RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

IRWEN VALLE GUADALUPE

Minimal immersions of surfaces into 7-
dimensional space forms

Rendiconti del Seminario Matematico della Universita di Padova,

tome 94 (1995), p. 155-163
<http://www.numdam.org/item?id=RSMUP_1995 94 155 0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1995, tous
droits réservés.

L’acceés aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1995__94__155_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

REND. SEM. MAT. UNI1v. PADOVA, Vol. 94 (1995)

Minimal Immersions of Surfaces
into n-Dimensional Space Forms.

IRWEN VALLE GUADALUPE (*)

ABSTRACT - Using the motion of the ellipse of curvature we study minimal im-
mersions of surfaces into n-dimensional space forms. In this paper we obtain
an extension of Theorem 2 of [9]. Also, we obtain some inequalities relating
the integral of the normal curvature with topological invariants.

1. Introduction.

Let M be an oriented surface which is isometrically immersed into
an orientable m-dimensional space form Q"(c), n =4, where Q" (c)
stands for the sphere S™(c) of radius 1/c, the Euclidean space R" or the
hyperbolic space H"(c), according to c is positive, zero or negative. If
the normal curvature tensor R * of the immersion is nowhere zero, then
exists an orthogonal bundle splitting NM = (NM)* & (NM)° of the nor-
mal bundle NM of the immersion, where (NM)° consists of the normal
directions that annihilate R+ and (NM)* is a 2-plane subbundle of
NM. '

Let K and Ky be the Gaussian and the normal curvature of M. Let
K* Dbe the intrinsic curvature of (NM)*.

We shall make use of the curvature ellipse of x: M — Q" (c), which
is, for each p in M the subset of N, M given by

e, ={BX,X)e N,M; Xe T,M and ||X| =1}

where B is the second fundamental form of the immersion. The first
result of this paper is an extension of Theorem 2 of Rodriguez-
Guadalupe [9] to the case when M is not homeomorphic to the
sphere SZ.

(*) Indirizzo dell’A.: UNICAMP-IMECC, Universidade Estadual de Campi-
nas, Caixa Postal 6065, 13081-970 Campinas, SP, Brazil.
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THEOREM 1. Let 2: M — S™(1) be a minimal immersion of a com-
plete oriented surface M into the unit sphere S™(1) with R+ # 0 and
K=0. If 2K = K* at every point, then K*, the normal curvature Ky
and the Gaussian curvature K of M are constant.

REMARKS. (1) If K > 0, then we obtain a minimal S? of constant
curvature in S™(1). These were classified by Do Carmo-Wallach [4].
Itoh [6] and Asperti-Ferus-Rodriguez [1] have a similar theorem.

(2) For K = 0 we obtain a «flat» minimal torus. These were studied
by Kenmotsu [7], [8].

The second result of this paper is the following.

THEOREM 2. Let x: M — S™(1) be a minimal immersion of a com-
plete oriented surface M into the unit sphere S™(1). If K = 0 at every
point, then either K =0 or the ellipse is a circle.

The following theorem relates an inequality betwen the integral of
the normal curvature with topological invariants.

THEOREM 3. Let x: M — Q" (c) be a minimal immersion of a com-
pact oriented surface M into an oriented n-dimensional space form
Q" (c) of constant curvature ¢ with R+ # 0. Then we have

1.1 [ KydM = 4750(M)
M

the equality holds if and only if (M ~ S%)n = 4.

COROLLARY 1. Let #: M —- S"(1) be a minimal immersion of a
compact oriented surface M into the unit sphere S™(1) with R* = 0.
Then we have

1.2) Area (M) = 670(M)
the equality holds if and only if (M ~ S2)n = 4.

REMARK. Of course (1.2) has interest only when M ~ S2, otherwise
(M) <0 and (1.2) becomes trivial.

The proofs of the above results are presented in section 4.

I want to thank Professor Asperti for bringing [2] and [3] for my
attention.
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2. Preliminaries.

Let M be a surface immersed in a Riemannian manifold Q™. For
each p in M, we use T,M, TM, N,M and NM to denote the tangent
space of M at p, the tangent bundle of M, the normal space of M at p
and the normal bundle of M, respectively. We choose a local field of or-
thonormal frames ¢, ¢, ..., ¢, in @" such that restricted to M, the vec-
tores e;, e; arein T, M and e3, ..., ¢, are in N, M. We shall make use the
following convention on the ranges of indices:

1<A,B,C, ... <n, 1<i,j,k<2,
3<a,B,y,...5m

and we shall agree that reapeated indices are summed over the respec-
tive ranges. With respect to the frame field of Q" chosen above, let

w!, w?, ..., »" be the field of dual frames. Then the structure equa-
tions of Q" are given by.
2.1) de=—%:wAB/\w3, wap+wpys =0,

1

22) dwsp=-— %:wAc/\ wcgt Pap, Pap= CZDKABCDCUC/\ wp,

no

Kapep + Kappe = 0.

If we restrict these forms to M. Then

2.3) w,=0
since 0 =dw,= — 2wy A w;, by Cartan’ s lemma we may write
24) wia=2hio;,  hi=hi,

From these formulas, we obtain

25) dw;=-2wilNo;, o;+tw0;=0,

26) doy=-ZogNhog+tQ;, Q= %zRijklwlc/\wl:
@7  Ryu=Kju+ Ea:(h{fc it — hihik),

28 dog=-2ol Aot Ry, Qup= %‘ERaﬂklwk/\wl9

(2.9) Raﬁkl = Kaﬁkl + Z (h':]zc hg - hqfll hgc) .
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The Riemannian connection of M is defined by (w ;). The form (w ,4)
defines a connection V* in the normal bundle of M. We call

(2.10) B= 2 hiw;we,
a,,]

the second fundamental form of M. The mean curvature vector is given
by

@.11) H= ;( Zhi‘i) €q

An immersion is said to be minimal if H = 0.

Let R+ be the curvature tensor associated with V*. Let {e;, ¢, } be
a tangent frame, if we denote B;; = B(e;, ¢;); i, j = 1, 2 then it is easy to
see that

(2.12) R* (e1, €2) = (Byy — By) A Bys .

An interesting notion in the study of surfaces in higher codimension
is that of the ellipse of curvature defined as {B(X, X) e N,M:(X, X) =
= 1}. To see that it is an ellipse, we just have to look at the following for-
mula, for

X = cos e, + sin fe, ,
(2.13)

B(X, X)=H + cos26u + sin26v,

where u = (By; — B)/2, v = By, and {e;, €; } is a tangent frame. So we
see that, as X goes once around the unit tangent circle, B(X, X) goes
twice around the ellipse. Of course this ellipse could degenerate into a
line segment or a point. Everywhere the ellipse is not a circle we can
choose {e;, e, } orthonormal such that « and v are perpendicular. When
this happens they will coincide with the semi-axes of the ellipse.
From (2.12) it follows that if R* # 0 then » and v are linearly inde-
pendent and we can define a 2-plane subbundle (NM)* of the normal
bundle NM. This plane inherits a Riemannian connection from that of
NM. Let R* be its curvature tensor and define its curvature K* by

(2.14) dw34= _K*(l)l/\a)g

if {e3, e4} locally generates (NM)*.
Now, if £ is perpendicular to (NM)*, then from (2.12), R+ (e,, e3)E=0.
Hence, it makes sense to define the normal curvature as

(2.15) Ky =(R* (e1, e3) ey, €3)
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where {e;, e; } and {e;, e, } are orthonormal oriented bases of T\, M and
N, M, respectively. If TM and (NM)* are oriented, then Ky is globally
defined. In codimension 2, NM = (NM)* and Ky has a sign. In higher
codimension, if R+ = 0,(NM)* is globally defined and oriented if TM is.
In this case, it is shown in [1] that J(NM)* = 220(M), where J(NM)*
denote the Euler characteristic of the plane bundle (NM)* and (M)
denote the Euler characteriste of the tangle bundle 7M.

3. Minimal immersions with B+ = 0.

In this section we assume that M has non-zero normal curvature
tensor R+ . Also if M is orientable, then we will always choose orienta-
tions in TM and in (NM)* such that Ky is positive. We have

ProposiTION 1.1. Let 2: M — Q" (c) be a minimal immersion of an
oriented surface M into an orientable n-dimensional space form Q" (c)
of constant curvature c¢. Then we have

3.1) Allog |Ky — K + ¢|) = 2(2K — K*)
if (K—c)?— K% >0, and consequently

3.2) A(log |Ky + K —c|) =2(2K + K*).

ProoF. By Itoh [6] there exists isothermal coordinates {x;, x,}
such that putting X; = 3/9x;, i = 1, 2 then u = B(X;, X;) = —B(X;, X;)
and v = B(X;, X;) are the semi-axes of the ellipse at every point where
(K—cl—K§#0. Moreover we observe that |X;|>?=F =
=((K-cP—-K§) V4, i=1,2. If we denote A =<u,u>'2 and
u = (v, v)*/? and following the same arguments that [10] we have

3.3) A2—put=1,
(3.4) A2+ u?=—(K-c)E?,
(3.5) 2iu = KyE? .

If (K—c¢)?— K% >0 from (34) and (3.5) we obtain

(8.6) A+pu=(Ky—K+c/Ky+K-c)*.
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Let e = A 'u and e, = u ~'v an oriented frame in (NM)*. Now, follow-
ing the same computations that [10] we get

3.7 wu(X;) = -X(f),
3.8 wy(Xp) = Xl(f),

where f=log |1+ u].
Hence, we have

3.9 wg = —Xo(f)dX; + X;(f)dX;.
Deriving (3.9) and using (2.14) we get
(810) -K*w,Awy;=doyE™"
= (- XX (f)dX, NdX; + X1 X, (f)dX; NdX,)E ! =
= (XX, (f) + X Xo(F)E1dX, NdXy) = A(f)E ‘o Aw;

where 4 denotes de Laplacian of the «flat» metric. We know A(f) =
= FEA(f), where 4 is the Laplacian of the surface. Hence, from (2.18) and
(2.22) we get

3.11) AQlog |Ky — K+ c¢/Ky+ K —c|) = —4K*.

Using E = (K — ¢)? — K%)~'/* and the Gaussian curvature K given by
the equation

3.12) K= —%E“Z log E .

we obtain

(3.13) A(log |Ky — K +c¢|) + A(log |Ky + K —¢|) = 8K
From (3.11) and (3.13) we get the equations (3.1) and (3.2).

COROLLARY 1. Let x: M —> Q"(c) be a minimal immersion with
K* > 0. Then the ellipse is a circle.

PrOOF. Suppose that the ellipse is not a circle then from (3.11)
A(log | Ky — K +c¢/Ky+K-¢|)<0. So Ky>0 implies that

K

log Ky — K+ c| is subharmonic and bounded from below. Therefore
| Ky + K c|
|Ky — K +c|

1 - * =

og Ky + K | is constant and this implies that K* = 0. This is a

contradiction.
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COROLLARY 2. Let x: M —-Q"(c) be a minimal immersion of a
compact surface M with 2K > K*. Then the ellipse is a circle.

ProoF. Suppose that the ellipse is not a circle then from (3.1)
A(log |Ky — K+ ¢|) > 0. So we have that log |Ky — K + ¢| is subhar-
monic and bounded from above and therefore is constant. This implies
that 2K = K*. This is a contradiction.

4. Proof of Theorems.

PRrOOF OF THEOREM 1. First we consider the case when the ellipse
is not a circle, i.e., (K —1)> — K% > 0. Now if 2K = K* then from (3.1)
follows that A(log |Ky — K + 1|) = 0. So we have that log |Ky — K +
+ 1| is subharmonic and bounded from above. Then

4.1) Ky — K + 1 = constant

and 2K = K*. On the other hand from (3.2) we get A(log |Ky + K —
—1|)=2(2K + K*) = 8K = 0. Similarly from above we have

4.2) Ky + K — 1 = constant.

From (4.1) and (4.2) follows that K*, Ky and K are constant.
In the case that ellipse is a circle the theorem follows by Rodriguez-
Guadalupe [9]. This complets the proof of theorem.

Proor or THEOREM 2. Suppose that the ellipse is not a circle.
From (3.13) we obtain

4.3) Alog |Ky - K+1/Ky+K—-1|)=8K=0.

From (3.5), Rodriguez-Guadalupe ([9], p. 9) and K =o implies
2/uE ~2 = Ky < 1. So from (3.4) we have (42 + u?)E ~2 = 1. Therefore
we get

0<(A+ulPE2=Ky-K+1,
=A%+ u®)E "2+ 20uk %<2,

This implies that |Ky — K+ 1| is bounded from above. Similarly
| Ky + K — 1| is bounded from above, too. Then log (| Ky — K + 1/Ky +
+ K — 1|) is subharmonic and bounded from above and therefore is con-
stant. From (4.3) follows that K = 0.
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ProOF oF THEOREM 3. From Asperti ([2], Prop. 3.6) we have

B[
2Ky

(4.4) K* =Ky -

where B? is the 3th fundamental form of M. From (4.4) we obtain
45) Ky=K*

Integrating (4.5) over M and applying Ferus-Rodriguez-Asperti ([1],
Th. 1) we get

4.6) f KydM = j K*dM = 2x0(NM)* = 470(M).
M M

If j KydM = 4xX(M) then Ky=K* and from (44) B:=0. By
M

Erbacher [5] the codimension is two and n = 4.

ProOF OF COROLLARY 1. If Area(M) = 6x3(M) then (M) >0
and, actually Area (M) = 12x. It follows from Asperti ([3], p. 60)
that

4.7 127 2 27n(s + 1)(s + 2)

where s is sucht that n» = 2 + 2s. It is clear now from (4.7) that s = 1 and
n=4.

On the other hand, if » =4 and x: M —S*(1) is a minimal two
sphere with R+ # 0, then Ky = K* and by theorem 3 above and Corol-
lary 1 of Rodriguez-Guadalupe ([9]) we have

Area (M) = 2a0(M) + 2r3A(NM) = 273(M) + IKNdM = 6x(M) .
M
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