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Some Results of Gevrey and Analytic Regularity
for Semilinear Weakly Hyperbolic Equations

of Oleinik Type.

RENATO MANFRIN (*)

1. Introduction.

Consider the quasi-Linear hyperbolic equation

where the coefficients a2~ and the nonlinear term f are real analytic
functions of all their arguments and assume that the strict hyperbolici-
ty condition

is satisfied for some 0  A. Thanks to results obtained by S. Alin-
hac and G. Metivier ([AM]) we know that every solution u(t, x), with
analytic initial data x), ut (0, x), is also analytic as soon as it be-
longs to some Sobolev space Hk for 1~ &#x3E; k(n) (see also [J1] for a more ac-
curate estimate of the regularity bound k(n); see [M3] for the linear
case). Later, it was proved by S. Spagnolo [Sl], [S2] that a similar result
is also valid in the weakly hyperbolic case (that is, Ào = 0 in (2.1)), at
least if we restrict ourselves to the subclass of the semitinear equations
of the form

(*) Indirizzo dell’A.: D.C.A. - Istituto Universitario di Architettura, Tolenti-
ni, S. Croce 191, 30135 Venezia.

E-mail: manfrin@sabsns.sns.it, manfrin@pdmatl,math,unipd,it.
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where

and one of the following additional conditions is fulfilled:

i) the coefficients x ) have the special form

ii) the solution u(t, x) is assumed to belong a priori to a Gevrey
class of order less than two.

We note that the Cauchy problem for a linear weakly hyperbolic
equation is well-posed in the space of real analytic functions, pro-
vided the coefficients of the equations are analytic; but, for lo = 0, the
linearized of (3.1) at a C°° solution, is a weakly hyperbolic equation with
C°° coefficients, which could present the phenomena of non-existence or
non-uniqueness. An example of a Cauchy problem (in one space dimen-
sion) of the form

with a(t) ~ 0, a(t) E Coo, uo (x), ul (x) E Coo, without local solution, was
constructed in [CS] (see also [CJS1]). A similar problem arises if we add
a lower order term to the linear part of eq. (3.1) (see [N3]). Thus, in the
weakly hyperbolic case, it is likely that some other assumptions are
necessary in order to prove the analytic regularity of the sol-
utions.

Furthermore, the Cauchy problem for a second order weakly hyper-
bolic linear equation (with smooth coefficients) is well-posed in the

Gevrey class y (8) for s  2 (see in particular [M2] and the results
in [J2], [Nl], [N2], [CDS], [CJS2], [S3], [OT], [C], [D]); hence, it is natural
to ask whether the Gevrey regularity for eq. (3.1) holds.

On the other hand, 0. Oleinik (see [01]) proved the well-posedness
in C°° of the Cauchy problem for any weakly hyperbolic linear equation
of the form
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where the coefficients are C°° functions satisfying (4.1), such that

and for positive constants A, B &#x3E; 0, 

Thus it is natural to pose the question whether a result of analytic
regularity (or, more generally, of Gevrey regularity), similar to those
proved in [Sl] and [S2], may hold for eq. (3.1) under the Oleinik’s condi-
tion (8.1), instead of the assumptions i) or ii) of [S2].

In this paper, we consider a real solution, u( t, x): [0, T) x R,
of the semilinear equation

where L(u) is the linear weakly hyperbolic operator defined in (7.1),
which satisfies (2’.1), (4.1) and (8.1). Fixed s ~ 1, we suppose that

while the nonlinear term, f (t, x, u) : [ o, T ) x x satisfies

Under these hypotheses, we are able to answer the previous questions
and more precisely, we prove the following result.

THEOREM 1. Consider eq. (9.1 ), under the assumptions (2’ .1 ), (4.1 ),
(8.1), (10.1) and (11.1). Then a solution u(t, x) : [ 0, T ) x of class
C2, belongs to C~([0, T); soon as

REMARK. We give a direct proof of Thm.1 only in the case s &#x3E; 1.

Indeed in the conclusive part of the proof (see § 5), in order to localize
our result (see Prop. 1), we use functions with compact support. On the
other hand, for the analytic case (s = 1), we can resort to Thm. 2 of [S2]
(see condition ii) above). In fact, applying our result, we first demon-
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strate that the solution u(t, x) belongs to C~([0, T); y ~~~ (Rx )) for any
s &#x3E; 1, thus u(t, x) satisfies the hypotheses of Thm. 2 of [S2].

Moreover, we can also apply the methods of § 5 in the analytic case,
using a suitable sequence of C°° compactly supported functions 
instead of a fixed E yS (Rn) (if s &#x3E; 1). See Remark 5.

REMARK. We observe that the Oleinik condition (8.1) works only if
the linear operator L takes the form (7.1), which is not preserved (in
general) by coordinate transformations. Hence, we cannot apply in our
proof the same geometric techniques used in [AM] (see Lemma 2.2 and
3.1) in order to prove the analytic regularity of the solution.

Some Remarks and Notations.

We denote by y ~~~ (l~x ), with s ~ 1, the space of Gevrey , functions of
order s, that is the space of C° functions v( x ) such that

for all compact sets K c R;. Besides, throughout this work we will con-
sider the spaces and defined in the obvious way.

Now, we will consider some aspects of the Cauchy problem for
eq. (9.1 ).

First of all, by defining,

where uo (x) and ul (x) are the initial data of u(t, x), we can confine our-
selves to a particular case of Thm. 1, namely:

Indeed, the nonlinear term f (t, x, v) satisfies the same hypotheses of
f (t, x, v).

Assuming ~(~~)eC~([0,r);~(jR~)), (with 1~ sufficiently large)
and taking the initial data in we can prove that
C~([0, T); See Prop.1.

Taking s = 1 in the statement of Thm. 1, we obtain the of analytic
regularity. Moreover, if the coefficients are analytic in the variable t
one can also derive the analyticity in t of the solution u(t, x), by apply-
ing the classic Cauchy-Kovalewski theorem.
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It is sufficient to assume that Oleinik’s condition (8.1) holds only lo-
cally in [ o, T) x Rx . That is for any compact set K c [ o, T) x R’ there
exist constants A = AK, B = BK such that (8.1) holds for all ~ E Rn.

An essential step in the proof of Thm. 1, is that the eq. (9.1) has the
uniqueness property. For a detailed proof of the local C°° well-posed-
ness of the Cauchy problem for eq. (9.1), we refer to [DM] (see also the
proof of the Sobolev estimates in Appendix A).

Finally, applying Thm. 1 and Coo -well posedness proved in [DM], it
follows the that the Cauchy problem for eq. (7.1) and (9.1) is well-posed
in the Gevrey classes yes) of order s &#x3E; 1; see Prop. 1 of § 4 for more
details.

This is the layout of the paper: in § 2 and § 3 we prove the basic
Gevrey estimates for the linear and nonlinear equations respectively; in
§ 4 we introduce the Gevrey-energies and prove a result of global regu-
larity in the space (see Prop. 1); in § 5 we prove the statement
of Thm. 1 (localizing the result of the previous section). Finally in the
Appendix A, we give the local estimates of the Hk-norms and prove the
C °° regularity of the solution.

Acknowledgments. We would like to thank S. Spagnolo for many
useful discussions about the subject of this paper.

2. Global Gevrey estimates for linear equations L(u) = g(t, x).

In this section we shall derive the energy estimates for the linear

Cauchy problem:

provided eq. (1) satisfies the condition of weak hyperbolicity, to be pre-
cise x) = x),

and the Oleinik’s condition holds, ensuring the well posedness in Coo of
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the linear eq. (1) (see [01]): for the constants A, B &#x3E; 0

for all (t, x) E R + x Concerning the coefficients of the linear
operator in (1) we assume that x), x ), c( t, x ), x ), as
function of the variable x E Rn, belong to some Gevrey class of order
s ~ 1, more precisely we will take the coefficients in CO([O, T];
y L ~ (Rn )). Hence, the following upper bounds hold

for and for some constants Finally
we require that the initial data uo (x), ul (x) and g(t, x) should

belong to H°’ (Rx ). Taking these assumptions into account and

defining

we shall restrict ourselves to the case:

We introduce the following definitions:

and we use the customary notations D a = 8§§/ ..... 8§§j . Moreover, in the
foregoing proof we shall adopt the convention of implicit summation
over repeated indices.



171

Let u(t, x) be a regular solution of (1’), (2’) on [0, T) x R’. Given i
(0 ~ r  T), we define the function

and 1 we introduce the j-th energies of a solution u(t, x) to Pb.
( 1’ ), (2’) by setting

where,

with 0 &#x3E; 0 a constant which will be chosen in the proof of Lemma 1. In
order to estimate Ea we observe that x ) = 0 Va thus

hence we have to estimate

To this end, using the fact that

and integrating by parts, we have the following identities (see
also [01], [DM]):
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Defining,

and applying the operator D a to each term of ( 1’ ), we find

where

Hence from the equality

using the identities (14), (15), (16), (17) we have
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Since B &#x3E; 0 we can estimate the last term in (17) as follow:

Moreover, integrating by parts we have

hence, from (3), (5), (23) and taking the Olienik’s condition into account,
we obtain

thus, assuming , we have

and from (10), (12) and (26) it follows that

1 a -

We can now prove the following estimate.

LEMMA 1. Let u(t, x) be a regular solution of ( 1’ ), (2’ ) (to be pre-
cise, we can assume u(t, x) E C2 ([ 0, T); BOO (Rn ))); there exists
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() 0 ~ A, such that for () 0 and ~l &#x3E; the following inequality
holds

where (

PROOF. We will use here Lemma 2.2 and 2.3 of[D] (see also [AS] for
the case s = 1). Taking assumption (5) into account and applying Lem-
ma 2.3 of[D], we easily obtain that for any ll &#x3E; there exists a con-
stant C1 = C1(n, such that

Hence, observing that

and taking ( we deduce the following estimate

In order to continue we must now estimate the term
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we define

thus, writing

where for a,, -&#x3E; 1, a - 1,~ = ... , ar¡ - 1, ... , a n ), we can consider
separately the terms of (32) of order ~ j - 1 and those of order j. Using
now Lemma 2.2 of [D] (in particular the estimates of the terms IIa )
and taking (5) into account, for any arbitrary ~l &#x3E; we can find a con-
stant C3 = C3 (n, Co , such that

Hence, from (10) and (35) we have

Finally, we have to estimate the first term in the right side of (34). In-
tegrating by parts (for a ~ ~ 1) we find the identity

now, integrating by parts again, we deduce the estimate
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hence, multiplying by a?7 in (38) and summing over
=j - 1, we have

where C4 = C4 (n, r, s). It remains to estimate the last term
in (39). Using the condition of weak hyperbolicity we can apply the fol-
lowing inequality, due to Oleinik (see [02] Lemma 4):

which holds for every n x n symmetric matrix Thus, for a 1/ ~ 1
we obtain

where C5 = C5 ( n, Co , = C(n)C02sAÕ. Now, from (41) we deduce
that
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Taking (27), (39) and (42) into account, we define

then, 00 we have

hence, using (27), (31), (36), (44) we easily obtain that estimate (28)
holds. Q.E.D.

In order to estimate we observe that

moreover, using the fact that ~(0,.c)=~(0,.x*)=0, integrating by
parts we, have the following identities:

Now, applying the operator D ~ to each term of ( 1’ ), with the same nota-
tions as before, if follows that

hence, from the equality
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using the identities (46), (47) we have

Now, defining

we are in a position to prove the following Lemma.

LEMMA 2. With the some hypotheses acnd notations of Lemmac 1,
for any ll &#x3E; we can fined ac constant C = C(n, 9, z, s)
such that for j ~ 2 the following estimate holds:

where a=s- 1.

PROOF. It is easy to see that for j ~ 2 we have

moreover, using Lemma 2.3 of [D] we deduce that for any ll &#x3E; A o there
exists a constant C? = C7 (n, Co , such that
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Finally, applying Lemma 2.2 of [D], for A &#x3E; A o we can find a constant
Cg = Co , ~l ) such that

now, integrating by parts the first term in the right side of (56) and
using (3), we have

hence, we deduce that

Taking inequalities (53), (54), (55), (58) into account and recalling the
definitions (8), (9) we obtain the estimate (52). Q.E.D.

Putting together the results of Lemma 1 and Lemma 2, we have the
following estimate:

LEMMA 3. Let u(t, x) be a regular solution of ( 1’ ), (2’ ) (we as-
sume u(t, x) E C2 ([ o, before); then, taking B o as in
Lemma 1 (see (43)), for e o and A &#x3E; there exists a constant
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such that

PROOF. Observing that Fl ( z) = E1 ( z) and that 

+ E~ ( z), for j;:::: 2, the proof follows immediately from (28) and
(52). Q.E.D.

3. Gevrey estimates for the semilinear equation L(u) = g(t, x) +
+ f (t, x, u).

As seen in the introduction, we can confine ourselves to the case of
Pb. (14.1). Hence, we consider here a regular solution u( t, x ) of the fol-
lowing semilinear Cauchy problem

(60) L(u) = g(t, x) + f (t, x, u) , u( 0, x) = ut ( 0, x) = 0,

where L(u) is defined as in (1) and satisfies hypotheses (3), (4) and (5);
the function g(t, x): [0, T] x Rn ~ R belongs to C ° ([ 0, T]; 
with space defined by the condition

As to the nonlinear term, we shall assume that f (t, x, u): [0, T] x
x Rn x R ~ R belongs to the space Co ([ o, T]; y fl (Rn + 1» and vanishes
for u = 0; more precisely, f ( t, x, u ) will satisfy the following assump-
tions :

for some constants Cf, M, P ~ 0. Introducing the notations
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and taking can rewrite the estimate (59) (for eq.
(60)) in the following form

To begin with, thanks to the assumptions on g(t, x) we have

for the constants Cg, 0, hence, we easily deduce that for 3l1 &#x3E;

&#x3E; Mg efh:/2 there exists a constant 0, such that

Moreover, using (61), we have

thus, proceeding in the same way as in the estimate (66), we find
that

for the constants Cf * 0 and

Estimates for

We recall here that, by Leibniz’ formula we have, for a ~ I &#x3E; 0,
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Since,

deduce the following estimate for 

Now, putting t7 = a - ,u and changing the order of summation over
the indices v, 03BC and t7 we can rewrite the sum in the right hand side of
(70) in the following way

Defining the integers, h I and hi for 1 ~ i  v, we observe
that

moreover for every nonnegative symmetric function ~ defined on a
symmetric 
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thus, we have

Taking (61) into account, since 11]1 [ = j - h - 1, it follows that

hence, substituting in (72) and changing the order of summation

again,

Now, applying Schwartz’ inequality and the definition of we

have
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hence, using the elementary estimate

from (73) and (74) we deduce that

Since in

we have

To estimate the L °° -norm of ), using the Sobolev embed-
ding theorem, we prove the following lemma:

LEMMA 4. Let u(t, x) be a regular function (to be precise in the
following we will assume such that

u( o, x) = 0, then defining for j ~ 1, Fj (r) as in (8), (9) we can find a
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constant C = C(n) such that for any h ;:=: 0,

where p = [n/2] + 1.

PROOF. Using the Sobolev embedding theorem, we have

Deriving with respect to t, the function
find

thus, integrating over [0, t] the terms in the right hand side of (79) and
using the assumption x ) = 0, we deduce the inequality

Clearly, in the right hand side of (80) we have an increasing function
of t; hence, summing for I = j it follows that

Now, (77) follows immediately from (78), applying (81) for j = h and
j = h + p, since
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To apply Lemma 4 to the estimate (76), we introduce the nota-
tions :

thus, for 1 ~ i  v - 1, we have

where Cr = Cr(n) depends on the constant C(n) of (77). Substituting in
(76), we obtain

thus, we have the following estimate of 6j (r):
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By the same methods we can estimate 8j(r:), we finally obtain:

REMARK 1. To conclude, we observe that, taking 311, ~,

we can find a constant C = C(n, M, P, Cr, 0, r), such that, for

j - h ;::: 0, ~~0, the following inequalities hold

Hence, we can prove the following lemma.

LEMMA 5. Let u(t, x) be a regular solutions of Pb. (60); then, tak-
8 0 (as in Lemma 3), and

we can find a 

~’IZ , C, 0, r, s), such that for j ~ 1 the following estimate holds
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where a = s - 1, and T h is defined for h ~ 0, by

with p = [ n/2 ] + 1.

PROOF. To begin with, we put together (64), (66), (68) and the esti-
mates (86), (87) for 8j (-r) and 8j(í); thus, we obtain an expression which
can be divided by Then, taking (90) into account, and proceeding
in the same way as in Remark 1, the estimate (91) follows immediate-
ly. Q.E.D.

4. Estimates for the energy of Gevrey type.

Following [S2] (see also [J1]), we define the energy functions

where Q(-r) is a certain strictly positive, decreasing function which
will be defined in the following; k ~ 0 is an integer greater than or
equal to

Differentiating (93) termwise, we have
.. _

In order to estimate (8’)’, we shall introduce (91) into (95). We obtain
the following terms
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Estimate of I N.

We remark that, for lEN, t ~ 1

hence, taking

we obtain the estimate:

Estimate of 

To estimate II N we introduce the notation

moreover, in the following we indicate with c( k ) various constants

(which may depend also on 311, ~, s) obtained applying inequalities like
(99). Now, if (100) holds, we find the estimate
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Estimate of III N.

To estimate we put

where III N groups all the terms in which hv  k, and III2 the terms
with hv ~ k.

For the terms of III N we have

hence, we easily deduce that

for the constant 21 1 = ~ 1 ( k ). Thus, using (106) and observing that for
Q~O, 1 v~h~j-1,

we can estimate IIIN1 with

Now, we consider separately the terms in (107) in which h  k and
those with h ~ k; if (100) holds, it follows that

As before, we consider separately the terms with v  1~ and the terms
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v ; 1~. We have

hence, if (100) holds, we deduce that

Finally, assuming

we have

To estimate III2 we introduce the following notations

moreover, we remark that, for hl , ... , hv ~ 1,

hence
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Recalling the definition of Th (see (92)), and observing that, for

r~ l

we easily find that taking e  1 and

then, there exists a constant ~,~ _ ~ ~ ( 1~, ~ ) (which does not depend
on hi ), such that

for 1 ~ i ~ v - 1. Since in (115), hv ~ k * p + 2, we have

hence, having it follows that
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Thus, we have

Moreover, taking into account that

for 1 ~ i ~ v, changing the order of summation it follows
that,

where 2 = 2 (.e, 2r¡, k, s) satisfies

Changing again the order of summation, we have

hence, using an inequality like (99), if (100) holds, the last sum in (124)
can be estimated by
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thus, summing over h we easily see that

Taking the estimates of I N, II N, III N, into account we can prove the fol-
lowing lemma.

LEMMA 6. With the same hypotheses of Lemma 5, let u(t, x) be a
regular solution to Pb. (60) (more precisely, we assume u(t, x) E
E C2 ([ 0, T); Hoo (Rn»)) and assume estimate (91) holds; then, taking
k = [n/2] + 3 + ( n - 1 )/2 s and defining for N &#x3E; k, the energies func-
tions :

where O(a) is a strictly positive function satisfying,

(p = [n/2] + 1 ) (with 21 = 21 (k) defined as in ( 106)), we can find two
:1[, 2, s, k, + p + 1), 2 = ~( ~, k, ffk) (which do not

depend on N), such that the following inequality holds

1 is defined acs in (102).

PROOF. Assuming k = [n/2] + 3 + (n - 1)/2s, if condition (127)
holds, then we can apply the estimates of the terms and the esti-
mate of the term = + hence (128) follows immediately,
introducing (101), (103), (112), (126) into (95). Q.E.D.
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REMARK 2. Since Fj(0) = 0Vj &#x3E; 1, for all N &#x3E; k, we have

Defining, for 0 ~ r  T, the nondecreasing function

clearly (see (102), (127)), we have

Then, we define ~(r), the solution of the linear differential equa-
tion,

hence, we find

thus, satisfies (127) and estimate (128) holds. Now, thanks to (129)
and (132), it follows that

moreover, assuming ~N ( i) ~ 1 / 2 ~ and applying (128), we have the fol-
lowing estimate

Thus, taking Q(-r) as in (132) and using (131), (134) and (135) it is easy to
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deduce that

for any N &#x3E; k.

REMARK 3. Fixed s ~ 1, assume be-

longs to y(1) x Ru ) and vanishes for u = 0, that is

Given i which satisfies the estimates

we consider the composite function f (x, u(x)) : Rx -~ R. We will prove
that f (x, u(x)) E 

Taking into account of (138), for ~1 + ... + /3v =,u, we have

then, applying Leibniz’ formula (69) and estimates (114),

we easily find that

Now, observe that

and
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hence,

since,

Now, introducing (144) into (141) and summing for 1 ~ v ~ we

have

thus,

Now, to complete the estimate of the of the function

u(x)), note that for h # 1,

Finally, we observe that in the same way, we can prove that if

then the composite belongs to T); 
We are in a position to prove the following.
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PROPOSITION 1. Assume the hypotheses of Lemma 5 and Lemma 6
hold, then the solution u(t, x) of Pb. (60), satisfies

PROOF. Defining as in (132), thanks to Remark 2, the energies
are uniformly bounded on [ 0, T). More precisely, from the defini-

tion of and the estimate (136), if follows that

hence, from estimate (81) of the proof of Lemma 4, we deduce that
u(t, .) E y fl because

To prove that we observe that

hence, the thesis follows introducing the upper bounds (150) into esti-
mates (28) and (59) with

and applying the result of Remark 3.

Continuity in Gevrey classes for s ~ 1.

To prove that the solution of Pb. (60), u( t, x ), belongs to

C 1 ([ 0, T); y L ~ (Rx )), we can restrict ourselves to proving the continuity
of u(t, x) for t = 0. Hence, recalling that u( 0, x) = ut ( 0, x) = 0, we have
to show that u(t, ’), u( t, ~ ) ~ 0 in yfi (R" ) when t - 0.

Taking o(z) as in (132), thanks to the results of Remark 2 (see in par-
ticular estimate (135)), we find that k + 1,
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thus we have,

hence, applying the same estimates of the proof of Prop. 1 and
Remark 3, we can easily prove that

Using estimates like (155), by standard arguments, we can prove the
continuity from the right and from the left in [0, T) of the functions
u( t, x ) and ut ( t, x). Finally, we recall that the transformation

does not preserve the Oleinik’s condition, hence, in some sense, the con-
tinuity from the right, does not imply the continuity from the left (see
also the Remarks after Thm. 1).

5. - Regularity in Gevrey classes of order s ~ 1.

Let u(t, x) E C2 ([ 0, T); be a solution of the semilinear

equation

where the linear operator L(u), defined as in (1), satisfies the condition
of weak hyperbolicity (3),

and the Oleinik’s condition (4). Now, we take the coefficients of the lin-
ear differential operator L, and the function g(t, x) in the space
C° ([ 0, T ); y (8) (Rn»); more precisely we assume that the upper bounds
(5) and (65) hold only locally, that is

for w = aij, bj, C, g and for all compact sets K c [0, T ) x R n and
a E Nn.

Finally, we take f (t, x, u) : [0, T ) x Rx x a function of

T ); x Ru )) which vanishes for u = 0; hence, f (t, x, u)
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satisfies the following assumptions:

for all compact sets K’ c [0, T) x Rx x Ru and a E Nn .
Fixed Rn and ro , À’ E R such that

we consider the close backward cone Q = ro ) of [0, T ) x R§§ de-
fined by

Moreover, for any E E R, 0  E  ro , we define the domain

observe that, taking in [0, T ) x Rx the induced topology, for 0  E 1 
 E  ro , we have and

In the following two lemmas, we will assume s &#x3E; 1 and we shall see
that it is possible to find a weakly hyperbolic operator

satisfying the Oleinik’s condition (4) and the upper bounds (5), and two
continuous functions, f ~ (t, x, u) and g~ (t, x) which satisfy the esti-
mate (61 ) and (65), such that the semilinear equation



201

has a global solution x) E C~([0, oo); BOO (l~n )), with

hence, the regularity of u(t, x), in the domain follows from the reg-
ulacrity of u ~ ( t, x ) (thanks to Prop. 1).

Thus, the proof of Thm. 1 is complete.

REMARK 4. It is easy to see that the analytic hypersurface

is a non-characteristic hypersurface, for any linear differential opera-
tor L. of the form

(see [M1], chapter 4, for a more detailed proof).

REMARK 5. We shall restrict ourselves to the case s &#x3E; 1 because
we are forced to use functions with compact support. To consider the
analytic case it is sufficient to recall the Remark after Thm. 1, where we
obtain the analytic regularity applying Thm. 2 of [S2]. On the other
hand when s = 1, we can resort to a family {XN IN 1 1 of suitable Coo com-
pactly supported functions satisfying the conditions

where C does not depend on N (see Lemma 2.2 of[H], see also [AM]).
More precisely, to estimate the Gevrey energy 8N, we can take a func-
tion like with a fixed integer m, and then, we apply the same
techniques of the case s &#x3E; 1. See the proof below.

Construction of the linear operator L E for s &#x3E; 1.

We recall that, contrary to the analytic functions, y ~~~ (Rn ), for s &#x3E; 1,
contains fairly large class of C° functions with compact support. Thus,
we can find r~ E y ~~ ~ (R ) a non-decreasing function (~~0), such
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that

Then, for E, p E R, with 0  E  ro , 0  ,u, we define

where p &#x3E; 0 will be chosen sufficiently small, such that the function

is compactly supported in [0, T ) x Rn. Clearly, we have

Taking into account of (168), for 0  E  TO, we defined

The differential operator L’JE satisfies the Oleinik’s condition (4),
since 

moreover, thanks to the assumptions (168) on 77(h), for any E 1 E R, 0 
 E 1  E,L .1 is a strictly hyperbolic operator in [ o, T) x 
have 

Fixed, for example, E 1 = E/2, we set

(where 6 i = 0 if and d = 1), and then we define L~ as in (162).
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Now, we easily see that

thus 3Q -’ is a non-characteristic hypersurface for L E (see [M1]); besides,
the Oleinik’s condition holds, since

Finally, we observe that taking p &#x3E; 0 sufficiently small, the upper
bounds (5) hold for suitable chosen Co , since the coefficients bj,
at bó, c ~ , and V 17, are Gevrey functions compactly supported in

[0, T) Q.E.D.

In the same way, we define

Let Ø(t, x) E y os~ ([ o, T ) x Rn ), such that 0 ~ 0(t, x) ~ 1, ~ = 1 in a

neighborhood of QE, for example we can take q5 (t, x ) = 1 - ~ £ 1 ( t, x).
Then, for any r « R, O~T(7’o"c)/V~ we consider the Cauchy

clearly, x ) satisfies the condition (65).
To go on, we must show that the equation

admits a solution v(t, x), defined in a neighborhood of QE, such

that v(t, x) E C2 ([o, T£); for some T, E R, (ro - ~)/  T,  T,
and
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problem P~ , defined by,

for t ~ i.

REMARK 6. For any 0 ~ r  (ro - the Cauchy problem P 1"’
has a unique local solution x), such that

where, T(P r) - T &#x3E; 0 is the life-span of the regular solution (see [DM]).
Moreover, using the fact that ut (t, x) 0(t, x) E
E C~([0, T); H°° (Rn )), we can easily find a positive lower bound, say
T’, for the life-span of the problems that is

Using (185) and the finite speed of propagation property (see Appendix
A), we can prove the following Lemma.

LEMMA 7. There exists an open neighborhood U" of Q" in [0, T) x
x Rn such that the eq. (181) has a solution v(t, x) E C2 ([ o, T~ ); 
(with (ro - E)l ’-Ii’  T,  T), defined in U’ U [o, T’ ) x R n, which sat-
isfies (182).

PROOF. Thanks to Remark 6 and (185), the solution x) of the
Cauchy problem Po is defined in the stripe [ o, T(Po)) x with

T(Po) &#x3E; T ’ &#x3E; 0. Now, if T ’ &#x3E; (ro - there is nothing else to
prove. In the other case, fixed rl,

we consider the solution x ) of problem taking (177) into ac-
count, and the finite speed of propagation property (see (3a)), it is easy
to see that v° (t, x) = vzl (t, x) in the open conic section
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where ~o(z), for 0 ~ 7:  (ro - is defined by

Hence, we can define v(t, x) for 0 ~ t  ~1 + T’, setting

where D( i 1, i 1 + T ’ ) is defined as in (187).
Clearly, proceeding in this way, we can define the solution v(t, x) in

a neighborhood U£ of Q ~. Moreover, since

equality (182) holds. Q.E.D.

Construction of f £ ( t, x, u ) and u ~ ( t, x).

To begin with, we observe that the function v(t, x), obtained in

(189), is a local solution of the Cauchy problem Po,

defined in the open set U~ U [ o, T ’ ) x Rn . Now, it is easy to find a non-
characteristic hypersurface, for the operator L, defined by

such that

In this way, Q ~ x): 0 ~ t  and L ~ is a strictly hyperbolic
operator in the set (t * since (179) holds for any E1  E.

Taking such that,



206

we observe that for any jii &#x3E; 0 sufficiently small, the function v(t, x) is
also a local solution of the problem

choosing 03BC0 such that

and we will define,

Then we perform the transformation of variables

this transformation and its inverse are smooth in all Rt x Rx , moreover
we have,

hence, substituting these expressions into (195), we find that the
function

is a local solution (defined at least in the stripe [0, ¡i) of the

Cauchy problem

where L ~ is the linear differential operator, obtained from L ~, by the
transformation (198)-(199); that is, taking L~ = L e (t, x, at , 3x,),
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Besides, L E: is strictly hyperbolic for t’ ~ 0 (see [M1]), and the initial
data (200b), v(f3(x’), x’) and vt (~3(x’ ), x’), belong to Co (Rn ).

To conclude, we need the following lemma.

LEMMA 8. Let a(t, x, at , 3x,) be a linear differential operator,
strictly hyperbolic with respect to the variable t; given ao ( t, x),
al (t, x, u) regular functions such that,

consider, for ,u &#x3E; 0 the Cauchy problem,

where the initial cp 0 (x), q? 1 (x) E Co (Rn) and 1jJ(h) is defined as in
(194). Then, there exists ,uo &#x3E; 0, such that (202) has a unique regular
global solution for all 0  ,u  ,u o .

PROOF. Since the perturbing term does not depend on the
variable x, we can obtain (using merely the classical energy estimates
and the regularity of al (t, x, u )) a positive lower bound for the life-
span of the regular solution, say T *, which does not depend on ,u.
Hence, taking

the solution, which we know to exist in [ 0, T * ) x Rn, can be extended
to all since the eq. (202) becomes linear for t
~ 2/3T*. Q.E.D.

Applying Lemma 8 to eq. (200a) we deduce that for jii &#x3E; 0 sufficient-

ly small, Pb. (200a), (200b) has global solution W(t" x’ ) E C2 ([ 0, 00 );
Boo (Rn» such that

hence, going back (using the inverse transformation) to (195), we imme-
diately see that, Pb. (195) has global smooth solution u ~ ( t, x ); more-
over, thanks to hypotheses (194) on y(h) we have
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hence, u ~ (t, x) satisfies (164). Finally, observe that ~)eC~([0, oo);
H°° (Rn» is a global solution of the problem,

and, without loss of generality, we can suppose that f ~ (t, x, u) dened
as in (197), satisfies the upper bounds (61).

This completes the proof of Thm. 1. Q.E.D.

Appendix A.

Assuming u(t, x) a solution of class C2 of eq. (9.1), we will prove that
u(t, x) E Coo. To this end, we need some local estimates of the H k -norms
of the solution, at least in the linear case; then, we can obtain a priors
upper bounds for the solution of the nonlinear equation which lead (by
standard arguments) to the C°° regularity.

Local Sobolev estimactes.

As is known, the linear Cauchy problem for eq. (7.1), namely

where u° (x), ul (x) and g(t, x) E CO ([ 0, T); for some
k ~ 2, has a unique solution (see [01]),

enjoying the finite speed of propagation property, with speed for

0 ~ t  T not greater than ~ (see (2.1)), that is to say, fixed

( to , xo ) E (0, T) x Rn, the bahavior of the solution in the backward cone

depends only on the behavior of g(t, x) in Q(to, xo) and of the behavior
of the initial data in the open disk { x - ro I  to ~}. Furthermore, we
have the estimate
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where is a continuous nondecreasing function which depends only
on the coefficients of the linear operator L(u) (see [DM] for a detailed
proof).

Now, we prove that a local form of the estimate (4a) holds.
Fixed xo E Rn, ro &#x3E; 0 (with ro / T ), we consider the backward

cone Q = Q(xo, ro ) of [0, T ) x Rn defined by

Taking t7(h) E C~ (R ) such that

we define 

Now, for functions g(t, x) defined on Q(xo , ro ), making use of the spher-
ical polar coordinate representation in R", with the origin in the point
Xo,

where g * 0, -yr ~ ~2 ~ ~ 0 ~ ~ 1, ... , ~ n -1 ~ ,~, we define (see [A],
Thm. 4.26) the extension Eg(t, x) defined on [0, ro/ýi) of the
function g( t, x), setting for 0 ~ t  ro / V)-.,

satisfy the linear equation
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If g(t, x) E CO ([0, then it is easily verified that

Eg(t, x) E C° ([ o, ro/Vi); Ck(Rn». Moreover, from the definition of
the extension operator E, we can easily deduce that

where

is a continuous nondecreasing function (which does not depend on 
Hence, the above inequality, (10a), extends to function g(t, x) E

Finally, we observe that if 
then the function Eg(t, x) belongs to

C0([0, r0/VA); Hk(Rn)).
Now, let u(t, x) E C° ([ 0, T); be a solution of Pb. (1a),

with initial data and 

Then, we consider the Cauchy problem

for 0 ~ t  where the extension Euo , Eul of the initial data are
defined in the obvious way. Hence, the unique solution v(t, x) of (12a)
belongs to and satisfies (4a) on [ 0, ro/Vi).
Besides, thanks to the finite speed of propagation property,

thus, using (4a), (10a) and (13a), we deduce that
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The Coo regularity for the nonlinear equation.

Assuming u(t, x) be a solution of class C2 of the semi-linear

eq. (9.1), on the backward cone ro ), such that

we shall see that

(16a) u( t, ~ ) , Ut (t, .) are C °° functions on Bt

We sketch here the proof (referring to [S2], step 3 and step 4, for
more details). Writing,

0) = 0, using Leibniz’ formula (see (69)) and the interpola-
tions’s inequality of Gagliardo and Nirenberg, we have

(0 £ t  ro /yi) is a continuous

nondecreasing function (which depends on the constants of the Gagliar-
do and Nirenberg’s inequalities for the domain Bt). Hence, from (14a)
and (17a), we deduce

thus, 2, applying Gronwall’ inequality,

where yk (t) * ro , A 1], uo , ul , g, 1, CXO, t) is a continuous non-

decreasing function on [ 0, ro / ~).
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In this way, we find a priori upper bounds for the Hk-norms of
the solution on the domain Bt which easily lead to the C° regularity of
u(t, .) and ut (t, .). Q.E.D.
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