RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

M. J. FERREIRA RENATO TRIBUZY

On the type decomposition of the second fundamental form of a Kähler submanifold

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 17-23

http://www.numdam.org/item?id=RSMUP_1995__94__17_0

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Type Decomposition of the Second Fundamental Form of a Kähler Submanifold.

M. J. FERREIRA(*) - RENATO TRIBUZY(**)

1. Introduction and statement of results.

Let (M, J) be a connected Kähler manifold of complex dimension m, N be a Riemannian manifold and

$$\varphi: M \to N$$

an isometric immersion.

Let TM denotes the tangent bundle of M and $T^{C}M = TM \otimes C$ its complexification. We represent by α either the second fundamental form of φ or its complex bilinear extension.

Decomposition of $T^{C}M$ according to types

$$(1) T^{\mathsf{C}}M = T'M \oplus T''M,$$

induces a decomposition of α into (2,0), (0,2) and (1,1) parts by restricting to $T'M\otimes T'M$, $T''M\otimes T''M$ and $T'M\otimes T''M\oplus T''M\otimes T'M$ giving rise respectively to the operators $\alpha^{(2,0)}$, $\alpha^{(0,2)}$ and $\alpha^{(1,1)}$.

- (*) Permanent address: Departamento de Matemática, Facultade de Ciências, Universidade de Lisboa, Rua Ernesto de Vasconcelos, Bl. C_2 , 3° , 1700 Lisboa, Portugal.
- (**) Permanent address: Departamento de Matemática ICE Universidade do Amazonas, Manaus, AM, Brasil.

We say that φ is (1,1)-geodesic if $\alpha^{(1,1)} \equiv 0$. The condition $\alpha^{(1,1)} \equiv 0$ is quite interesting. Indeed the vanishing of $\alpha^{(1,1)}$ is equivalent to φ being harmonic when restricted to any complex curve [R]. Owing to this property (1,1)-geodesic maps are sometimes called pluriharmonic maps. It is easily seen that \pm holomorphic maps between Kähler manifolds are (1,1)-geodesic, so that (1,1)-geodesic maps lie between harmonic and \pm holomorphic maps.

(1,1)-geodesic maps have been studied by several authors, but with the exception of the holomorphic ones very few examples are available. However, if N is flat, Dacjzer and Rodrigues [D-R] showed that the only (1,1)-geodesic immersions are the minimal immersions.

In a real setting (1,1)-geodesic maps have also a nice description. The second fundamental form α in conjunction with the complex structure J give rise to two operators, which we denote respectively by P and Q, defined by

$$\begin{split} P(X,\,Y) &=\, \frac{1}{2}\,\left\{\alpha(X,\,Y) + \alpha(JX,\,JY)\right\},\\ \\ Q(X,\,Y) &=\, \frac{1}{2}\,\left\{\alpha(X,\,Y) - \alpha(JX,\,JY)\right\}, \end{split}$$

where $X, Y \in C(TM)$.

We remark that if X' and Y'' are respectively the (1,0) and (0,1) components of X and Y with respect to the decomposition (1), we have

$$\alpha^{(1,\,1)}(X',\,Y'') = P(X,\,Y) + iP(X,\,JY),$$

so that (1,1)-geodesic maps are also characterized by the vanishing of P. We say that φ is (2,0)-geodesic if $\alpha^{(2,0)} \equiv 0$. As above, it can be seen that a map is (2,0)-geodesic if and only if $Q \equiv 0$. Surprisingly the vanishing of Q is a strong condition. Indeed, when Q is a spaceform it can be inferred from Codazzi-equations that a (2,0)-geodesic isometric immersion has parallel second fundamental form. Ferus [F] classified all the (2,0) geodesic isometric embeddings into \mathbb{R}^n . These are, of course, immersions with parallel operator P. When m=1, the isometric immersions with P parallel are precisely those with parallel mean curvature. Isometric immersions with parallel P have been studied by the authors.

In this work we analyze the case of isometric immersions with P totally umbilical, that is, $P = \langle , \rangle H$, where H denotes the mean curvature of φ and \langle , \rangle the metric of M.

We prove that:

THEOREM 1. Let $\varphi: M \to Q^n(c)$ be an isometric immersion into an n-dimensional spaceform with constant sectional curvature c. If P is totally umbilical one has:

- (i) if c=0, then either $H\equiv 0$ or m=1;
- (ii) if c > 0, then m = 1:
- (iii) if c < 0, then either m = 1 or φ has constant mean curvature $||H|| = \sqrt{-c}$.

THEOREM 2. Let $\varphi \colon M \to G_p(\mathbb{C}^n)$ be an isometric immersion into the Grassmannian of complex p-dimensional subspaces of \mathbb{C}^n . If P is totally umbilical, then either $m \leq (p-1)(n-p-1)+1$ and φ is (1,1)-geodesic or φ is \pm holomorphic.

COROLLARY 1. Let $\varphi: M \to \mathbb{C}P^n$ be an isometric immersion with P totally umbilical. Then either M is a Riemann surface or φ is \pm holomorphic.

THEOREM 3. Let N be a 1/4-pinched Riemannian manifold and $\varphi: M \to N$ be an isometric immersion. If P is totally umbilical, M is a Riemann surface.

Mapping into Riemannian manifolds with constant sectional curvature c, Dacjzer and Rodrigues [D-R] showed that when c=0 minimality is equivalent to being (1,1) geodesic. Moreover they proved that when $c\neq 0$, the only (1,1)-geodesic isometric immersions are the minimal surfaces. These theorems are an easy consequence of the following result:

THEOREM 4. Let $\varphi: M \to Q^n(c)$ be an isometric immersion into an n-dimensional spaceform with sectional curvature c. Therefore:

(i) if
$$c = 0$$
, then $||H|| = \frac{1}{\sqrt{2}m} ||P||$;

- (ii) if c < 0, then $\|H\| \ge \frac{1}{\sqrt{2}m} \|P\|$, equality holds if and only if m = 1;
- (iii) if c>0, then $\|H\| \leq \frac{1}{\sqrt{2}m} \, \|P\|$, equality holds if and only if m=1.

Theorem 5. Let $\varphi: M \to G_p(\mathbb{C}^n)$ be an isometric immersion. Then

$$||H|| \leqslant \frac{1}{\sqrt{2}m} ||P||,$$

when the equality holds either $m \le (p-1)(n-p-1)+1$ or φ is \pm holomorphic.

REMARK. A similar result with the reversed inequality holds when in Theorem 5 we replace $G_p(\mathbb{C}^n)$ by its dual symmetric space of non-compact type.

Theorem 5 generalizes theorems A and B of [D-T]. Indeed, when p=1, $G_p(\mathbb{C}^{n+1})$ is the n-dimensional complex projective space, so that, if m>1 and φ is (1,1)-geodesic, the equality $\|H\|=\frac{1}{2m}\|P\|$ holds trivially and φ is \pm holomorphic. Theorem 5 also generalizes Theorem 5 of [F-R-T] and Theorem 3.7 of [O-U].

THEOREM 6. Let N be a 1/4-pinched Riemannian manifold and $\varphi: M \to N$ be an isometric immersion. Then

$$||H|| \leqslant \frac{1}{\sqrt{2}m} ||P||,$$

equality holds if and only if M is a Riemann surface.

When M is an s-dimensional (not necessarily complex) pseudoumbilical submani-fold of a spaceform $Q^n(c)$, Chen and Yano [C-Y] showed that the (non-normalized) scalar curvature r of M satisfies

$$r \leq s(s-1)(c+||H||^2),$$

and the equality is attained when M is totally umbilical.

When M is a Kähler manifold this inequality can be sharpened without the pseudoumbilicity assumption, as we state in the following result:

THEOREM 7. Let $\varphi: M \to Q^n(c)$ be an isometric immersion into a spaceform with sectional curvature c. Then the scalar curvature of M satisfies

$$r \leq 2m^2(c + ||H||^2)$$
,

and the equality is attained when, and only when, φ is (2, 0)-geodesic.

When the target manifold has constant holomorphic sectional curvature c we get:

THEOREM 8. Let $\varphi: M \to H^n(c)$ be an isometric immersion into a Riemannian manifold with constant holomorphic sectional curvature c. If φ is totally real the following inequality holds:

$$r \leqslant 2m^2 \left(\frac{1}{4}c + \|H\|^2\right).$$

Moreover, the equality is attained when and only when, φ is (2, 0)-geodesic.

REMARK. When φ is minimal results analogous to those of Theorems 7 and 8 may be found in [D-R] and [D-T].

2. Proof of the statements.

First observe that the isotropy and the parallelism of T'M imply

$$\langle R(X, Y)Z, W \rangle = 0$$

for every $x \in M$, X, $Y \in T_x^{\mathbb{C}}M$ and Z, $W \in T_x'M$, where R denotes the complex multilinear extension of the curvature tensor R of M.

For each $x \in M$ consider a local orthonormal frame field $\{e_1, \ldots, e_m, Je_1, \ldots, J_{e_m}\}$ in a neighbourhood of x, we shall use the following notation:

$$\sqrt{2}\,E_j=e_j+iJe_j\in T''$$

and

$$\sqrt{2}E_{-j} = \sqrt{2}\overline{E}_j \in T'$$
 for each $j \in \{1, ..., m\}$.

If \widetilde{R} denotes the Riemannian curvature tensor of N, using the complex multilinear extension of the Gauss equation we get

(2)
$$0 = \langle \alpha(E_k, \overline{E}_k), \alpha(E_r, \overline{E}_r) \rangle - \langle \alpha(E_k, \overline{E}_r), \alpha(E_r, \overline{E}_k) \rangle + \\ + \langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle.$$

Summing in k and r we obtain

(3)
$$0 = m^2 ||H||^2 - \frac{1}{2} ||P||^2 + \sum_{k,r} \langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle.$$

When N has constant sectional curvature c

(4)
$$\langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle = c(1 - \delta_{k,r}),$$

hence

(5)
$$\sum_{k=1}^{m} \langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle = cm(m-1).$$

From (3) and (5) we get the conclusions of Theorem 4.

Now let
$$N = G_p(\mathbb{C}^n) \simeq \frac{U(n)}{U(p) \times U(n-p)}$$
. If u represents the Lie

algebra of U(n) and κ the subalgebra corresponding to $U(n) \times U_{(n-p)}$ we can identify $T_{\varphi(x)}N$ with the orthogonal complement \mathcal{P} of κ in \mathcal{U} with respect to the Killing-Cartan form of U(n).

Under this identification we know that at x

(6)
$$\langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle = ||[E_k, E_r]||^2.$$

Using (3) and (6), when P is totally umbilical, we get $||[E_k, E_r]||^2 = ||H||^2 = 0$.

It follows from [F-R-T] that either $m \le (p-1)(n-p-1)+1$ or φ is \pm holomorphic.

When N is a 1/4-pinched Riemannian manifold it is easily seen that

$$\langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle \ge 0$$

and, as above, we get Theorem 6 from (3) and (7).

Assume now that P is totally umbilical. We get from (2) that

(8)
$$(1 - \delta_{k,r}) \|H\|^2 + \langle \widetilde{R}(E_k, E_r) \overline{E}_k, \overline{E}_r \rangle = 0.$$

Theorems 1, 2 and 3 are then a straightforward consequence of (4), (6), (7) and (8).

To get Theorems 7 and 8 observe that

$$\sum_{k, r=1} \langle R(E_k, \overline{E}_r) \overline{E}_k, E_r \rangle = \frac{r}{2}.$$

Therefore, from the Gauss equation, we get

$$r = m^2 \|H\|^2 - \frac{1}{2} \|Q\|^2 + \sum_{k, r=1}^m \langle \widetilde{R}(E_k, \overline{E}_r) \overline{E}_k, E_r \rangle.$$

When

$$N = Q^n(c), \sum_{k, r=1}^m \langle \widetilde{R}(E_k, \overline{E}_r) \overline{E}_k, E_r \rangle = m^2 c,$$

hence

$$r \leq 2m^2(||H||^2+c),$$

with equality when and only when $Q \equiv 0$.

When N has constant holomorphic sectional curvature c and φ is totally real,

$$\sum_{k,\,r=1}^{m} \langle \widetilde{R}(E_k,\,\overline{E}_r)\,\overline{E}_k,\,E_r \rangle = \frac{c}{4}\,m^2,$$

so that

$$r \leqslant 2m^2 \left(\|H\|^2 + \frac{1}{4}c \right)$$

with equality when and only when φ is (2,0)-geodesic.

REFERENCES

- [C-Y] B. Y. Chen K. Yano, Pseudoumbilical submanifolds in a Riemannian manifold of constant curvature, Diff. Geom. in honor of K. Yano, Kinokuniya, Tokyo (1972), pp. 61-71.
- [D-] M. DACJZER L. RODRIGUES, Rigidity of real Kähler submanifolds, Duke Math. J., 53 (1986), pp. 211-220.
- [D-T] M. DACJZER G. THORBERGSON, Holomorphicity of minimal submanifolds in complex spaceforms, Math. Ann., 277 (1987), pp. 353-360.
- [F] D. FERUS, Symmetric submanifolds of Euclidean space, Math. Ann., 246, (1980), 81-93.
- [F-R-T] M. J. FERREIRA M. RIGOLI R. TRIBUZY, Isometric immersions of Kähler manifolds, to appear in Rend. Sem. Mat. Univ. Padova.
- [O-U] Y. Ohnita, S. Udagowa, Complex analiticity of pluriharmonic maps and their constructions, Springer Lecture Notes in Mathematics, 1968, (1991); Prospects in Complex Geometry, Edited by J. Noguchi and T. Oshsawa, pp. 371-407.
- [R] J. H. RAWNSLEY, f-structures, f-twistor spaces and harmonic maps, Sem. Geom. L. Bianchi II (1984), Lectures Notes in Math., 1164, pp. 85-159.

Manoscritto pervenuto in redazione il 7 gennaio 1994.