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On the Type Decomposition
of the Second Fundamental Form
of a Kidhler Submanifold.

M. J. FERREIRA (*) - RENATO TRIBUZY (**)

1. Introduction and statement of results.

Let (M, J) be a connected Kihler manifold of complex dimension m,
N be a Riemannian manifold and

¢o:M—>N

an isometric immersion.

Let TM denotes the tangent bundle of M and T°M = TM Q C its
complexification. We represent by a either the second fundamental
form of @ or its complex bilinear extension.

Decomposition of 7€M according to types

@ T°M=T'M®T"'M,

induces a decomposition of « into (2,0), (0,2) and (1, 1) parts by restrict-
ingto T"MQOT'M, T"TMQT'Mand TMRIT'MOET"MQOT'M giv-
ing rise respectively to the operators a®?, a®? and o>V,

(*) Permanent address: Departamento de Matematica, Facultade de Cién-
cias, Universidade de Lisboa, Rua Ernesto de Vasconcelos, Bl. C,, 3°, 1700 Li-
sboa, Portugal.

(**) Permanent address: Departamento de Matemitica - ICE - Universidade
do Amazonas, Manaus, AM, Brasil.
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We say that ¢ is (1, 1)-geodesic if a‘**? = 0. The condition o™ = 0
is quite interesting. Indeed the vanishing of o™V is equivalent to ¢ be-
ing harmonic when restricted to any complex curve [R]. Owing to this
property (1,1)-geodesic maps are sometimes called pluriharmonic
maps. It is easily seen that + holomorphic maps between Kéhler mani-
folds are (1,1)-geodesic, so that (1,1)-geodesic maps lie between har-
monic and = holomorphic maps.

(1,1)-geodesic maps have been studied by several authors, but with
the exception of the holomorphic ones very few examples are available.
However, if N is flat, Dacjzer and Rodrigues [D-R] showed that the
only (1,1)-geodesic immersions are the minimal immersions.

In a real setting (1,1)-geodesic maps have also a nice description.

The second fundamental form o in conjunction with the complex
structure J give rise to two operators, which we denote respectively by
P and Q, defined by

P, Y) = 3 {a(X, V) + alX, JD)},

QX, Y) = 3 {aX, V) - aUX, IV},

where X, Y e C(TM).

We remark that if X' and Y" are respectively the (1,0) and (0,1)
components of X and Y with respect to the decomposition (1), we
have

aD(X', ¥Y") = P(X, Y) + iP(X, JY),

so that (1,1)-geodesic maps are also characterized by the vanishing of P.

We say that ¢ is (2, 0)-geodesic if a®? = 0. As above, it can be seen
that a map is (2,0)-geodesic if and only if @ = 0. Surprisingly the van-
ishing of @ is a strong condition. Indeed, when N is a spaceform it can
be infered from Codazzi-equations that a (2,0)-geodesic isometric im-
mersion has parallel second fundamental form. Ferus [F] classified all
the (2,0) geodesic isometric embeddings into R". These are, of course,
immersions with parallel operator P. When m = 1, the isometric im-
mersions with P parallel are precisely those with parallel mean curva-
ture. Isometric immersions with parallel P have been studied by the
authors.

In this work we analyze the case of isometric immersions with P to-
tally umbilical, that is, P = (,) H, where H denotes the mean curvature
of @ and (,) the metric of M.
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We prove that:

THEOREM 1. Let ¢: M — Q"(c) be an isometric immersion into an
n-dimensional spaceform with constant sectional curvature c. If P is to-
tally umbilical one has:

(i) if ¢ =0, then either H =0 or m = 1;
(i) if ¢ > 0, then m =1;

(ifi) if ¢ < 0, then either m = 1 or ¢ has constant mean curvature

H] = V=e.

THEOREM 2. Let ¢: M — G,(C") be an isometric immersion into
the Grassmannian of complex p-dimensional subspaces of C”. If P is to-
tally umbilical, then either m < (p —1)(r —p—-1) + 1 and ¢ is (1,1)-
geodesic or ¢ is * holomorphiec.

COROLLARY 1. Let ¢: M — CP" be an isometric immersion with P
totally umbilical. Then either M is a Riemann surface or ¢ is =+
holomorphic.

THEOREM 3. Let N be a 1/4-pinched Riemannian manifold and
@: M — N be an isometric immersion. If P is totally umbilical, M is a
Riemann surface.

Mapping into Riemannian manifolds with constant sectional curva-
ture c, Dacjzer and Rodrigues [D-R] showed that when ¢ = 0 minimali-
ty is equivalent to being (1,1) geodesic. Moreover they proved that
when ¢ # 0, the only (1, 1)-geodesic isometric immersions are the mini-
mal surfaces. These theorems are an easy consequence of the following
result:

THEOREM 4. Let ¢: M — Q"(c) be an isometric immersion into an
n-dimensional spaceform with sectional curvature c. Therefore:

@) if ¢ =0, then [|H| = —— |P|;
m

Ve

(ii) if ¢ < 0, then |H|| = —— |||, equality holds if and only if
m=1; \/ém

(iii) if ¢ > 0, then ||H|| < —— ||P|, equality holds if and only if
m = 1. : Vam
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THEOREM 5. Let ¢:M —G,(C") be an isometric immersion.
Then
|H] < —— P

Vem

when the equality holds either m < (p—1)(n—p—-1)+1or ¢ is *
holomorphic.

REMARK. A similar result with the reversed inequality holds when
in Theorem 5 we replace G,(C") by its dual symmetric space of non-
compact type.

Theorem 5 generalizes theorems A and B of [D-T]. Indeed, when
p=1,G,(C*" 1) is the n-dimensional complex projective space, so that,

it m > 1 and @ is (1, 1)-geodesic, the equality | H]| = ﬁIIPH holds triv-

ially and ¢ is *= holomorphic. Theorem 5 also generalizes Theorem 5 of
[F-R-T] and Theorem 3.7 of [O-U].

THEOREM 6. Let N be a 1/4-pinched Riemannian manifold and
@:M — N be an isometric immersion. Then

1
—— Pl
m

V2

equality holds if and only if M is a Riemann surface.

When M is an s-dimensional (not necessarily complex) pseudoumbil-
ical submani-fold of a spaceform Q" (c), Chen and Yano [C-Y] showed
that the (non-normalized) scalar curvature r of M satisfies

1] <

r<s(s—1)c+ ||H||2),

and the equality is attained when M is totally umbilical.

When M is a Kéhler manifold this inequality can be sharpened with-
out the pseudoumbilicity assumption, as we state in the following
result:

THEOREM 7. Let ¢: M — Q" (c) be an isometric immersion into a
spaceform with sectional curvature c¢. Then the scalar curvature of M
satisfies

r<2m?(c+ ||H|P),

and the equality is attained when, and only when, ¢ is (2, 0)-
geodesic.
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When the target manifold has constant holomorphic sectional curva-
ture ¢ we get:

THEOREM 8. Let ¢: M — H"(c) be an isometric immersion into a
Riemannian manifold with constant holomorphic sectional curvature c.
If @ is totally real the following inequality holds:

r<2m? (%c + ||H||2).
Moreover, the equality is attained when and only when, ¢ is (2, 0)-
geodesic.

REMARK. When ¢ is minimal results analogous to those of Theo-
rems 7 and 8 may be found in [D-R] and [D-T1].

2. Proof of the statements.

First observe that the isotropy and the parallelism of T'M
imply
(RX,Z,W)=0,

for every xe M, X, Ye TCM and Z, We T, M, where R denotes the
complex multilinear extension of the curvature tensor R of M.

For each xeM consider a local orthonormal frame field
{e1 .- m, ey, ..., Je,,,} in a neighbourhood of x. we shall use the fol-
lowing notation:

\/éE] = ej + iJej € T”
and
\/§E_j=\/-2_E'-jeT’ for each je{1,...,m}.

If R denotes the Riemannian curvature tensor of N, using the com-
plex multilinear extension of the Gauss equation we get

@ 0=(a(E, E,), a(E,, E,)) — (a(E, E,), a(E,, E})) +
+(R(Ey, E,)E,, E,).
Summing in k and r we obtain

@) 0 = m?|| H|P - %upnz + S(R(Ey, E)Ey, E,).
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When N has constant sectional curvature ¢

(4) (E(Ek’ET)EIHET):C(I _610,7')7
hence
®) 3 (BB, BBy, Fy) = om(m - 1).

From (3) and (5) we get the conclusions of Theorem 4.

Now let N =G,(C*) = D) :J(Un()n = If U represents the Lie
algebra of U(n) and k the subalgebra corresponding to U(n) X Uy, - )
we can identify T, N with the orthogonal complement & of £ in U with
respect to the Killing-Cartan form of U(n).

Under this identification we know that at «

(6) (E(Eky Er)Eky Er>= ”[Ek’ Er]llz'

Using (8) and (6), when P is totally umbilical, we get ||[[E}, E, ]|* =
= ||HIF = o.

It follows from [F-R-T] that either m < (p—1)(n —p—-1)+1lor ¢
is = holomorphie.

When N is a 1/4-pinched Riemannian manifold it is easily seen
that

) (R(Ey, E,)E,, E,)=0

and, as above, we get Theorem 6 from (3) and (7).
Assume now that P is totally umbilical. We get from (2) that

@®) (1 -6, ) H|F + (RB(Ey, E,)E, E,) = 0.

Theorems 1, 2 and 3 are then a straightforward consequence of (4),
(6), (7) and (8).
To get Theorems 7 and 8 observe that

EVE =T
k,'rz=1<R(Ek’ Er)Ekv Er) - 2 .
Therefore, from the Gauss equation, we get

r=m?|HF - 21QF + 3 (R, E)E,, E,).
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When

N= Qn(c) 2 <R(Ek’E )Ek) 'r)”‘mzcy

hence
r<2m?(|H|f +¢),

with equality when and only when @ = 0.
When N has constant holomorphic sectional curvature ¢ and ¢ is to-
tally real,

kZ_ (E(Ey, E)Ey, E,) = {m?

so that
r< 2m? (||H||2 + %c)

with equality when and only when ¢ is (2,0)-geodesic.
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