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A Semi-Linear Problem

for the Heisenberg Laplacian.

ISABEAU BIRINDELLI (*) - ALESSANDRA CUTRÌ (**)

ABSTRACT - We study the Dirichlet problem in a bounded domain Q, for the equa-
where d H is the sub-elliptic operator usually

called Heisenberg Laplacian and a changes sign in Q. Precisely, we give
some necessary and sufficient conditions on the function a and on A for the ex-
istence of positive solutions.

1. Introduction and results.

Let S~ be a bounded smooth domain of IE~2n + 1, ~ ; _ (xl , , , , rn , i
2J~ ~ .. ~ 2Jn ~ t) ~ _ ~x~ Yg t)-

We denote by Hn the vector space 1~2n + 1 endowed with the group
action:

Hn is a Lie group and the corresponding Lie Algebra of left-invariant

(*) Indirizzo dell’A..: Dipartimento di Matematica, Universita di Roma «La
Sapienza», 00185 Roma, Italy.

(**) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Roma «Tor
Vergata», 00133 Roma, Italy.
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vector fields is generated by

The second order self-adjoint operator:

is usually called the Heisenberg Laplacian.
Observe that = div (AVu), where A is the following ( 2n + 1) x

x ( 2n + 1) matrix:

I is the (n x n) identity matrix and Therefore
the Gauss-Green formula holds:

where is the 2n-vector XIU, X2 U).
Observe that A is a positive semi-definite matrix with det (A) = 0

for all (x, y, t) E Hn and rank (A) = 2n.
Furthermore, X 2 satisfy [Xi , so the vector fields

Xi and their first order commutators span the whole Lie

Algebra. Therefore, the vector fields satisfy the Hormander condition
of order one (see [2], [9]). This implies the hypoellipticity of L1 H (i.e. if
-L1HUECoo then UECoo (see [9])).
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Folland and Stein in [6] introduced ,Si ( S~ ), the analogue of WJ,2,
naturally related to the vector fields Xi . Namely, S2 1 (Q) is the closure of

with respect to the norm:

Let, moreover, FO be the analogue of the classical Holder functions
space introduced in [6], see Definition 2.2.

Semi-linear equations for the Heisenberg Laplacian similar to (1.2)
but with the function of constant sign, have been studied by Garofalo
and Lanconelli in [7].

The main results in the present paper are some necessary and
sufficient conditions for the existence of a solution 
for 0  a  1 of the following problem:

where A is a real parameter, a and q belong to T~ for some 0 &#x3E; 0 and

p &#x3E; 1. We assume that a changes sign in Q. 
_

Observe that, from the definition of for
0  a  1 implies that u is a classical solution of (1.2).

Let be the principal eigenvalue precisely there
e,,dsts 0 &#x3E; 0 such that:

Problem (1.2) with the classical Laplacian instead of the d H, was
studied by Berestycki, Capuzzo Dolcetta; Nirenberg in [3]. We will
give similar sufficient and necessary conditions on A and a, to obtain the
existence of solutions of (1.2).

Precisely, we obtain the following theorems:

THEOREM 1.1. Assume (1.3) holds and (1.2) has a solution. Then
the following conditions are satisfied:
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THEOREM 1.2. Ass2cme (1.3), where Q = 2n + 2

Then there exists ). * such that (1.2) hacs a solution for A  A *,
while no solutions exist for A &#x3E; A*.

The proofs of Theorem 1.1 and 1.2, given in section 3, are based on
variational methods similar to those used in [3] and on the characteris-
tic features and properties of the Heisenberg laplacian.

In the next section we detail these properties, in particular we
prove a Hopf type Lemma and we state an embedding theorem due to
Folland and Stein [6], see also Garofalo and Lanconelli [7].

Acknowledgement. We would like to thank prof. I. Capuzzo Dolcetta
for suggesting the problem and prof. U. Mosco for useful discussions on
subelliptic operators.

2. On the Heisenberg Laplacian.

From the definition of the Lie Group acting on and thus from
the definition of the Xi , it is evident that the t direction plays a particu-
lar role. We are in an anisotropic space, therefore the concept of dilation
is modified. Precisely, there is a «natural» group of dilations on Hn in-
troduced by Folland and Stein (see [5], [6]) for which the xj are homo-
geneous, given by:

Therefore L1 H is homogeneous of degree 2 with respect to d ~, , pre-
cisely :

In order to have a distance from the origin which is homogeneous of de-
gree zero with respect to the dilation (2.1), we define, as in [5]:
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Using the group action, we obtain a «natural» metric in Hn by
defining:

We will denote by

the Heisenberg ball, also called «Boule de Koranyi», which will play the
role of the euclidean ball in Hn .

Q = 2 n + 2 is called the «homogeneous» dimension of H n and will
play the same role as the euclidean in the uniformly elliptic theory. In
particular, for example, the Lebesgue measure of B (0, R) is propor-
tional to the Q-th power of R.

The fondamental solution of the Heisenberg Laplacian is construct-
ed similarly to the fondamental solution of the Laplacian but with the
intrinsic distance defined as above. Precisely, it is easy to check that

Observe that for any operator

with positive semi-definite matrix, the weak Maximum Princi-
ple holds (see [7]). Moreover, if L is in divergence form and is generated
by vector fields satisfying the Hormander condition, then the Strong
Maximum Principle (see [2]) holds.

In the proof of Theorem 1.2 we need a version of the Hopf lemma for
the Heisenberg laplacian. Let us first give the following definition
which generalizes the interior sphere condition property.

DEFINITION 2.1. Let Q c R2n + 1. Q satisfies the interior Heisen-
berg’s sphere condition E dQ if there exist a constant R &#x3E; 0 and

t7 E Q such that the Heisenberg ball R) C Q and 0 belongs to the
boundary of the ball.

LEMMA 2.1. Let; 0 be a point of aS2 where the interior Heisenberg’s
sphere condition is satisfied. If

for some a &#x3E; 0 and is 

in Q where c is bounded in Q,
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then, for any n exterior direction to 8Q 

and if it exists,

v(ço)  0 when v, the exterior normal to 8Q at Ço, is
not orthogonal to the vector fields = 1, 2, i = 1, ... , n.

PROOF. Let 8Q and let ?y = (x’, y’, t’ ) and R &#x3E; 0 be as in the
Definition 2.1. Observe that R) is tangent to 8Q at ~ o .

Similarly to Serrin in [12], see also [8], we will eliminate the zero or-
der term.

Indeed, let n be an exterior direction to 8Q at ç 0’ and choose
w = e -K~xl - x’ ~2 u, with K &#x3E; 0. It is easy to check that w satisfies

, 0 as soon as K is sufficiently large.
If we prove that w satisfies

then the statement follows as

For d(~, r~ ) = r we define

for Q  r  R. It is easy to check that, for functions depending only on
the distance from the origin r, we have:

where . is a positive function, homogeneous of degree

zero with respect to the dilation defined in (2.3) and where vr is the
derivative of v with respect to r.
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Thus, as v depends only on the distance from t7 and d H and Xll are in-
variants with respect to the group action, (2.2) still holds with
r = 0). Precisely, using hypothesis 2):

for a sufficiently large.
Therefore in BH(1J, R)BBH(1J, o), -L1H(w + Ev) - xi ) ~

.X/ (w + Ev) * 0 and on R), w + Ev * 0. Furthermore, for E suffi-
ciently small, w + Ev * 0 on aBH(1J, g ). Thus, from the weak maximum
principle, we obtain that

Now observe that w ( ~ o ) _ - ~v ( ~ o ) = 0 . Furthermore, for any
n . v &#x3E; 0 and for small h &#x3E; 0,

Therefore, as vr is strictly positive, the first part of the lemma is proved.
To end the proof it is enough to check that Av is an exterior direc-

tion at ~ o when v is not orthogonal to xl, j = 1, 2 , i = 1, ... , n.

But this is immediate from the fact that

REMARK 1. Observe that, differently from the uniformly elliptic
case, A Vu. v may be zero. As an example, suppose that u is constant on
the boundary so that has the same direction as the
normal v ( ~ o ). Thus, when v is orthogonal to = 1, 2, i = 1, ... , n,
AVu.v = 0.

REMARK 2. Clearly Lemma 2.1 holds also for the operator

are bounded functions.
- 

Let us recall the definitions of the functional spaces needed (see
[4], [6]). For this purpose, let I = (i1, ... , ik), for 1 ~ i~ ~ 2n and

j = 1, ... , I~, a multi-index and set I = k. Denote by XI the oper-
ator where is one of the vector fields 

(~=1,...,~).
Observe that T = 8/8t is a linear combination of X, with I I I = 2.
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DEFINITION 2.2. For 0  1

fro B = 1 

Let moreover ,Sk , for 1 ~ q ~ + 00 and k a positive integer, be the
set of functions f E L q such that XI f E L q for ~ k.

As mentioned in the introduction, we need a theorem analogous to
0

the standard Sobolev embedding theorems, for the spaces S21(Q),
0

Sq2 (Q).
0

THEOREM 2.1. 0161T (Q) is compactly embedded inLP(Q)for 1  p 
11 Z%

where Q=2n+2.

o 
For 1 ~ q ~ + 00, k = 1; 2 and {3 = k - Q/q, is not an integer

SZ (Q) c rfl if {3 is an integer ,Sk ( S~ ) any E &#x3E; 0.

The proof is given in [6], see also [7] for the first statement.

3. Proofs.

Theorem 1.1 is a corollary of the following technical lemma.

LEMMA 3.1. Assume that (1.3) holds, then for any solution u of
(1.2) and y ~ 0 the following is true:

where
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PROOF. It is easy to check that u and 0 satisfy the conditions of the
Hopf s Lemma 2.1, thus there exists a constant t &#x3E; 0 such that in a

neighbourhood of 8Q, u * to. Therefore u -y ~ 1 + Y is bounded.
Let us multiply (1.2) by u -Y ~ 1 +’’ , integrate and apply the diver-

gence theorem to obtain:

But,

so,

On the other hand (1.3), after multiplication by u 1- and integra-
tion by parts yields:

Hence, combining (3.2) and (3.3), and using thp symmetry of A, we
get:

and the claim follows.
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PROOF OF THEOREM 1.1. Let us observe that y = 0 in (3.1) implies
that ~ ~ 0 when À  ~i and both Q + and Q - are not empty for
Â=Â1.

To complete the proof, we choose y = p and (3.1) becomes:

Therefore, as A is positive semi-definite, condition (i) holds.
For A = Â.1 we still have to prove that the right hand side of (3.4) is

strictly negative.
Suppose, by contradiction, that Ag ~ g = 0. As it can easily be com-

puted, this implies that = 0. The Hormander condition guar-
anties that all functions satisfying = 0, in a connected domain, are
necessarily constants. Therefore, u = Co for some C &#x3E; 0. We have
reached a contradiction since Cg5 is not a solution of (1.2). This concludes
the proof.

The next lemmas will be used in the proof of Theorem 1.2.

0

LEMMA 3.2. Let be a solution of

with and some q E=- [ 2, oo ). If

with BQ the Sobolev constant of the embedding inequality of Si into L q ,
then ZG E + 2/(Q - 2»

This lemma is due to Garofalo and Lanconelli, the proof may be
found in ([7]).

LEMMA 3.3. Let the function a E rf3 (Q) satisfy S2 + ;e 0 with 92 + as
in Theorem 1.1, and set

where

Then,
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PROOF. Consider the set Q * = (ço)-1 0 S~ . Thus 0 E
E Q * + . Take for a fixed R, any y E Co R)) and set y, t) =
= t/e2). The following holds:

Choose R &#x3E; 0 such that R) c S~ + and y the principal eigen-
function with Dirichlet condition on aBH . Denote
by y * the corresponding eigenvalue and take E sufficiently small that

and

Then the following holds:

Thus

Observe that xl are left invariant with respect to the group action and
(~.)’’o~(~;~)=~(0;~); so

Extend now u£ to 0 in and call it ue. It is easy to check
that
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so either W, or there exists k &#x3E; 1 such that kiie E Moreover,

We have thus proved that M &#x3E; 0 

PROOF OF THEOREM 1.2. The proof is divided in four steps:

Step 1: for large A &#x3E; À1 i (1.2) has no solution;

Step 2: if there exists a solution of (1.2) for a certain A’ 
then (1.2) has a solution for any ~,1  ~, ~ A’;

Step 3: for sufficiently small, there exists 9 solution of

(1.2);

Step 4: (1.2) has a solution also for A = A,.

For the first step, let Ço E S~ + and R &#x3E; 0 such that BH(ço; R) c Q +
and, as in Lemma 3.3, denote by ,u * and y &#x3E; 0 in BH , respectively, the
principal eigenvalue and the corresponding eigenfunction with
Dirichlet condition on 

Suppose there exists u solution of (1.2) for ~, % + /Ã *. Then it
satisfies:

and  0 on aBH except at the two points where the outward nor-
mal is in the t-axis direction, as a consequence of Lemma 2.1.

Hence,

so, as I * + IU * , the integral in the right hand side is negative
and we have reached a contradiction.

The second step is accomplished by a sub and supersolution argu-
ment. Namely, let A’ &#x3E; Â.1 and denote by w = a solution of (1.2) for
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A = ~, ’ , which exists by assumption. For ~,1  ~,  ~, ’ , Zv satisfies:

so, VA 1  A  ~, ’ , w is a supersolution of (1.2).
On the other hand, is a subsolution of (1.2), provided E is small

enough. Indeed,

for E small enough, as a is bounded in S~ .
As the maximum principle holds for L1 H and, from the Hopf lemma,

there exists a small E &#x3E; 0 such that w, we can use the standard

procedure (see e.g. [1]) to construct a solution of (1.2) for any
A1  A  A’.

As for the third step, let us show that the variational problem

has a solution. For this purpose, be a maximizing sequence
for (3.8). We first prove is bounded in .

Let us decompose un in the following way:

with orthogonal to 0 in L 2 ( S~ ).
Thus, from the definition of q5,

for all v in 81. Choosing v respectively equal to 0 and to vn , we obtain
for un 

We have normalized 0 such that ~ I
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We will choose A small enough that:

and

where À 2 is the second eigenvalue 
From the Harnack inequality, which holds also for the L1 H (see [11]),

it is immediate to get that the first eigenvalue ~,1 of - L1 H + q is simple.
Therefore, as vn is orthogonal to 0 and the set of eigenfunctions {Ok} is
complete in L 2 , the following equality holds:

where an = (vn , ~ k ~L2 ·
Therefore, for our choice of 1:

and

o

Suppose by contradiction that (un) is not bounded in S2
Assume first that is bounded. This implies that I(vn) and tn

are bounded too, as (3.12) holds and, from (3.10),

We have reached a contradiction as, from (3.9), 1

Therefore vn diverges in Sro. This implies that I (vn) diverges. In-

deed either is bounded and diverges, or

diverges and, from (3.11 ), I (vn ) does also. Furthermore, for

large n,
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But, from (3.10),

for À - Â.1 &#x3E; 0 sufficiently small, from condition (i). We get a contradic-
tion since, by Lemma 3.3, M &#x3E; 0.

As un is bounded in 81, there exists a weakly convergent sub-

sequence in 81, converging strongly in L 2 and in L p + 1 in view of

Theorem 2.1, since 1  p  ( ~ + 2)/(Q - 2).
So

In particular u ~ 0.
We still have to check that u E From weak lower continuity

On the other hand, if we suppose I (u) ~ 0 we obtain a contradiction, ap-
plying the argument above to u + v. Thus I(u) &#x3E; 0. Now if I(u) 
 1 then 3u « Si for some 6 &#x3E; 1; hence:

which is absurd.

Thus u E 

Moreover, I U I has the same properties as u, so we may assume
u -&#x3E; 0.

Now, a standard argument shows that there exists a Lagrange mul-
tiplier r such that u is a weak solution of

By Lemma 3.3, M &#x3E; 0 so that r &#x3E; 0. Hence W = z 1~~~ -1~ u is a weak sol-
ution of (1.2).
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In order to show that u is a classical solution of (1.2) we use Lemma
3.2. More precisely, for E &#x3E; 0 that will be chosen convenientely later, let
K = E-p+(Q+2)/(Q-2) and n be a Coo(Q) such that

We choose and 
+ (q(~) - A - 1)u. Then it is easy to see that

but, by Theorem 2.1, u E L 2Q~~Q - 2) and, moreover, 2) # 0 since

M &#x3E; 0. Thus we can choose E % and V satisfies the

hypotheses of Lemma 3.2.
Furthermore, if u E L q for some q &#x3E; 2 then g also is in L q . But, from

Theorem 2.1, u E L q for some 2  q  2Q/(Q - 2) and we can apply
Lemma 3.2 to obtain u E L q~1 + 2~~Q - 2» .

Repeating this argument we get that

0

Therefore U E S2q in the interior of Q for each q &#x3E; 2p. From Theo-
rem 2.1, we obtain that U E T~ for P = 2 - Q/q &#x3E; 0. Using again regular-
ity results, as u is a solution of ( 1.2), u E 1,2 + a in the interior of S~ for
some 0  a  1.

The continuity of u up to the boundary is a direct consequence of
Theorem 3.1 of [10].

Moreover, as u ~ 0 satisfies the equation (1.2) in the classical sense
and a and q are bounded, there exists a constant K &#x3E; 0 such that

+ 0 in Q and u = 0 on aS~ . Thus the strong maximum prin-
ciple implies the strict positivity of u in ,~ .

The proof of the statement in the fourth step is as follows. Let us
consider a sequence In % Â.1 and the corresponding solutions un of (1.2),
which exist as proved in the previous two steps. The family ~ un ~ is

bounded in S1, as we have proven; so we may extract a subsequence,
that we still denote by un converging weakly in S1 and strongly in L p + 1
to u as a consequence of the embedding theorem. Such a u is a weak sol-
ution of the equation (1.2), with A = Repeating a bootstrap argu-
ment, it is easy to check the regularity of u and consequently its strict
positivity.
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