RENDICONTI del Seminario Matematico della Università di Padova

IRWEN VALLE GUADALUPE

Minimal immersions of surfaces into *n*-dimensional space forms

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 155-163

http://www.numdam.org/item?id=RSMUP_1995_94_155_0

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 94 (1995)

Minimal Immersions of Surfaces into *n*-Dimensional Space Forms.

IRWEN VALLE GUADALUPE (*)

ABSTRACT - Using the motion of the ellipse of curvature we study minimal immersions of surfaces into n-dimensional space forms. In this paper we obtain an extension of Theorem 2 of [9]. Also, we obtain some inequalities relating the integral of the normal curvature with topological invariants.

1. Introduction.

Let M be an oriented surface which is isometrically immersed into an orientable *n*-dimensional space form $Q^n(c)$, $n \ge 4$, where $Q^n(c)$ stands for the sphere $S^n(c)$ of radius 1/c, the Euclidean space \mathbb{R}^n or the hyperbolic space $H^n(c)$, according to c is positive, zero or negative. If the normal curvature tensor R^{\perp} of the immersion is nowhere zero, then exists an orthogonal bundle splitting $NM = (NM)^* \oplus (NM)^0$ of the normal bundle NM of the immersion, where $(NM)^0$ consists of the normal directions that annihilate R^{\perp} and $(NM)^*$ is a 2-plane subbundle of NM.

Let K and K_N be the Gaussian and the normal curvature of M. Let K^* be the intrinsic curvature of $(NM)^*$.

We shall make use of the *curvature ellipse* of $x: M \to Q^n(c)$, which is, for each p in M the subset of N_pM given by

$$\varepsilon_p = \{ B(X, X) \in N_p M; X \in T_p M \text{ and } \|X\| = 1 \}$$

where B is the second fundamental form of the immersion. The first result of this paper is an extension of Theorem 2 of Rodriguez-Guadalupe [9] to the case when M is not homeomorphic to the sphere S^2 .

(*) Indirizzo dell'A.: UNICAMP-IMECC, Universidade Estadual de Campinas, Caixa Postal 6065, 13081-970 Campinas, SP, Brazil.

THEOREM 1. Let $x: M \to S^n(1)$ be a minimal immersion of a complete oriented surface M into the unit sphere $S^n(1)$ with $R^{\perp} \neq 0$ and $K \ge 0$. If $2K \ge K^*$ at every point, then K^* , the normal curvature K_N and the Gaussian curvature K of M are constant.

REMARKS. (1) If K > 0, then we obtain a minimal S^2 of constant curvature in $S^n(1)$. These were classified by Do Carmo-Wallach [4]. Itoh [6] and Asperti-Ferus-Rodriguez [1] have a similar theorem.

(2) For K = 0 we obtain a «flat» minimal torus. These were studied by Kenmotsu [7], [8].

The second result of this paper is the following.

THEOREM 2. Let $x: M \to S^n(1)$ be a minimal immersion of a complete oriented surface M into the unit sphere $S^n(1)$. If $K \ge 0$ at every point, then either $K \equiv 0$ or the ellipse is a circle.

The following theorem relates an inequality betwen the integral of the normal curvature with topological invariants.

THEOREM 3. Let $x: M \to Q^n(c)$ be a minimal immersion of a compact oriented surface M into an oriented *n*-dimensional space form $Q^n(c)$ of constant curvature c with $R^{\perp} \neq 0$. Then we have

(1.1)
$$\int_{M} K_N \, dM \ge 4\pi \mathcal{X}(M)$$

the equality holds if and only if $(M \sim S^2) n = 4$.

COROLLARY 1. Let $x: M \to S^n(1)$ be a minimal immersion of a compact oriented surface M into the unit sphere $S^n(1)$ with $R^{\perp} \neq 0$. Then we have

(1.2) Area
$$(M) \ge 6\pi \mathfrak{X}(M)$$

the equality holds if and only if $(M \sim S^2) n = 4$.

REMARK. Of course (1.2) has interest only when $M \sim S^2$, otherwise $\mathfrak{X}(M) \leq 0$ and (1.2) becomes trivial.

The proofs of the above results are presented in section 4.

I want to thank Professor Asperti for bringing [2] and [3] for my attention.

2. Preliminaries.

Let M be a surface immersed in a Riemannian manifold Q^n . For each p in M, we use T_pM , TM, N_pM and NM to denote the tangent space of M at p, the tangent bundle of M, the normal space of M at pand the normal bundle of M, respectively. We choose a local field of orthonormal frames e_1, e_2, \ldots, e_n in Q^n such that restricted to M, the vectores e_1, e_2 are in T_pM and e_3, \ldots, e_n are in N_pM . We shall make use the following convention on the ranges of indices:

$$1 \leq A, B, C, \ldots \leq n, \qquad 1 \leq i, j, k \leq 2,$$

 $3 \leq \alpha, \beta, \gamma, \ldots \leq n$

and we shall agree that reapeated indices are summed over the respective ranges. With respect to the frame field of Q^n chosen above, let $\omega^1, \omega^2, \ldots, \omega^n$ be the field of dual frames. Then the structure equations of Q^n are given by.

(2.1)
$$d\omega_A = -\sum_B \omega_{AB} \wedge \omega_B, \qquad \omega_{AB} + \omega_{BA} = 0,$$

(2.2)
$$d\omega_{AB} = -\sum_{C} \omega_{AC} \wedge \omega_{CB} + \phi_{AB}$$
, $\phi_{AB} = \frac{1}{2} \sum_{C, D} K_{ABCD} \omega_{C} \wedge \omega_{D}$,
 $K_{ABCD} + K_{ABDC} = 0$.

If we restrict these forms to M. Then

$$(2.3) \qquad \qquad \omega_a = 0$$

since $0 = d\omega_a = -\sum \omega_{ai} \wedge \omega_i$, by Cartan' s lemma we may write

(2.4)
$$\omega_{ia} = \sum h_{ij}^a \omega_j, \qquad h_{ij}^a = h_{ji}^a,$$

From these formulas, we obtain

(2.5)
$$d\omega_i = -\sum \omega_{ij} \wedge \omega_j$$
, $\omega_{ij} + \omega_{ji} = 0$,

(2.6)
$$d\omega_{ij} = -\sum \omega_{ik} \wedge \omega_{k_j} + \Omega_{ij}, \qquad \Omega_{ij} = \frac{1}{2} \sum R_{ijkl} \omega_k \wedge \omega_l,$$

(2.7)
$$R_{ijkl} = K_{ijkl} + \sum_{\alpha} (h_{ik}^{\alpha} h_{j\ell}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

(2.8)
$$d\omega_{\alpha\beta} = -\sum \omega_{\alpha\gamma} \wedge \omega_{\gamma\beta} + \Omega_{\alpha\beta}, \quad \Omega_{\alpha\beta} = \frac{1}{2} \sum R_{\alpha\beta kl} \omega_k \wedge \omega_l,$$

(2.9)
$$R_{a\beta kl} = K_{a\beta kl} + \sum_{i} (h_{ik}^{a} h_{il}^{\beta} - h_{il}^{a} h_{ik}^{\beta}).$$

The Riemannian connection of M is defined by (ω_{ij}) . The form $(\omega_{\alpha\beta})$ defines a connection ∇^{\perp} in the normal bundle of M. We call

(2.10)
$$B = \sum_{\alpha, i, j} h_{ij}^{\alpha} \omega_i \omega_j e_{\alpha}$$

the second fundamental form of M. The mean curvature vector is given by

(2.11)
$$H = \sum_{\alpha} \left(\sum_{i} h_{ii}^{\alpha} \right) e_{\alpha}$$

An immersion is said to be minimal if H = 0.

Let R^{\perp} be the curvature tensor associated with ∇^{\perp} . Let $\{e_1, e_2\}$ be a tangent frame, if we denote $B_{ij} = B(e_i, e_j)$; i, j = 1, 2 then it is easy to see that

$$(2.12) R^{\perp}(e_1, e_2) = (B_{11} - B_{22}) \wedge B_{12}.$$

An interesting notion in the study of surfaces in higher codimension is that of the *ellipse of curvature* defined as $\{B(X, X) \in N_p M: \langle X, X \rangle = 1\}$. To see that it is an ellipse, we just have to look at the following formula, for

(2.13)
$$\begin{cases} X = \cos \theta e_1 + \sin \theta e_2, \\ B(X, X) = H + \cos 2\theta u + \sin 2\theta v, \end{cases}$$

where $u = (B_{11} - B_{22})/2$, $v = B_{12}$ and $\{e_1, e_2\}$ is a tangent frame. So we see that, as X goes once around the unit tangent circle, B(X, X) goes twice around the ellipse. Of course this ellipse could degenerate into a line segment or a point. Everywhere the ellipse is not a circle we can choose $\{e_1, e_2\}$ orthonormal such that u and v are perpendicular. When this happens they will coincide with the semi-axes of the ellipse.

From (2.12) it follows that if $R^{\perp} \neq 0$ then u and v are linearly independent and we can define a 2-plane subbundle $(NM)^*$ of the normal bundle NM. This plane inherits a Riemannian connection from that of NM. Let R^* be its curvature tensor and define its curvature K^* by

$$(2.14) d\omega_{34} = -K^* \omega_1 \wedge \omega_2$$

if $\{e_3, e_4\}$ locally generates $(NM)^*$.

Now, if ξ is perpendicular to $(NM)^*$, then from (2.12), $R^{\perp}(e_1, e_2)\xi = 0$. Hence, it makes sense to define the normal curvature as

(2.15)
$$K_N = \langle R^{\perp}(e_1, e_2) e_4, e_3 \rangle$$

where $\{e_1, e_2\}$ and $\{e_3, e_4\}$ are orthonormal oriented bases of T_pM and N_pM , respectively. If TM and $(NM)^*$ are oriented, then K_N is globally defined. In codimension 2, $NM = (NM)^*$ and K_N has a sign. In higher codimension, if $R^{\perp} \neq 0$, $(NM)^*$ is globally defined and oriented if TM is. In this case, it is shown in [1] that $\mathfrak{X}(NM)^* = 2\mathfrak{X}(M)$, where $\mathfrak{X}(NM)^*$ denote the Euler characteristic of the plane bundle $(NM)^*$ and $\mathfrak{X}(M)$ denote the Euler characteristic of the tangle bundle TM.

3. Minimal immersions with $R^{\perp} \neq 0$.

In this section we assume that M has non-zero normal curvature tensor R^{\perp} . Also if M is orientable, then we will always choose orientations in TM and in $(NM)^*$ such that K_N is positive. We have

PROPOSITION 1.1. Let $x: M \to Q^n(c)$ be a minimal immersion of an oriented surface M into an orientable *n*-dimensional space form $Q^n(c)$ of constant curvature c. Then we have

(3.1)
$$\Delta(\log |K_N - K + c|) = 2(2K - K^*)$$

if $(K-c)^2 - K_N^2 > 0$, and consequently

(3.2)
$$\Delta(\log |K_N + K - c|) = 2(2K + K^*).$$

PROOF. By Itoh [6] there exists isothermal coordinates $\{x_1, x_2\}$ such that putting $X_i = \partial/\partial x_i$, i = 1, 2 then $u = B(X_1, X_1) = -B(X_2, X_2)$ and $v = B(X_1, X_2)$ are the semi-axes of the ellipse at every point where $(K-c)^2 - K_N^2 \neq 0$. Moreover we observe that $|X_i|^2 = E = ((K-c)^2 - K_N^2)^{-1/4}$, i = 1, 2. If we denote $\lambda = \langle u, u \rangle^{1/2}$ and $\mu = \langle v, v \rangle^{1/2}$ and following the same arguments that [10] we have

$$\lambda^2 - \mu^2 = 1$$

(3.4)
$$\lambda^2 + \mu^2 = -(K-c)E^2,$$

If $(K-c)^2 - K_N^2 > 0$ from (3.4) and (3.5) we obtain

(3.6)
$$\lambda + \mu = (K_N - K + c/K_N + K - c)^{1/4}.$$

Let $e_3 = \lambda^{-1} u$ and $e_4 = \mu^{-1} v$ an oriented frame in $(NM)^*$. Now, following the same computations that [10] we get

(3.7)
$$\omega_{34}(X_1) = -X_2(f),$$

(3.8)
$$\omega_{34}(X_2) = X_1(f),$$

where $f = \log |\lambda + u|$. Hence, we have

(3.9)
$$\omega_{34} = -X_2(f) dX_1 + X_1(f) dX_2.$$

Deriving (3.9) and using (2.14) we get

$$(3.10) \quad -K^* \,\omega_1 \wedge \omega_2 = d\omega_{34} E^{-1}$$

= $(-X_2 X_2(f) dX_2 \wedge dX_1 + X_1 X_1(f) dX_1 \wedge dX_2) E^{-1} =$
= $(X_1 X_1(f) + X_2 X_2(f)) E^{-1} dX_1 \wedge dX_2) = \tilde{\Delta}(f) E^{-1} \omega_1 \wedge \omega_2$

where $\tilde{\Delta}$ denotes de Laplacian of the «flat» metric. We know $\tilde{\Delta}(f) = E\Delta(f)$, where Δ is the Laplacian of the surface. Hence, from (2.18) and (2.22) we get

(3.11)
$$\Delta(\log |K_N - K + c/K_N + K - c|) = -4K^*.$$

Using $E = (K - c)^2 - K_N^2)^{-1/4}$ and the Gaussian curvature K given by the equation

$$(3.12) K = -\frac{1}{2}E^{-1}\tilde{\varDelta} \log E.$$

we obtain

(3.13)
$$\Delta(\log |K_N - K + c|) + \Delta(\log |K_N + K - c|) = 8K$$

From (3.11) and (3.13) we get the equations (3.1) and (3.2).

COROLLARY 1. Let $x: M \to Q^n(c)$ be a minimal immersion with $K^* > 0$. Then the ellipse is a circle.

PROOF. Suppose that the ellipse is not a circle then from (3.11) $\Delta(\log |K_N - K + c/K_N + K - c|) < 0$. So $K_N > 0$ implies that $\log \frac{|K_N - K + c|}{|K_N + K - c|}$ is subharmonic and bounded from below. Therefore $\log \frac{|K_N - K + c|}{|K_N + K - c|}$ is constant and this implies that $K^* \equiv 0$. This is a contradiction. COROLLARY 2. Let $x: M \to Q^n(c)$ be a minimal immersion of a compact surface M with $2K > K^*$. Then the ellipse is a circle.

PROOF. Suppose that the ellipse is not a circle then from (3.1) $\Delta(\log |K_N - K + c|) > 0$. So we have that $\log |K_N - K + c|$ is subharmonic and bounded from above and therefore is constant. This implies that $2K = K^*$. This is a contradiction.

4. Proof of Theorems.

PROOF OF THEOREM 1. First we consider the case when the ellipse is not a circle, i.e., $(K-1)^2 - K_N^2 > 0$. Now if $2K \ge K^*$ then from (3.1) follows that $\Delta(\log |K_N - K + 1|) \ge 0$. So we have that $\log |K_N - K +$ + 1| is subharmonic and bounded from above. Then

$$(4.1) K_N - K + 1 = \text{constant}$$

and $2K = K^*$. On the other hand from (3.2) we get $\Delta(\log |K_N + K - -1|) = 2(2K + K^*) = 8K \ge 0$. Similarly from above we have

$$(4.2) K_N + K - 1 = \text{constant}.$$

From (4.1) and (4.2) follows that K^* , K_N and K are constant.

In the case that ellipse is a circle the theorem follows by Rodriguez-Guadalupe [9]. This complets the proof of theorem.

PROOF OF THEOREM 2. Suppose that the ellipse is not a circle. From (3.13) we obtain

(4.3)
$$\Delta(\log |K_N - K + 1/K_N + K - 1|) = 8K \ge 0.$$

From (3.5), Rodriguez-Guadalupe ([9], p. 9) and $K \ge o$ implies $2\lambda\mu E^{-2} = K_N \le 1$. So from (3.4) we have $(\lambda^2 + \mu^2)E^{-2} = 1$. Therefore we get

$$0 \le (\lambda + \mu)^2 E^{-2} = K_N - K + 1,$$

= $(\lambda^2 + \mu^2) E^{-2} + 2\lambda \mu E^{-2} \le 2.$

This implies that $|K_N - K + 1|$ is bounded from above. Similarly $|K_N + K - 1|$ is bounded from above, too. Then $\log(|K_N - K + 1/K_N + K - 1|)$ is subharmonic and bounded from above and therefore is constant. From (4.3) follows that $K \equiv 0$.

PROOF OF THEOREM 3. From Asperti ([2], Prop. 3.6) we have

(4.4)
$$K^* = K_N - \frac{\|B^2\|^2}{2K_N}$$

where B^2 is the 3th fundamental form of *M*. From (4.4) we obtain

$$(4.5) K_N \ge K^*$$

Integrating (4.5) over M and applying Ferus-Rodriguez-Asperti ([1], Th. 1) we get

(4.6)
$$\int_{M} K_N dM \ge \int_{M} K^* dM = 2\pi \mathfrak{X}(NM)^* = 4\pi \mathfrak{X}(M).$$

If $\int_{M} K_N dM = 4\pi \mathcal{X}(M)$ then $K_N = K^*$ and from (4.4) $B^2 \equiv 0$. By

Erbacher [5] the codimension is two and n = 4.

PROOF OF COROLLARY 1. If Area $(M) = 6\pi \mathfrak{N}(M)$ then $\mathfrak{N}(M) > 0$ and, actually Area $(M) = 12\pi$. It follows from Asperti ([3], p. 60) that

(4.7)
$$12\pi \ge 2\pi(s+1)(s+2)$$

where s is sucht that n = 2 + 2s. It is clear now from (4.7) that s = 1 and n = 4.

On the other hand, if n = 4 and $x: M \to S^4(1)$ is a minimal two sphere with $R^{\perp} \neq 0$, then $K_N = K^*$ and by theorem 3 above and Corollary 1 of Rodriguez-Guadalupe ([9]) we have

Area
$$(M) = 2\pi \mathfrak{X}(M) + 2\pi \mathfrak{X}(NM) = 2\pi \mathfrak{X}(M) + \int_{M} K_N dM = 6\pi \mathfrak{X}(M).$$

REFERENCES

- [1] A. C. ASPERTI, D. FERUS L. RODRIGUEZ, Surfaces with non-zero normal curvature tensor, Atti Accad. Naz. zincei, 73 (1982), pp. 109-115.
- [2] A. C. ASPERTI, Generic minimal Surfaces, Math. Z., 200 (1989), pp. 181-186.
- [3] A. C. ASPERTI, Superfícies mínimas genéricas e elipses de curvatura generalizadas, Thesis de Livre-Docência (1986), Universidade de São Paulo.

- [4] M. DO CARMO N. WALLACH, Representations of compact groups and minimal immersions of spheres into spheres, J. Diff. Geometry, 4 (1970), pp. 91-104.
- [5] J. A. ERBACHER, Reduction of the codimension of an isometric immersion, J. Diff. Geometry, 5 (1971), pp. 333-340.
- [6] T. ITOH, Minimal surfaces in 4-dimensional Riemannian manifolds of constant curvature, Kodai Math. Sem. Rep., 22 (1971), pp. 451-458.
- [7] K. KENMOTSU, On a parametrization of minimal immersions of R² into S⁵, Tôhoku Math. J., 27 (1975), pp. 83-90.
- [8] K. KENMOTSU, On minimal immersions of R² into Sⁿ, Math. Soc. Japan, 28 (1976), pp. 182-191.
- [9] L. RODRIGUEZ I. V. GUADALUPE, Normal curvature of surfaces in space forms, Pacific J. Math., 106 (1983), pp. 95-103.
- [10] R. TRIBUZY I. V. GUADALUPE, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova, 73 (1985), pp. 1-13.

Manoscritto pervenuto in redazione il 6 giugno 1994.