RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

Irwen Valle Guadalupe
 Minimal immersions of surfaces into n dimensional space forms

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 155-163
http://www.numdam.org/item?id=RSMUP_1995__94__155_0
© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Minimal Immersions of Surfaces into n-Dimensional Space Forms.

Irwen Valle Guadalupe (*)

AbStract - Using the motion of the ellipse of curvature we study minimal immersions of surfaces into n-dimensional space forms. In this paper we obtain an extension of Theorem 2 of [9]. Also, we obtain some inequalities relating the integral of the normal curvature with topological invariants.

1. Introduction.

Let M be an oriented surface which is isometrically immersed into an orientable n-dimensional space form $Q^{n}(c), n \geqslant 4$, where $Q^{n}(c)$ stands for the sphere $S^{n}(c)$ of radius $1 / c$, the Euclidean space \mathbb{R}^{n} or the hyperbolic space $H^{n}(c)$, according to c is positive, zero or negative. If the normal curvature tensor R^{\perp} of the immersion is nowhere zero, then exists an orthogonal bundle splitting $N M=(N M)^{*} \oplus(N M)^{0}$ of the normal bundle $N M$ of the immersion, where $(N M)^{0}$ consists of the normal directions that annihilate R^{\perp} and (NM)* is a 2-plane subbundle of NM.

Let K and K_{N} be the Gaussian and the normal curvature of M. Let K^{*} be the intrinsic curvature of ($\left.N M\right)^{*}$.

We shall make use of the curvature ellipse of $x: M \rightarrow Q^{n}(c)$, which is, for each p in M the subset of $N_{p} M$ given by

$$
\varepsilon_{p}=\left\{B(X, X) \in N_{p} M ; X \in T_{p} M \text { and }\|X\|=1\right\}
$$

where B is the second fundamental form of the immersion. The first result of this paper is an extension of Theorem 2 of RodriguezGuadalupe [9] to the case when M is not homeomorphic to the sphere S^{2}.
${ }^{(*)}$ Indirizzo dell'A.: UNICAMP-IMECC, Universidade Estadual de Campinas, Caixa Postal 6065, 13081-970 Campinas, SP, Brazil.

Theorem 1. Let $x: M \rightarrow S^{n}(1)$ be a minimal immersion of a complete oriented surface M into the unit sphere $S^{n}(1)$ with $R^{\perp} \neq 0$ and $K \geqslant 0$. If $2 K \geqslant K^{*}$ at every point, then K^{*}, the normal curvature K_{N} and the Gaussian curvature K of M are constant.

Remarks. (1) If $K>0$, then we obtain a minimal S^{2} of constant curvature in $S^{n}(1)$. These were classified by Do Carmo-Wallach [4]. Itoh [6] and Asperti-Ferus-Rodriguez [1] have a similar theorem.
(2) For $K=0$ we obtain a «flat» minimal torus. These were studied by Kenmotsu [7], [8].

The second result of this paper is the following.
Theorem 2. Let $x: M \rightarrow S^{n}(1)$ be a minimal immersion of a complete oriented surface M into the unit sphere $S^{n}(1)$. If $K \geqslant 0$ at every point, then either $K \equiv 0$ or the ellipse is a circle.

The following theorem relates an inequality betwen the integral of the normal curvature with topological invariants.

Theorem 3. Let $x: M \rightarrow Q^{n}(c)$ be a minimal immersion of a compact oriented surface M into an oriented n-dimensional space form $Q^{n}(c)$ of constant curvature c with $R^{\perp} \neq 0$. Then we have

$$
\begin{equation*}
\int_{M} K_{N} d M \geqslant 4 \pi x(M) \tag{1.1}
\end{equation*}
$$

the equality holds if and only if $\left(M \sim S^{2}\right) n=4$.
Corollary 1. Let $x: M \rightarrow S^{n}(1)$ be a minimal immersion of a compact oriented surface M into the unit sphere $S^{n}(1)$ with $R^{\perp} \neq 0$. Then we have

$$
\begin{equation*}
\text { Area }(M) \geqslant 6 \pi \int \mathcal{C}(M) \tag{1.2}
\end{equation*}
$$

the equality holds if and only if $\left(M \sim S^{2}\right) n=4$.
Remark. Of course (1.2) has interest only when $M \sim S^{2}$, otherwise $\mathscr{X}(M) \leqslant 0$ and (1.2) becomes trivial.

The proofs of the above results are presented in section 4.
I want to thank Professor Asperti for bringing [2] and [3] for my attention.

2. Preliminaries.

Let M be a surface immersed in a Riemannian manifold Q^{n}. For each p in M, we use $T_{p} M, T M, N_{p} M$ and $N M$ to denote the tangent space of M at p, the tangent bundle of M, the normal space of M at p and the normal bundle of M, respectively. We choose a local field of orthonormal frames $e_{1}, e_{2}, \ldots, e_{n}$ in Q^{n} such that restricted to M, the vectores e_{1}, e_{2} are in $T_{p} M$ and e_{3}, \ldots, e_{n} are in $N_{p} M$. We shall make use the following convention on the ranges of indices:

$$
\begin{gathered}
1 \leqslant A, B, C, \ldots \leqslant n, \quad 1 \leqslant i, j, k \leqslant 2, \\
3 \leqslant \alpha, \beta, \gamma, \ldots \leqslant n
\end{gathered}
$$

and we shall agree that reapeated indices are summed over the respective ranges. With respect to the frame field of Q^{n} chosen above, let $\omega^{1}, \omega^{2}, \ldots, \omega^{n}$ be the field of dual frames. Then the structure equations of Q^{n} are given by.

$$
\begin{align*}
& d \omega_{A}=-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \tag{2.1}\\
& d \omega_{A B}=-\sum_{C} \omega_{A C} \wedge \omega_{C B}+\phi_{A B}, \quad \phi_{A B}=\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.2}\\
& \quad K_{A B C D}+K_{A B D C}=0
\end{align*}
$$

If we restrict these forms to M. Then

$$
\begin{equation*}
\omega_{\alpha}=0 \tag{2.3}
\end{equation*}
$$

since $0=d \omega_{\alpha}=-\sum \omega_{\alpha i} \wedge \omega_{i}$, by Cartan's lemma we may write

$$
\begin{equation*}
\omega_{i \alpha}=\sum h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha}, \tag{2.4}
\end{equation*}
$$

From these formulas, we obtain
(2.6) $\quad d \omega_{i j}=-\sum \omega_{i k} \wedge \omega_{k_{j}}+\Omega_{i j}, \quad \Omega_{i j}=\frac{1}{2} \sum R_{i j k l} \omega_{k} \wedge \omega_{l}$,

$$
\begin{equation*}
R_{i j k l}=K_{i j k l}+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j \ell}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right) \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
d \omega_{\alpha \beta} & =-\sum \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta}+\Omega_{\alpha \beta}, \quad \Omega_{\alpha \beta}=\frac{1}{2} \sum R_{\alpha \beta k l} \omega_{k} \wedge \omega_{l} \tag{2.8}\\
R_{\alpha \beta k l} & =K_{\alpha \beta k l}+\sum_{i}\left(h_{i k}^{\alpha} h_{i l}^{\beta}-h_{i l}^{\alpha} h_{i k}^{\beta}\right) \tag{2.9}
\end{align*}
$$

The Riemannian connection of M is defined by ($\omega_{i j}$). The form ($\omega_{\alpha \beta}$) defines a connection ∇^{\perp} in the normal bundle of M. We call

$$
\begin{equation*}
B=\sum_{\alpha, i, j} h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha} \tag{2.10}
\end{equation*}
$$

the second fundamental form of M. The mean curvature vector is given by

$$
\begin{equation*}
H=\sum_{a}\left(\sum_{i} h_{i i}^{a}\right) e_{a} \tag{2.11}
\end{equation*}
$$

An immersion is said to be minimal if $H=0$.
Let R^{\perp} be the curvature tensor associated with ∇^{\perp}. Let $\left\{e_{1}, e_{2}\right\}$ be a tangent frame, if we denote $B_{i j}=B\left(e_{i}, e_{j}\right) ; i, j=1,2$ then it is easy to see that

$$
\begin{equation*}
R^{\perp}\left(e_{1}, e_{2}\right)=\left(B_{11}-B_{22}\right) \wedge B_{12} . \tag{2.12}
\end{equation*}
$$

An interesting notion in the study of surfaces in higher codimension is that of the ellipse of curvature defined as $\left\{B(X, X) \in N_{p} M:\langle X, X\rangle=\right.$ $=1\}$. To see that it is an ellipse, we just have to look at the following formula, for

$$
\left\{\begin{array}{l}
X=\cos \theta e_{1}+\sin \theta e_{2} \tag{2.13}\\
B(X, X)=H+\cos 2 \theta u+\sin 2 \theta v
\end{array}\right.
$$

where $u=\left(B_{11}-B_{22}\right) / 2, v=B_{12}$ and $\left\{e_{1}, e_{2}\right\}$ is a tangent frame. So we see that, as X goes once around the unit tangent circle, $B(X, X)$ goes twice around the ellipse. Of course this ellipse could degenerate into a line segment or a point. Everywhere the ellipse is not a circle we can choose $\left\{e_{1}, e_{2}\right\}$ orthonormal such that u and v are perpendicular. When this happens they will coincide with the semi-axes of the ellipse.

From (2.12) it follows that if $R^{\perp} \neq 0$ then u and v are linearly independent and we can define a 2 -plane subbundle ($N M)^{*}$ of the normal bundle $N M$. This plane inherits a Riemannian connection from that of $N M$. Let R^{*} be its curvature tensor and define its curvature K^{*} by

$$
\begin{equation*}
d \omega_{34}=-K^{*} \omega_{1} \wedge \omega_{2} \tag{2.14}
\end{equation*}
$$

if $\left\{e_{3}, e_{4}\right\}$ locally generates $(N M)^{*}$.
Now, if ξ is perpendicular to $(N M)^{*}$, then from (2.12), $R^{\perp}\left(e_{1}, e_{2}\right) \xi=0$. Hence, it makes sense to define the normal curvature as

$$
\begin{equation*}
K_{N}=\left\langle R^{\perp}\left(e_{1}, e_{2}\right) e_{4}, e_{3}\right\rangle \tag{2.15}
\end{equation*}
$$

where $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{3}, e_{4}\right\}$ are orthonormal oriented bases of $T_{p} M$ and $N_{p} M$, respectively. If $T M$ and $(N M)^{*}$ are oriented, then K_{N} is globally defined. In codimension $2, N M=(N M)^{*}$ and K_{N} has a sign. In higher codimension, if $R^{\perp} \neq 0,(N M)^{*}$ is globally defined and oriented if $T M$ is. In this case, it is shown in [1] that $\mathscr{X}(N M)^{*}=2 \mathscr{X}(M)$, where $\mathscr{X}(N M)^{*}$ denote the Euler characteristic of the plane bundle $(N M)^{*}$ and $\mathscr{X}(M)$ denote the Euler characteristc of the tangle bundle $T M$.

3. Minimal immersions with $R^{\perp} \neq 0$.

In this section we assume that M has non-zero normal curvature tensor R^{\perp}. Also if M is orientable, then we will always choose orientations in $T M$ and in $(N M)^{*}$ such that K_{N} is positive. We have

Proposition 1.1. Let $x: M \rightarrow Q^{n}(c)$ be a minimal immersion of an oriented surface M into an orientable n-dimensional space form $Q^{n}(c)$ of constant curvature c. Then we have

$$
\begin{equation*}
\Delta\left(\log \left|K_{N}-K+c\right|\right)=2\left(2 K-K^{*}\right) \tag{3.1}
\end{equation*}
$$

if $(K-c)^{2}-K_{N}^{2}>0$, and consequently

$$
\begin{equation*}
\Delta\left(\log \left|K_{N}+K-c\right|\right)=2\left(2 K+K^{*}\right) \tag{3.2}
\end{equation*}
$$

Proof. By Itoh [6] there exists isothermal coordinates $\left\{x_{1}, x_{2}\right\}$ such that putting $X_{i}=\partial / \partial x_{i}, i=1,2$ then $u=B\left(X_{1}, X_{1}\right)=-B\left(X_{2}, X_{2}\right)$ and $v=B\left(X_{1}, X_{2}\right)$ are the semi-axes of the ellipse at every point where $(K-c)^{2}-K_{N}^{2} \neq 0$. Moreover we observe that $\left|X_{i}\right|^{2}=E=$ $=\left((K-c)^{2}-K_{N}^{2}\right)^{-1 / 4}, \quad i=1,2$. If we denote $\lambda=<u, u>^{1 / 2}$ and $\mu=\langle v, v\rangle^{1 / 2}$ and following the same arguments that [10] we have

$$
\begin{gather*}
\lambda^{2}-\mu^{2}=1 \tag{3.3}\\
\lambda^{2}+\mu^{2}=-(K-c) E^{2} \tag{3.4}\\
2 \lambda \mu=K_{N} E^{2} \tag{3.5}
\end{gather*}
$$

If $(K-c)^{2}-K_{N}^{2}>0$ from (3.4) and (3.5) we obtain

$$
\begin{equation*}
\lambda+\mu=\left(K_{N}-K+c / K_{N}+K-c\right)^{1 / 4} \tag{3.6}
\end{equation*}
$$

Let $e_{3}=\lambda^{-1} u$ and $e_{4}=\mu^{-1} v$ an oriented frame in (NM)*. Now, following the same computations that [10] we get

$$
\begin{align*}
& \omega_{34}\left(X_{1}\right)=-X_{2}(f), \tag{3.7}\\
& \omega_{34}\left(X_{2}\right)=X_{1}(f) \tag{3.8}
\end{align*}
$$

where $f=\log |\lambda+u|$.
Hence, we have

$$
\begin{equation*}
\omega_{34}=-X_{2}(f) d X_{1}+X_{1}(f) d X_{2} \tag{3.9}
\end{equation*}
$$

Deriving (3.9) and using (2.14) we get

$$
\begin{align*}
& -K^{*} \omega_{1} \wedge \omega_{2}=d \omega_{34} E^{-1} \tag{3.10}\\
& =\left(-X_{2} X_{2}(f) d X_{2} \wedge d X_{1}+X_{1} X_{1}(f) d X_{1} \wedge d X_{2}\right) E^{-1}= \\
& \left.=\left(X_{1} X_{1}(f)+X_{2} X_{2}(f)\right) E^{-1} d X_{1} \wedge d X_{2}\right)=\tilde{\Delta}(f) E^{-1} \omega_{1} \wedge \omega_{2}
\end{align*}
$$

where $\bar{\Delta}$ denotes de Laplacian of the «flat» metric. We know $\tilde{\Delta}(f)=$ $=E \Delta(f)$, where Δ is the Laplacian of the surface. Hence, from (2.18) and (2.22) we get

$$
\begin{equation*}
\Delta\left(\log \left|K_{N}-K+c / K_{N}+K-c\right|\right)=-4 K^{*} \tag{3.11}
\end{equation*}
$$

Using $\left.E=(K-c)^{2}-K_{N}^{2}\right)^{-1 / 4}$ and the Gaussian curvature K given by the equation

$$
\begin{equation*}
K=-\frac{1}{2} E^{-1} \tilde{\Delta} \log E \tag{3.12}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\Delta\left(\log \left|K_{N}-K+c\right|\right)+\Delta\left(\log \left|K_{N}+K-c\right|\right)=8 K \tag{3.13}
\end{equation*}
$$

From (3.11) and (3.13) we get the equations (3.1) and (3.2).
Corollary 1. Let $x: M \rightarrow Q^{n}(c)$ be a minimal immersion with $K^{*}>0$. Then the ellipse is a circle.

Proof. Suppose that the ellipse is not a circle then from (3.11) $\Delta\left(\log \left|K_{N}-K+c / K_{N}+K-c\right|\right)<0$. So $K_{N}>0$ implies that $\log \frac{\left|K_{N}-K+c\right|}{\left|K_{N}+K-c\right|}$ is subharmonic and bounded from below. Therefore $\log \frac{\left|K_{N}-K+c\right|}{\left|K_{N}+K-c\right|}$ is constant and this implies that $K^{*} \equiv 0$. This is a contradiction.

Corollary 2. Let $x: M \rightarrow Q^{n}(c)$ be a minimal immersion of a compact surface M with $2 K>K^{*}$. Then the ellipse is a circle.

Proof. Suppose that the ellipse is not a circle then from (3.1) $\Delta\left(\log \left|K_{N}-K+c\right|\right)>0$. So we have that $\log \left|K_{N}-K+c\right|$ is subharmonic and bounded from above and therefore is constant. This implies that $2 K=K^{*}$. This is a contradiction.

4. Proof of Theorems.

Proof of theorem 1. First we consider the case when the ellipse is not a circle, i.e., $(K-1)^{2}-K_{N}^{2}>0$. Now if $2 K \geqslant K^{*}$ then from (3.1) follows that $\Delta\left(\log \left|K_{N}-K+1\right|\right) \geqslant 0$. So we have that $\log \mid K_{N}-K+$ $+1 \mid$ is subharmonic and bounded from above. Then

$$
\begin{equation*}
K_{N}-K+1=\text { constant } \tag{4.1}
\end{equation*}
$$

and $2 K=K^{*}$. On the other hand from (3.2) we get $\Delta\left(\log \mid K_{N}+K-\right.$ $-1 \mid)=2\left(2 K+K^{*}\right)=8 K \geqslant 0$. Similarly from above we have

$$
\begin{equation*}
K_{N}+K-1=\text { constant } \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2) follows that K^{*}, K_{N} and K are constant.
In the case that ellipse is a circle the theorem follows by RodriguezGuadalupe [9]. This complets the proof of theorem.

Proof of Theorem 2. Suppose that the ellipse is not a circle. From (3.13) we obtain

$$
\begin{equation*}
\Delta\left(\log \left|K_{N}-K+1 / K_{N}+K-1\right|\right)=8 K \geqslant 0 \tag{4.3}
\end{equation*}
$$

From (3.5), Rodriguez-Guadalupe ([9], p. 9) and $K \geqslant o$ implies $2 \lambda \mu E^{-2}=K_{N} \leqslant 1$. So from (3.4) we have $\left(\lambda^{2}+\mu^{2}\right) E^{-2}=1$. Therefore we get

$$
\begin{aligned}
0 & \leqslant(\lambda+\mu)^{2} E^{-2}=K_{N}-K+1 \\
& =\left(\lambda^{2}+\mu^{2}\right) E^{-2}+2 \lambda \mu E^{-2} \leqslant 2
\end{aligned}
$$

This implies that $\left|K_{N}-K+1\right|$ is bounded from above. Similarly $\left|K_{N}+K-1\right|$ is bounded from above, too. Then $\log \left(\mid K_{N}-K+1 / K_{N}+\right.$ $+K-1 \mid)$ is subharmonic and bounded from above and therefore is constant. From (4.3) follows that $K \equiv 0$.

Proof of Theorem 3. From Asperti ([2], Prop. 3.6) we have

$$
\begin{equation*}
K^{*}=K_{N}-\frac{\left\|B^{2}\right\|^{2}}{2 K_{N}} \tag{4.4}
\end{equation*}
$$

where B^{2} is the 3 th fundamental form of M. From (4.4) we obtain

$$
\begin{equation*}
K_{N} \geqslant K^{*} \tag{4.5}
\end{equation*}
$$

Integrating (4.5) over M and applying Ferus-Rodriguez-Asperti ([1], Th. 1) we get

$$
\begin{equation*}
\int_{M} K_{N} d M \geqslant \int_{M} K^{*} d M=2 \pi \mathscr{X}(N M)^{*}=4 \pi \mathscr{X}(M) \tag{4.6}
\end{equation*}
$$

If $\int_{M} K_{N} d M=4 \pi x(M)$ then $K_{N}=K^{*}$ and from (4.4) $B^{2} \equiv 0$. By Erbacher [5] the codimension is two and $n=4$.

Proof of Corollary 1. If $\operatorname{Area}(M)=6 \pi \mathcal{X}(M)$ then $\mathcal{X}(M)>0$ and, actually Area $(M)=12 \pi$. It follows from Asperti ([3], p. 60) that

$$
\begin{equation*}
12 \pi \geqslant 2 \pi(s+1)(s+2) \tag{4.7}
\end{equation*}
$$

where s is sucht that $n=2+2 s$. It is clear now from (4.7) that $s=1$ and $n=4$.

On the other hand, if $n=4$ and $x: M \rightarrow S^{4}(1)$ is a minimal two sphere with $R^{\perp} \neq 0$, then $K_{N}=K^{*}$ and by theorem 3 above and Corollary 1 of Rodriguez-Guadalupe ([9]) we have

$$
\operatorname{Area}(M)=2 \pi \mathscr{C}(M)+2 \pi \mathscr{X}(N M)=2 \pi \mathscr{X}(M)+\int_{M} K_{N} d M=6 \pi \mathscr{X}(M)
$$

REFERENCES

[1] A. C. Asperti, D. Ferus - L. Rodriguez, Surfaces with non-zero normal curvature tensor, Atti Accad. Naz. zincei, 73 (1982), pp. 109-115.
[2] A. C. Asperti, Generic minimal Surfaces, Math. Z., 200 (1989), pp. 181-186.
[3] A. C. Asperti, Superfícies mínimas genéricas e elipses de curvatura generalizadas, Thesis de Livre-Docência (1986), Universidade de São Paulo.
[4] M. do Carmo - N. Wallach, Representations of compact groups and minimal immersions of spheres into spheres, J. Diff. Geometry, 4 (1970), pp. 91-104.
[5] J. A. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geometry, 5 (1971), pp. 333-340.
[6] Т. Ітон, Minimal surfaces in 4-dimensional Riemannian manifolds of constant curvature, Kodai Math. Sem. Rep., 22 (1971), pp. 451-458.
[7] K. Kenmotsu, On a parametrization of minimal immersions of R^{2} into S^{5}, Tôhoku Math. J., 27 (1975), pp. 83-90.
[8] K. Kenmotsu, On minimal immersions of \mathbb{R}^{2} into S^{n}, Math. Soc. Japan, 28 (1976), pp. 182-191.
[9] L. Rodriguez - I. V. Guadalupe, Normal curvature of surfaces in space forms, Pacific J. Math., 106 (1983), pp. 95-103.
[10] R. Tribuzy - I. V. Guadalupe, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova, 73 (1985), pp. 1-13.

Manoscritto pervenuto in redazione il 6 giugno 1994.

