‘(|Q2TVQ1Tal2+ |QVQ:2b|*~1)+
+(A +u)(QF VQlTa.b)Z] =0

< inf [%(IVlz—nHﬂ(lV(QlTa)IZJrIV(sz)|2—1)+

a,bes !

e m(V(QlTaxsz»Z] >0

o inf (%(IVlz—n) Fu(|Val2+ [VBlE=1) + (4 +#)(Va.b)2] >0

a,bes™ 1

had inf ﬁ)l,“.,v,,(a; b)BO-
a,bES"'_l

So, we have (2.17). =

Now, we are able to obtain some results about the rank-1-convexity
domain of W.

3. The rank-one convexity domain of w.

Let us denote by £ the rank-1-convexity domain of W. The
Legendre-Hadamard condition (2.1) implies that

Q= FeM"; inf E FWE)

a-b-akblBO
o, beR" i,5. k1 OF;OFy, 7
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which can be written, by using proposition 2.1

3.1) Q={FeM’; inf f, .(a0b) =0}
a, bes"”
where vy, ..., v, are the singular values of F.

For a matrix F e M" we would like to obtain necessary and suffi-
cient conditions, in terms of its singular values, in order to have

Fes
Our main result will rely on the following lemma:

LEmMmA 3.1. Let v, ..., v, be some real numbers such that 0 < v; <
<...<v,, and g be the function defined on R" X R" by

g(a, b) =u@?(a? +b) + ... + v2 (a2 + b2)) +

+(A+u)vab + ... +v,0,b,)°.
Next, let us denote by K the following set
K={(G/)eNt; 1<si<jsmand (A+2u)v; > puv;}.

If 3,= inf g(x,y) then
z,yes" !

(1+3ﬂ)v12 i (1,2)e¢K,
Sg = 2 .

(ln]l)ng l+ —— (= uof + 24 + 2u) v;v; — woi) if (1,2)e K.
ProoOF. First of all, let us denote by e, ..., e” the canonical basis of

R”, and recall that the constantes A4, u are positive.

If v, = 0, then g(e', e') = 0 and since g = 0, we get 3, = 0, in such
way that the lemma is proved in this case.

So, from now on, we will assume v, >0, and we will denote by
I, ..., I, the subsets of {1, ...,n} defined by , U ... UI,={1,...,n}
and

i, jely=v,=v;
iel,, jel; and k<l=wv<v.
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Since $" ! x $"~!is a compact set,
(3.2) 4 =g(a, b)

for some (a,b)e s !x §" 1.
Now, let us divide the rest of the proof in two steps.

Step 1. Here we are going to give necessary conditions in order to
have (8.2). So, let (a, b) € 8" ! X §" ! satisfying (3.2); then, there exist
Lagrange multipliers a and 8 such that Vi =1, ..., » one has

d
aai

(9(a, ) +a(la|® - 1)+ B(|b]> - 1)) =

= %(g(a, b) + a(|a|? = 1) + B(|b|2 - 1)) = 0.

Therefore, Vi =1, ..., n one has

(3.3,') ‘uUlZ a; + (/1 + ,u)C’v, bi + aa; = 0
and
(3.41') /4’012 b'i + (/1 + ,u)c’l)i a; + ﬂbl =0

n
where we have set ¢ = X v;a;b;.
j=1

Now, multiplying (8.3;) by b;/v; and adding for i=1,...,n we
get

(3.5) G+zme+ay B,
i=1

1

From (3.4;) we obtain, by the same way
& a; bi
3.6) A+2we+p2 —==0.
i=1 U

So, (3.5) and (3.6) imply that

a

n 'bi
@-p) 2 == =0.
i=1 K
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& a;b;
— In a first case, let us assume that one has >, —7')—’ = 0; then by

i1=1 1

8.5), ¢ = 0. Therefore, (3.3;) and (3.4;) can be written
(w?Z+a)a;=0 and (wv?+P)b;=0

and thus, since this equalities are valid for all i =1, ..., n, and that a
(respectivly B) does not depend on i, we get necessarily, for some k, [

a= 2 aet and b= 2 be'.

tely iel)
Consequently, since ¢ =0 and a, be 8"~ !, we easily deduce
8.7 g(a, b) = u(wf +v?) for some i, j.

— Now, let us assume that a = 8; then we can suppose ¢ # 0 (in-
deed, if ¢ =0, then thanks to (3.3;), we obtain a # 0 and by (3.5),

2 a;_b, = 0 which brought us back to the previous case). Next, if we
i=1 YU

multiply (3.3;) by b; and (3.4, by a;, we get by substraction

3.8) (A +p)ev; (b2 —a?) =0 implying that b? = a? Vi.

Let ie {1,...,n}; using (3.8), one has, either

fai=b,-=0
or
_ __atwi
39) <ai—bi:tO and thus ¢ = A by (3. 3;)
or
- b %0 andthuse= 2F% 10 (3.3,
Lai—— i an us ¢ = (A+‘u)’vl y .9 ).

Let us remark that the equality

a+mp  otwf
A+mwv; A+
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implies (v; — v;)(a — uv;v;) =0 and v; = vj (since, if we multiply (3.3;)

by a;, and add for i =1, ..., n, we get u 2 vZal+ (A +wueci+a=0
and a <0).
Consequently, if we denote by A and B the following subsets of

{1,...,n}
A={i; 0;=b;#0} and B={i; a;=—b;#0}
we get for some k,le{1,...,p}
Acl, and Bcl.

810) — IfA=0theng(a,b)=(A+3u)v? forjel,.

(.11) — If B =g then g(a, b) = (A + 3u) v} for j e I}.

— IfA =0and B #@thenk = [ (indeed, if k = [, then (3.9) im-
plies ¢ = 0, but we have supposed the opposite). So, a and b are of the
form
812) a= 2 a;e! +Ea, and b= Eale —Eal

iely iel} tely iel)
and thus, if 1 eI, and j e I;, we have ¢ # j and
(8.13) g(a, b) = 2u(fx® + v¥y® + (A + p)c?

where 22 = 2 a2 and y2 E al.

sely sel;
But, using (3.9), we can write

a + uv? a + uv?

A+wv;  QA+upy

which gives easily

)
(3.14) a=—uv;v; and c= T+a (v; — v;).

On the other hand, by definition of ¢ and since y2=1—x2 we
have

¢ =vx? —vy® = (v; + v;)x® — v
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implying that

—uv; + (A + 2u)v; d o (A +2p)v;— py;
N = .
Grwm+v) VT G ww +v)

3.15) x22=

By using (3.13), (3.14) and (3.15) we get
u
(3.16) g(a, b) = Tia (— wvf + 24 + 20)v;v; — uof) .

So, we have proved that, if §, = g(a, b) then necessarily, g(a, b) is given
by 3.7, (3.10), (8.11) or (3.16).

Step 2. Now, we can compute &, according to the values of
V1 / Vy.

First, let us denote by % the function

h(x, y) = Aﬁ'u(—,uxz+2(ﬂ.+2ﬂ)xy—uy2).

Now, let us remark that, if K = @, then (8.15) is not possible for i # j
and thus (3.12) does not hold. Consequently, thanks to (3.7), (3.10), (3.11)
and (3.16) we get

min [(A + 3u)vE; u(v? + vE)] fK=90,
GID %= Y min((h + B of; w? + o) min h(w, v)] i K=0.
i,J) e

— If (1, 2) e K then

min, R(v;, ) < h(vy, v) < min[(2 + 3u)vi; u(wf +v§)]
i,j)e

the last inequality arising from the following identities

(A + 2u)
At+u
1

h(vy, v3) — (A + Bu)vi = — T (uwy — (A + 2u) v,)? .

h(vy, v) — u(wZ +v¥) = — (v, —v,)%,
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So, by using (3.17) we obtain
1,2 K = i iy Vi)
(1,2)e K=, (gl})ng h(v;, v;)
— If (1, 2) ¢ K then
A+3uvi—puwi+vi)=0A+2u)vE—uwi<0

2
. (%! M Vi u
(mdeed, % < T+ou 1 and thus o2 7+ 2

which implies that

(A + 2u)vE < uvi )

Therefore, taking into account of (8.17), we can write when
(1,2)¢ K

(A + 3u) 0 if K=,
g = min [(A + 3u)vE; (injl)inKh(vi,vj)] if K=0.

Finally, to conclude, it remains to show that
(3.18) V@, j)eK, h(v;,v)— A+ 3u)vE=0

holds when K # @ and (1, 2) ¢ K.
Let (¢, 5) € K; then

3.19) A+2u)v;—uv; 2 0.

Next, (1, 2) ¢ K and thus
(3.20) (A + 2u) vy < pvp < ;.

By using (3.19) and (3.20) we get

(A +2w) vy — v (A + 2u) v; — pv;) <O
that we can write
wivf — u(A + 2u) 00 < — (A + 2p)P v v; + (A + 20) vy v;.
Consequently,

kv, v;) — (A + 3u)vi =

= - ﬁ(ﬂzv? = 2u(A + 2p) v;v; + pPof + (A + 3u)(A + p)vE) =
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T —,u(/l+2u)v,~vj+(/1+3,u)(l+/t)vlz—
— (A + 2000 + u(A + 20) vy v;) =
- ,1+ —— (U2 — u(A + 2w) v, + (A + 2u)P0f — uof —
—(A+ 200 v+ u( + 2u) vy 0;) =
= - i — v+ vy) — u(A + 2u) v (v; — ) —

—( + 20 (v; — ) =

V;

= Ta (/4(1 +20) v + (A + 20l — pP (v +v)) =
v’L

= T D+ 30+ vy + u(+ 20) v — ;) 2 0

since v; 2 v; and v; = v;.
So, (8.18) holds, and the proof is complete. =

The following theorem gives the requested characterization of Q.

THEOREM 3.1. Let F e M" and v, < ... <, be the singular values
of F. Let us denote by K(F) the following set

K(F)={(i,NDeNt; 1<i<j<mand (A+2u)v;=u,}.
() If (1, 2) ¢ K(F) then, Fe & if and only if

(/l+3y)v122(n7)“ +y) - %(1112+... +v2).

i) If (1, 2) e K(F) then, Fe L if and only if

. 2 2
(ul)nelﬁ(ml+ﬂ( ot + 2+ 200y = )

ni A2 2
/( 5 +;4) 2(v1+...+vn).

ProoF. This follows immediatly from (3.1), Proposition 2.1 and
Lemma 3.1. =
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REMARK 3.1. Clearly, one can see that Qisa neighbourhood of the
identity matrix of M".
4. Characterization of «f) in the two-dimensional case.

In this last section, we will assume that » = 2. We would like to pre-

cise the results of the previous part, and to give a representation in
R, X R, of the following set

~ 0 ~
\‘7=[(?’1»UZ)GR+ X Ry ;5 VQq, Qe O(2), Ql(’l())l v)Q2€Q]
2

(where O(2) is the set of all the 2 X 2 orthogonal matrices).
The first theorem is the two-dimensional version of Theorem 3.1.

THEOREM 4.1. Let F e M? and v,, v, be the singular values of F.

. v
G If v—; e[o, - fzﬂ] then,

Fe@©3(%+;¢)vf+%v§?l+y.
. v U A+ 2u
(H)vaze[l+2/4’ 7 ]then,
~ A= A+ u)?
FeQe ZE 02+ 02) + 2uv v, = T
(ﬁi)lfﬂe[“2",+w]them
V2 u

Fe@@%v3+3(% +,u)7122>l+,u.

Proor. This follows immediatly from Theorem 3.1. Let us note
that we have not assumed v; < v,, which explains the three cases (i), (ii)
and (iii), =

On each of the following figures, the region located above the curve
represent the set ¥ for some values of the quotient A/u.
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v2

)
9vZ+vi=4 when OSv—1$

(v1, v3) € Ve J vy vy = % when

v
v2+9vf =>4 when 3$v—1s+oo.
2
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v2
2.
1.5}
1.
0.5
0 0.5 1 1.5
(1502 2 v _ 1
159 +3v5 =8 when 0 — < =
V2 5
- 4 1 U
(vl,vz)e\‘?¢><”1+’”2?$ when g\v—2$5,
2 2 U
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Now, for F e M? and v, < v, its singular values, one has
4.1) vi+v=|F|? and v,v,=det F.
Moreover, if we denote by ||| the matrix norm defined on M2 by

IFIF = sup |Fz|®
l¢| =1

where | - | denotes the euclidean norm (see (2.3)). It is well known that ||F|| = v,
and thus

(A + 2u) v, = uvo <> (A + 2u) det F = u||FIP

in such way that Theorem 4.1 leads to:

THEOREM 4.2. Let F e M2\ {0}.
() If (A + 2u) det F < u||F|?, then F e Q if and only if

% IFI = G + ) |FIE + 3(% + u))(det FE=0.

(i) If (A +2u) det F = u||F|?, then F e L if and only if

(A +uy

A—u 2 s TR
3 |F|?+ 2u det F = A o

Proor. It is immediate since

det F
’v =
IR

(ifF#0) and v,=|F||. =

REMARK 4.1. This can be express also without using the norm || - ||;

indeed (4.1) implies that »? and v are the solutions of the following

equations
X2 — |F|2X + (det F)?=0

and thus

vt = L(FP = VIFI — 4t FR).
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