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Minimal Immersions of Surfaces

into n-Dimensional Space Forms.

IRWEN VALLE GUADALUPE (*)

ABSTRACT - Using the motion of the ellipse of curvature we study minimal im-
mersions of surfaces into n-dimensional space forms. In this paper we obtain
an extension of Theorem 2 of [9]. Also, we obtain some inequalities relating
the integral of the normal curvature with topological invariants.

1. Introduction.

Let M be an oriented surface which is isometrically immersed into
an orientable n-dimensional space 
stands for the sphere of radius 1 /c, the Euclidean space or the

hyperbolic space Hn (c), according to c is positive, zero or negative. If
the normal curvature tensor R 1. of the immersion is nowhere zero, then
exists an orthogonal bundle splitting NM = (NM)* Q9 (NM)o of the nor-
mal bundle NM of the immersion, where (NM)o consists of the normal
directions that annihilate R 1. and (NM)* is a 2-plane subbundle of
NM. 

’

Let K and KN be the Gaussian and the normal curvature of M. Let
K* be the intrinsic curvature of (NM)* .

We shall make use of the curvature ellipse of x : M - which

is, for each p in M the subset of Np M given by

where B is the second fundamental form of the immersion. The first
result of this paper is an extension of Theorem 2 of Rodriguez-
Guadalupe [9] to the case when M is not homeomorphic to the

sphere S 2 .

(*) Indirizzo dell’A.: UNICAMP-IMECC, Universidade Estadual de Campi-
nas, Caixa Postal 6065, 13081-970 Campinas, SP, Brazil.



156

THEOREM 1. Let x: M -~ Sn ( 1 ) be a minimal immersion of a com-
plete oriented surface M into the unit sphere S n ( 1 ) with R 1 ~ 0 and
K ~ 0. If 2K ~ K * at every point, then K * , the normal curvature KN
and the Gaussian curvature K of M are constant.

REMARKS. (1) If K &#x3E; 0, then we obtain a minimal ,S2 of constant
curvature in These were classified by Do Carmo-Wallach [4].
Itoh [6] and Asperti-Ferus-Rodriguez [1] have a similar theorem.

(2) For K = 0 we obtain a «flat» minimal torus. These were studied
by Kenmotsu [7], [8].

The second result of this paper is the following.

THEOREM 2. Let x: M -~ ,Sn ( 1 ) be a minimal immersion of a com-
plete oriented surface M into the unit sphere ,S n ( 1 ). If K a 0 at every
point, then either K = 0 or the ellipse is a circle.

The following theorem relates an inequality betwen the integral of
the normal curvature with topological invariants.

THEOREM 3. Let x: be a minimal immersion of a com-

pact oriented surface M into an oriented n-dimensional space form
of constant curvature c with R 1 ~ 0. Then we have

the equality holds if and only if (M -~- ,S2 ) n = 4.

COROLLARY 1. Let x: M ~ Sn ( 1 ) be a minimal immersion of a
compact oriented surface M into the unit sphere with 72~ ~ 0.
Then we have

the equality holds if and only if (M --- ,S 2 ) n = 4.

REMARK. Of course (1.2) has interest only when M -~- S2 , otherwise
x(M) % 0 and (1.2) becomes trivial.

The proofs of the above results are presented in section 4.

I want to thank Professor Asperti for bringing [2] and [3] for my
attention.
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2. Preliminaries.

Let M be a surface immersed in a Riemannian manifold Q~. For
each p in M, we use T p M, TM, Np M and NM to denote the tangent
space of M at p, the tangent bundle of M, the normal space of M at p
and the normal bundle of M, respectively. We choose a local field of or-
thonormal frames el , e2 , ... , en in Qn such that restricted to M, the vec-
tores el , e2 are in Tp M and e3 , ... , en are in Np M. We shall make use the
following convention on the ranges of indices:

and we shall agree that reapeated indices are summed over the respec-
tive ranges. With respect to the frame field of Qn chosen above, let
cv 1, cv 2 , ... , cv n be the field of dual frames. Then the structure equa-
tions of Qn are given by.

If we restrict these forms to M. Then

since by Cartan’ s lemma we may write

From these formulas, we obtain
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The Riemannian connection of M is defined by «(J) ij). The form 
defines a connection V1 in the normal bundle of M. We call

the second fundamental form of M. The mean curvature vector is given
by

An immersion is said to be minimal if H = 0.
Let R 1 be the curvature tensor associated with V 1.. be

a tangent frame, if we denote Big = B( ei , i, j = 1, 2 then it is easy to
see that

An interesting notion in the study of surfaces in higher codimension
is that of the ellipse of curvature defmed as {B(X, ~ « NpM: (X, X) =
= 1 }. To see that it is an ellipse, we just have to look at the following for-
mula, for

where u = (B11 - B22 )~2, v = B12 is a tangent frame. So we
see that, as X goes once around the unit tangent circle, B(X, X) goes
twice around the ellipse. Of course this ellipse could degenerate into a
line segment or a point. Everywhere the ellipse is not a circle we can
choose {e1, e2} orthonormal such that u and v are perpendicular. When
this happens they will coincide with the semi-axes of the ellipse.

From (2.12) it follows that if R 1 ~ 0 then u and v are linearly inde-
pendent and we can define a 2-plane subbundle (NM)* of the normal
bundle NM. This plane inherits a Riemannian connection from that of
NM. Let R* be its curvature tensor and define its curvature K * by

locally generates (NM)* .
Now, if ~ is perpendicular to (NM)* , then from (2.12), R 1 (el, e2 ) ~ = o.

Hence, it makes sense to define the normal curvature as
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where {e1, e2} and {e3, e4} are orthonormal oriented bases of Tp M and
NpM, respectively. If TM and (NM)* are oriented, then KN is globally
defined. In codimension 2, NM = (NM)* and KN has a sign. In higher
codimension, 0, (NM)* is globally defined and oriented if TM is.
In this case, it is shown in [1] that = 2~C(M), where 
denote the Euler characteristic of the plane bundle (NM)* and 
denote the Euler characteristc of the tangle bundle TM.

3. Minimal immersions 0.

In this section we assume that M has non-zero normal curvature
tensor R ’ . Also if M is orientable, then we will always choose orienta-
tions in TM and in (NM)* such that KN is positive. We have

PROPOSITION 1.1. Let x: be a minimal immersion of an
oriented surface M into an orientable n-dimensional space form Q~(c)
of constant curvature c. Then we have

if (K - c)’ - KN &#x3E; 0, and consequently

PROOF. By Itoh [6] there exists isothermal coordinates {x1, x2}
such that putting Xi = 313xi, i = 1, 2 then u = B(Xl , X1 ) _ - B(X2 , X2 )
and v = B(Xl , X2 ) are the semi-axes of the ellipse at every point where
(K - c)2 - KN ~ 0. Moreover we observe that ~ Xi ~ 2 = E =
- ((K - c )2 - I~N ) -1 ~4 , i = 1, 2 . If we denote ~, _  u, u &#x3E; 1 ~2 and

,u = (v, V)112 and following the same arguments that [10] we have

If I from (3.4) and (3.5) we obtain
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Let e~ = ~, -1 u and e4 = an oriented frame in (NM) * . Now, follow-
ing the same computations that [10] we get

Hence, we have

Deriving (3.9) and using (2.14) we get

where 4 denotes de Laplacian of the «flat» metric. We know 4( f) =
= EL1(f), where L1 is the Laplacian of the surface. Hence, from (2.18) and
(2.22) we get

Using ) and the Gaussian curvature K given by
the equation

we obtain

From (3.11) and (3.13) we get the equations (3.1) and (3.2).

COROLLARY 1. Let be a minimal immersion with
K* &#x3E; 0. Then the ellipse is a circle.

PROOF. Suppose that the ellipse is not a circle then from (3.11)
So 0 implies that

is subharmonic and bounded from below. Therefore

is constant and this implies that K * = 0. This is a
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COROLLARY 2. Let be a minimal immersion of a

compact surface M with 2K &#x3E; K * . Then the ellipse is a circle.

PROOF. Suppose that the ellipse is not a circle then from (3.1)
4(log KN - K + c I) &#x3E; 0. So we have that log KN - K + c I is subhar-
monic and bounded from above and therefore is constant. This implies
that 2K = K * . This is a contradiction.

4. Proof of Theorems.

PROOF OF THEOREM 1. First we consider the case when the ellipse
is not a circle, i.e., (K - 1 )2 - KN &#x3E; 0. Now if 2K ~ K * then from (3.1)
follows that 4 (log KN - K + 11) ~ 0. So we have that log +

+ 1 ~ [ is subharmonic and bounded from above. Then

and 2K = K * . On the other hand from (3.2) we get 4(log KN + K -
- 1|) = 2( 2K + K * ) = 8K &#x3E; 0. Similarly from above we have

From (4.1) and (4.2) follows that K * , KN and K are constant.
In the case that ellipse is a circle the theorem follows by Rodriguez-

Guadalupe [9]. This complets the proof of theorem.

PROOF OF THEOREM 2. Suppose that the ellipse is not a circle.
From (3.13) we obtain

From (3.5), Rodriguez-Guadalupe ([9], p. 9) and K* o implies
2~,,uE -2 = KN ~ 1. So from (3.4) we have (Â.2 +,U2 )E -2 = 1. Therefore
we get

This implies that KN - K + 1 ~ [ is bounded from above. Similarly
+ K - 1 ~ [ is bounded from above, too. Then log ( KN - K + 1 /KN +

+ K - 1 ~ ) is subharmonic and bounded from above and therefore is con-
stant. From (4.3) follows that K --- 0.
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PROOF OF THEOREM 3. From Asperti ([2], Prop. 3.6) we have

where B 2 is the 3th fundamental form of M. From (4.4) we obtain

Integrating (4.5) over M and applying Ferus-Rodriguez-Asperti ([1],
Th. 1) we get

If then KN = K * and from (4.4) ~=0. By
LYl

Erbacher [5] the codimension is two and n = 4.

PROOF OF COROLLARY 1. If Area (M) = 6JlX(M) then &#x3E; 0

and, actually Area (M) = 12Jl. It follows from Asperti ([3], p. 60)
that

where s is sucht that n = 2 + 2s. It is clear now from (4.7) that s = 1 and
n = 4.

On the other hand, if n = 4 and x: M -~ ,S4 ( 1) is a minimal two

sphere with R 1 ~ 0, then KN = K * and by theorem 3 above and Corol-
lary 1 of Rodriguez-Guadalupe ([9]) we have
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