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The Formation Generated by a Finite Group.

ROGER M. BRYANT(*) - PAUL D. FOY(**)

ABSTRACT - It is proved that the formation generated by a finite group which is
an extension of a soluble group by a non-abelian simple group contains only
finitely many subformations. This extends the work of Bryant, Bryce and
Hartley.

1. Introduction.

In [1] Bryant, Bryce and Hartley showed that the formation gener-
ated by a finite soluble group contains only finitely many subforma-
tions. In this paper we show that the same result is true for a finite

group which is an extension of a soluble group by a non-abelian simple
group. We refer the reader to [1] and [2] for notation and definitions re-
lating to formations. If E is a class of finite groups we write Form (E)
for the formation generated by Z and note that Form (E) = QRo (E). If G
is a finite group then every group in Form ( G ) is isomorphic to a quo-
tient of a subdirect subgroup of the direct power G n for some positive
integer n.

THEOREM 1.1. Let G be a finite group. Suppose G is an extension
of a soluble group by a non-abelian simple group T. Then Form (G)
contains only finitely many subformations.
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A finite group A is called formation critical if the formation gener-
ated by those proper factors of A which lie in Form (A ) does not contain
A. Every formation is generated by those formation critical groups con-
tained within it (see [ 1 ] ). As in [ 1 ], 1.1 will be proved by showing that
the formation generated by a finite soluble-by-simple group contains
only finitely many formation critical groups.

THEOREM 1.1.1. Let G be a finite group. Suppose G is an extension
of a soluble group by a non-abelian simple group T. Then Form (G)
contains onLy finitely many formation critical groups.

As previously remarked, 1.1.1 implies 1.1. It will be shown that the
following structure theorem for formation critical groups implies
1.1.1.

THEOREM 1.2. Let G be a finite group which is an extension of a
soluble group by a non-abelian simple group T. Let A be a formation
critical group in Form ( G ), and let R(A) denote the soluble radical of
A. Then either A is soluble or A/R(A) is isomorphic to either T or
T x T.

It is perhaps worth remarking that there exists a group G which is
formation critical and is such that G/R(G) is isomorphic to the direct
product of two copies of a non-abelian simple group. For example take
G to be the central product of two copies of the special linear group
SL (2, 5). See the last part of [ 1 ] for details.

Section 2 will contain some necessary preliminaries and section 3
the proofs of 1.1.1 and 1.2. It would be of considerable interest to know
whether Theorem 1.1 holds for an arbitrary finite group G. But even
very special cases seem to be difficult. We have unsuccessfully tried to
extend 1.1 to the case where G is a finite extension of a soluble group by
the direct product of two or more copies of T or to the case where G is a
finite group possessing precisely one non-abelian composition fac-
tor.

2. Preliminaries.

Consider the direct power G n where G is a finite group and
n is a positive integer. Let Gi denote the subgroup of G n consisting
of all elements with the identity in the j-th position for all j ~ i,
and let be the i-th projection homomorphism. Identify
Gi with G (1 ~ i ~ n). Let D be a subgroup of G’. Then we say
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that D is a diagonal subgroup if = G and ker (,-r In) = 1 ( 1 ~ i ~
~ n). Note that, when this holds, D = G.

Suppose D is a diagonal subgroup of G n . Then each Ri|D is an iso-
morphism from D to G. Hence there are 
of G such that

Conversely, if 0 1, ... , ø n are automorphisms of G and D is the sub-
group of G n given by the preceding equation then D is a diagonal
subgroup.

Let I = {I, 2, ... , ~}. For each subset J of I we write G ‘~ for the sub-
group of G n consisting of those elements w of G" such = 1
for all is J. Thus G m where m = J ~ .

We shall consider carefully the case where G is a non-abelian simple
group.

LEMMA 2.1. Let G be a finite non-abelian simple group, n a positi-
ve integer and I = ~ 1, 2, ... , ,~}. Let H be a subdirect subgroup of Gn .
Then there exist pairwise disjoint non-empty subsets /1’ ... , I,. of I with
I = /1 U ... U Ir such that H = H, x ... X Hr and Hj is a diagonal sub-
group of G Ij for j = 1, ... , r. Furthermore there exists a subgroup Ho of
H such that Ho is a diagonal subgroups of G n .

PROOF. The proof of the first part is well known and may be done,
for example, by induction on 1/ I. Since the statement of the second part
is vital for this work we shall give a proof.

After a suitable renumbering we may assume without loss of gener-
ality that

with nl  n2  ...  n. Then there exist automorphisms 0 i of G
(1 ~ i ~ n ) such that

and so on. Let Ho be the subgroup of H = H1 X ... x Hr defined by

Then it is easy to see that Ho is a diagonal subgroup of an. This com-
pletes the proof of the second part of the lemma.
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LEMMA 2.2. Let G be a finite non-abelian simple group. Let n be a
positive integer and let G1, ... , Gn be isomorphic copies of G. Suppose N
is a normal subgroup of G1 x ... x Gn . Then there exists a subset

{ iI, of ~ 1, ... , n ~ such that N = Gil x ... x 

PROOF. This is well known.

The following result is the key to the development.

LEMMA 2.3. Let A be a finite group which is generated by the sub-
group H together with normal subgroups Nl , N2 , ... , Nn . Suppose

9 ... 9 N;r(n) = 1 holds for every permutation 7l of I = f 1 2, nl.
For each subset J of I let H (taking A~ = H). Then

PROOF. See [3], Theorem a.19, page 843.

We shall also need some notions from the theory of varieties. The
necessary elementary notation and results can be found in chapter 1 of
[4]. In particular we shall need the following facts.

(i) The free groups of finite rank of the variety generated by a fi-
nite group are finite ([4], 15.71).

(ii) If m is a positive integer, any m-generator group in a variety
is isomorphic to a quotient of the free group of rank m of the variety
([4], 14.23).

Thus the order of any m-generator group in the variety Var (G)
generated by a finite group G is bounded by the (finite) order of the
free group of rank m of Var (G).

3. The main result.

We shall now embark upon the proof of 1.2. The proof is long and
proceeds via several lemmas. Let G denote a finite group which is an
extension of a soluble group by a non-abelian simple group T. Let A be
a formation critical group in Form (G). Throughout the proof, for any
finite group H, R(H) denotes the soluble radical of H.

Since A E Form (G), A = ,S/L where S is a subdirect subgroup
of G n for some positive integer n and L is a normal subgroup
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of ,S. Without loss of generality we assume that A = S / L. Furthermore,
let Gi i and JC i (1 ~ i ~ n ) be as defined in section 2.

Let Var ( T ) = Qsc (T), the variety generated by T . Let V be any set
of words defining Var (T); for example, the set of all laws of T . Then,
for any group H, H E Var (T) if and only if V(H) = 1. (Here V(H) de-
notes the verbal subgroup of H corresponding to V.)

PROOF. Let G = G/V(G). Since G/R(G) = T we have V(G) ~ R(G).
Hence R(G) = R(G)/V(G) and G/R(G) = T. Since G E Var (T) it fol-
lows by 53.56 of [4] that R ( G ) does not contain the socle of G. Hence
there is a minimal normal subgroup T of G such that T ~ R ( G ). Since
G/R ( G ) = T it follows that G = T x R(G) and T = T . This proves the
result.

- 

Let G = G/V(G). Then, by 3.1, G = T x W. Here T is a subgroup of
G isomorphic to T and W is a soluble normal subgroup of G.

Define a homomorphism 0 from S to (GIV(G))’ by

for all s E S. Then ker(w) = S f1 (V ( G ))n = M say. Since is a subdirect
subgroup of G n it is easy to see = S is a subdirect subgroup of
(G)n . The next lemma gives the structure of S.

LEMMA 3.2. ,S = X x Y, where X is a subdirect subgroup of 
and Y is a subdirect subgroup of ( ~n .

PROOF. We have S 5 ( G )n = ( T x ~n = (1’)n x and there are
natural projections ( T )n and Â.2 : ( G )n -~ (WF. 
- ( T )n be the restrictions to 9 of Â.1 and Â.2, respect-
ively. Then im (,u 1 ) (the image of ,u 1 ) is a subdirect subgroup of ( T )~ and
im (,u 2 ) is a subdirect subgroup of (W )n . - - --

Set and Clearly XY=
= X x Y. We will show that S = XY. Now 
and SIX = im (,u2), which is soluble. Thus S/XY is soluble. But also
SlIT = (Slnl(ITln, and SIY = im (,u 1 ), which is a subdirect sub-

group of (1’)n . By 2.1 and 2.2 it follows that S/XY is either 1 or a direct
product of copies of the simple group T. This situation can only occur if
S = XY = X x Y.

From the subdirect nature of S it follows that X and Y are
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indeed subdirect on their respective factors. This completes the proof
of the lemma.

Let Ti ( 1 ~ i ~ n ) denote the subgroup of consisting of those
elements of (T)n with the identity in the j-th position for all j # i. Let Xo
be a diagonal subgroup of such that Xo ~ X, as given by 2.1. Hence
fCo T and Xo projects onto each ti (1 ~ i ~ n). Furthermore Xo x Y ~
 X X Y.

Now ~ (S’) = S = X x Y and ker ( ~ ) = M. Let X and Y be the normal
subgroups of S containing M such = X = Y. Also,
let Xo be the subgroup of X containing M such = Xo . Thus
X/M = X, Y/M = Y and Xo /M = Xo = T . Since Y and M are soluble it
follows that Y is soluble. Set So = Xo Y. Thus q5 (SO) = Xo x Y, which is a
subdirect subgroup of (G)n . Also, So /M = Xo /M x Y/M. Thus 
=T .

We need a lemma which gives an important property of So.

LEMMA 3.3. So is a subdirect subgroup of G n .

PROOF. Let i E {1,..., n } and let 9 be an arbitrary element of Gi .
We need so E So such that = g. Let 3z denote the natural projec-
tion homomorphism of (G/V(G))n onto the i-th factor.

is subdirect there exists Po E 80 such that

Thus g = Jli(PO)V for some v E V(Gi). Now V(S) is a subdirect subgroup
of (V(G))n and V(S) ~ S rl (V(G))n ~ So. Thus (V(G))n and
so So fl (V(G))n is a subdirect subgroup of (V(G))n . Hence there exists
ro E ,So f1 (V(G))n such that .7r i (ro) = v. Set so = Then Jli(SO) = g as
desired.

We now consider the group A = S / L and its subgroup Ao =
= ,So L /L .

LEMMA 3.4. T I .

PROOF. Since Y ~ So and Y is soluble, YL/L ~ AonR (A). Thus
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But

The result follows.

LEMMA 3.5. Let H be a subgroup of A containing Ao . Then
H E Form (A).

PROOF. (1 ~ i ~ n). Then each Mi L/L is a
normal subgroup of A.

Since So is a subdirect subgroup of G n it follows easily that S =
= So Mi . Therefore H(Mi L/L ) = A ( 1 ~ i ~ n). If Fis a non-empty subset

and we set Ao = H.

Since it follows that ... , = 1 for all permu-

tations 7r of ~ 1, ... , n ~. Thus [Mn(1)L/L, ... , = 1 for all .7r,

and the hypotheses of 2.3 are satisfied. Therefore

Hence H E Form (A ), as required.

LEMMA 3.6. A/R (A ) is isomorphic to a direct product of copies of T .

PROOF. Let = = KjL, where L ~ K ~ ,S. Then

R (S) L ~ K as R (S) L/L is a soluble normal subgroup of S/L. We
have

The lemma will then follow from 2.2 if it can be shown that S/R(S) L is
isomorphic to a direct product of copies of T.

Now is a soluble normal subgroup of G n . Hence S fl is
a soluble normal subgroup of ,S. Therefore s n R(,S). Hence
S/R (S) L is isomorphic to a quotient of sls n R(G)n . But it is easy to
see that S/S fl is isomorphic to a subdirect subgroup of

(GjR(G»n. By 2.1, sis fl is thus isomorphic to a direct product
of copies of T. Hence so is S/R(S) L.

PROOF OF 1.2. Let d denote the derived length of R(G). For

Then SISI = SNi /Ni . Since S is a subdirect subgroup of G n it is easy
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to see that ,SNi equals G n . Therefore SNi /Ni is isomorphic to G n /Ni
which is isomorphic to T . Hence SISI = T for all i .

Case 1. Si is a subgroup of R (A ) for some i (1 ~ i ~ n).

Then A/R (A) is isomorphic to a quotient of A/Si . But is iso-

morphic to a quotient of S/Si and S/Si is isomorphic to T . Hence in this
case, either A/R (A ) = 1 and A is soluble, or A/R (A ) = T.

Case 2. For all i, R (A).

Then (the d-th term of the derived series of Si) is not a subgroup
of R (A ), for otherwise Si would be a soluble normal subgroup of A and,
by assumption, this is not so.

Since for all permu-

tations 7r. Write Ai = Si(d). Then [An( 1 ~ , ... , = 1 for all gr.

Now, as in case 1, A/Si is isomorphic to a quotient of T. Now a com-
parison of the composition series of A/Ai which pass through Si/Ai and
Ai R (A)/Ai respectively shows, by the Jordan-Hölder theorem, that
A/AiR(A) possesses at most one composition factor isomorphic to T. By
3.6, A/Ai R (A) is isomorphic to a quotient of a direct product of copies of
T . Hence, by 2.2, is isomorphic to 1 or T (1 ~ i ~ n).

From 3.6 it follows that there exists a positive integer e and normal
subgroups Ti of A containing R (A) such that Ti /R (A) is isomorphic to T
(1 ~ i ~ e) and A/R(A) = T1 /R(A) x ... x Te /R(A).

Now is a normal subgroup of A/R (A ) with quotient
isomorphic to 1 or T. Hence Ai R (A)/R (A) contains at least e - 1 of the
factors T 1 /R (A ), ... , Te /R(A).

Suppose (for a contradiction) that e a 3.
Let Then, by 3.4, 

By 3.5 every subgroup of A containing U belongs to Form (A).
Clearly

Choose il , ... , i~ E ~ 1, ... , e ~ with c minimal subj ect to
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Then, by a suitable renumbering of Tl , ... , Te , we may take

Since IA/R(A) I = T| we must have c &#x3E; e - 1 &#x3E;

3 2. Let B be the subgroup of A containing R(A) such that

Therefore

By the minimality of c, (BfR(A»(T1fR(A» and (BIR(A))(T21R(A))
are proper subgroups of A/R (A ).

Since every Ai R (A)/R (A) contains at least e - 1 of the Tj /R (A),
every Ai R (A)/R (A) contains either T1fR(A) or T2fR(A).

For i = 1, ... , n we define a normal subgroup Xi of A by Xi = Ai f1 T1
contains T1 and Xi = Ai n T2 otherwise. Thus, by

Dedekind’s rule, XiR(A)fR(A) is either T1fR(A) or T2fR(A). Since
Xi ~ Ai we have [X~( 1 ~ , ... , X~~n~ ] = 1 for all permutations .7r. Hence

for all yr. Since T1/R(A) is non-nilpotent there exists at least one value
of i for which Xi R (A)/R (A) = T2 /R (A). Similarly there exists at least
one value of i for which XiR(A)/R(A) = T1/R(A).

Suppose after renumbering that 
equal T1/R(A) and that equal

where p is a positive integer and p  n. By standard commu-
tator identities,

where the product is over all Thus

Let J1 = [Xl , ... , Xp] and J2 = [Xp + 1, ... , Then J1 and J2 are
normal subgroups of A and [J1, J2] = 1. Since T1 /R (A) and 
are both perfect groups we have
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and

Hence A = BJl J2 where [Jl , J2] = 1 and B, BJ1 and BJ2 are proper sub-
groups of A. These subgroups contain U and so they all belong to
Form (A). The hypotheses of 2.3 are satisfied (take n = 2, H = B
and Ni = Ji (i = 1, 2) in the statement of 2.3). Thus BJ1J2 E
E Form BJ1, BJ2 }. This contradicts the fact that A is formation
critical.

Hence e ~ 2 and A/R (A) is isomorphic to T or T x T. This completes
the proof of 1.2.

PROOF OF 1.1.1. We shall show that the order of any formation criti-
cal group A in Form (G) is less than some constant which depends only
upon the group G. This is what we shall mean when speaking of bound-
ing IAI.

Let F be the Fitting subgroup of A, ~ the Frattini subgroup of A,
and R the soluble radical of A. The arguments used in [1], section 1,
show that 1 is bounded: these arguments do not require A to be
soluble.

Let C = E A : [ a, f ] 0 for all f E F } . We claim that
F = C U 72. Now FIO is abelian. Therefore F ~ C. Since F 5 R we have
F, CnR.

For the reverse inclusion note that F(R), the Fitting subgroup of R,
is a normal nilpotent subgroup of A. Hence F(R) ~ F. Certainly F 5
~ F(R) as F ~ R. Thus F(R) = F. Similarly, F(RjØ) = But

F(AIO) = FjØ. Thus FjØ = F(RIO). Also, C n R = CR (FjØ). Thus

Since RIØ is a soluble group, 7.67 of [5] yields that 
5 F(RIØ). Hence (C n R) /W £ F(RIO) = FIØ, and so C n R  F.
Therefore F = C fl R as required.

Each element a of A induces the automorphism aa : 0

of FIO. This gives rise to a homomorphism into Aut 
But C is the kernel of this homomorphism and so A/C can be embedded
in Aut (FIØ). Since I Fl 0 1 is bounded it follows that IAICI I is bounded.
Also

since Hence I is bounded.
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Also, by 1.2, I is bounded. But

Thus I is bounded. Therefore the number of generators of A is
bounded. It follows from the remarks at the end of section 2 that I A I is
bounded.
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