
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

PETER V. HEGARTY
Minimal abelian automorphism groups of finite groups
Rendiconti del Seminario Matematico della Università di Padova,
tome 94 (1995), p. 121-135
<http://www.numdam.org/item?id=RSMUP_1995__94__121_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1995__94__121_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Minimal Abelian Automorphism Groups
of Finite Groups.

PETER V. HEGARTY(*)

ABSTRACT - We determine the smallest odd-order Abelian group which occurs as
the automorphism group of a finite group.

1. Introduction.

Finite (non-cyclic) groups whose automorphism group is Abelian
were first studied extensively by G. A. Miller, who wrote down in [8] a
group of order 64 whose automorphism group is Abelian of order 128.
Following the author of [3], I term a finite group G «miller» if Aut G
is Abelian. Since Inn G is a normal subgroup of Aut G and Inn G =
= G/Z( G ), a miller group is nilpotent of class at most 2. Hence, in any at-
tempt to characterize miller groups one can confine one’s attention to p-
groups. By a well-known result (see [2]), the only Abelian miller groups
are the cyclic groups. In the non-Abelian case, the smallest miller 2-
group is well-known to be the example constructed in [8]. In the odd
prime case, the question of the smallest miller p-group took much
longer to resolve. It was tackled by Earnley [3] and finally settled re-
cently by Morigi [9]. She constructed a group of order p 7 whose auto-
morphism group is Abelian of order p 12, where p is any odd prime, and
showed that no smaller miller p-groups existed.

In this paper I propose to answer the natural question running
alongside the issue of minimal miller groups-namely, «What is the or-

(*) Indirizzo degli AA.: Department of Mathematics, University College,
Cork, Ireland.
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der of a smallest Abelian group which occurs as the automorphism
group of a finite, non-cyclic, p-group?». For p = 2, the answer is G. A.
Miller’s group [8] of order 128. This is borne out by the classification,
in [5], of all the groups whose orders divide 128, and which can occur as
the automorphism group of a finite group. For p odd, it is natural to
conjecture that the smallest Abelian group with the desired property is
the one of order p 12 in Morigi’s paper. I shall prove that this is indeed
the case.

2. Notation and terminology.

Most of the notation used is standard. All groups considered are
finite.

Cent G will denote the group of central automorphisms of a group G.
A purely non-Abelian group (PN-group) is one with no Abelian di-

rect factor.

d( G ) will denote the number of elements in a minimal generating
system for G.

Gn = 1) where n E N.
Similarly, 
Zp denotes the field of integers mod p. An elementery Abelian

p-group G of rank n will be considered as a vector space of dimension n
over Zp . For a fixed of such a group, we shall asso-
ciate to each a E Aut G a matrix A = with entries in Zp such that

n

" 
-

The following piece of terminology is non-standard: I shall call two
groups G and H hypomorphic if and only if

The set of all groups hypomorphic with G I shall term a hypomor-
phism class.

3. Statement of theorem and preliminary analysis.

It is our purpose to prove the following

MAIN THEOREM 3.1. Let G be a finite non-cyclic p-group, p odd,
for which Aut G is Abelian. Then p 12 divides Aut .
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Henceforth, then, p denotes an odd prime, G a finite p-group.
If Aut G is Abelian then Aut G = Cent G (see [3], 2.2), and G is a

PN-group ( [3], 2.3). Consequently, Aut G is a p-group ( [3], 2.4). Thus, if
G is to contradict the theorem, Aut G must have order p n for some n %
~ 11. By Morigi’s result, On the other hand G ~ I divides

~ Aut G ~ I when G is miller. Thus p’ I G I 
Our first result allows us to eliminate G ~ _ ~ 11, and may be of in-

dependent interest. One may observe that the result is just a slight im-
provement upon a special case of that of Faudree [4], that the order of
every finite p-group of class 2 divides that of its automorphism group.
It is not surprising, therefore, that the proof follows precisely the ap-
proach of Faudree. The notation for the proof is taken entirely from [4],
and henceforth I will assume the familiarity of the reader with that
paper.

LEMMA 3.2. Let G be a miller p-group, p odd. Then I G I properly
divides Aut G I (1).

PROOF. Let G be a counterexample. Aut G is a p-group. Follow-
ing [4], Aut G has a subgroup T whose order is given by

it follows that

Then Faudree constructs a subgroup U of Aut G and shows that
( UT : T ) ~ in all cases. Thus, ( Aut [ G I unless n % 2. But
if n = 2, we still get G I unless d(G) = 2, which implies that G’
is cyclic i.e.: that n = 1.

Hence we can assume that G’ is cyclic, and T ~ I = I G / G’ I in this
case. We consider the same automorphisms Ji , ~’2, 7: I and i2 as did Fau-
dree, and distinguish 3 possible relationships between the quantities ta
and tb , namely

(1) The author has been able to prove this result also for p = 2. The proof is
omitted, as it would be irrelevant to the purpose of this paper.
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Suppose I) holds. Replace b to get tb = ml. Thus i 1 has or-
der mod Cent G, so Aut G Abelian + M2 . But then a I has
order kb /ml mod T, so Aut with equality possible if and
only if kb = M2 . A similar analysis shows that we must have or, having
order ml mod T, and ka = kb , ta = 1. Consequently, a2, T) is a p-
group of order 7ni I G a contradiction!

Suppose II) holds. Replace a by b -rlZ a to get ta = ml . Then í 2 must
lie in Cent G so ka ~ Then a2 , T) I will be strictly divisible by
1 G I unless kb = ml , in which case ~1 E T and I ( a 2, T~ ~ - ~ G ~ . . Since
ta = ml , it is clear that Cent G properly contains (~2 , T) unless d(G) =
= 2. In this case, a non-central autmorphism fixing ( G ’ , b ~ elementwise
is easily constructed, using Lemma 3.7 below.

Finally, suppose III) applies. z 1 E Cent G so Then, as with
I), we easily deduce that (Q1, a 2, T) I is strictly divisible by .

This completes the proof of the lemma.

Hence, we can assume that if G contradicts the theorem, 
~ 1° . My approach will be to eliminate all possible hypomorphism
classes of groups one-by-one. For most of these, straightforward appli-
cations of well-known results suffice, and no complete proofs will be
given. Some individual classes cause greater difficulty and will be dealt
with in more detail. I will require a long sequence of results from the
literature. First, I note an immediate corollary of equation (1)
above.

LEMMA 3.3. Let G be a counterexampte to the main theorem. Then
d(G’ ) ~ 3.

This follows straight from equation (1). Lemmas 3.4-3.8 are all well-
known results:

LEMMA 3.4 [10]. Let G be a PN-group, for any prime p. Then

where pk is the exponent of G/G’ and, in a cyclic decomposition of
G/G’, there occur ri factors of order pi.

Recall that in a finite Abelian p-group A, the height of an element x
is given by
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We now have

LEMMA 3.5 [1]. Let G be a class 2 p-group with

Define

where pb is the exponent of G’. Also define

where pd = min(exp Z, exp G/G’). Then CentG is Abelian if and only
if R(G) = K(G) and either

where XI is chosen from among
. In particular, RIG’ is cyclic.

LEMMA 3.6. Let G be a finite p-group. Then Aut G is not Abelian if
any of the following holds:

LEMMA 3.7 [6]. Let N be a normal subgroup of a finite group G
such that GIN is cyclic of order n. Write GIN = (Ng). Let x e Z(N)
such that gn = (gx)n . Then the map a : G - G given by

can be extended to an automorphism of G.

LEMMA 3.8 [7]. Suppose the finite group G splits over an Abelian
normal subgroup A. Then G has an automorphism of order 2 which in-
verts A elementwise.

4. Proof of main theorem.

Let G be a counterexample. We already know 
Now most of the hypomorphism classes of groups of these orders can be
eliminated by using Lemmas 3.2-3.8 above. Obviously, the number of
classes involved is far too large for detailed proofs to be given here. De-
tails may be obtained from the author if required.
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The analysis revealed a small number of classes, or collections of
similar classes, which were not amenable to such straightforward treat-
ment. I now give a list of these:

I shall eliminate the classes individually in a series of four lemmas.
Each of the groups listed will be shown to have a non-central automor-

phism. My principal tool will be the following powerful criterion, due to
Earnley [3], 3.2, for groups with homocyclic central quotient - a prop-
erty possessed by all the groups above-to possess a non-central

automorphism.

LEMMA 4.1. Consider the extension 1 ~ Z -~ G ~ G/Z -~ 1 where
G is a p-group and G/Z is a direct product of n ( n ~ 2) copies of Cpt for
some fixed t. Let T : G/Z -~ ZIZPT be the homomorphism given by
(Zx) T = Zpt xpt . Also let [, ] : G/Z x G/Z~Z be given by (Zx, Zy) [, ] =
- [x, y]. Now let a be in Aut (G/Z) and ~3 be in Aut Z.

Then G has an automorphism inducing a on G/Z and fl on Z if and
onLy if the following two diagrams commute:

We now begin the process of elimination.

LEMMA 4.2. Let G be a member of Class I. Then G has a non-cen-
tral autorrtorphism.
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PROOF. Let G be a counterexample. Write

where apn, bp, cP and dP are all in G’ . Cent G is Abelian so, by Lemma
3.5, a can be chosen to have order p"’ and so that Z( G ) _ ~ a p , G’.
Clearly, p 2 . First suppose that a may also be chosen so that
CG ( a ) BZ meets Gp . Then [a, b] = bP = 1 WLOG. We claim that c and d
can be chosen to commute. Choose both arbitrarily to begin with.
[c, d] ~ 1 by assumption. But CG (b) d) c Z = ~ as otherwise CG (b)
would be a maximal subgroup of G and a non-central automorphism of
G could be constructed by Lemma 3.7. Thus G ’ - ([b, d], [c, d]) and our
claim follows easily. Indeed, we can also assume that cP = 1 WLOG. But
if we could also choose d of order p, then G would split over the normal
Abelian subgroup (Z, a, b ~ and have a (non-central) automorphism of
order 2, by Lemma 3.8. So we can take it that x (dP ). Set

zi and dP = z2 for convenience. There exist i, j, k, 1, m, n in Zp
such that

Consider the matrices

with entries in ZP . Let a and fl be the automorphisms of G/Z and Z as-
sociated with M and N, and with respect to the bases {Za, Zb, Zc, Zd}
and f Zl, of G/Z and G’ respectively. Then one may verify that, by
Lemma 4.1, there exists an automorphism of G inducing a and f3 provid-
ed that

But (i, j ) ~ (0, 0) as otherwise CG (c) would be maximal in G and a
non-central automorphism of G could be constructed using Lemma 3.7.

Similarly, CG ( b ) is not maximal in G, so det . So choose 0

and a (unique) solution ( y, 3) to equation (12), and hence a non-central
automorphism of G, is guaranteed to exist.
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We may therefore assume that a cannot be chosen so that CG (a)BZ
meets Gp . Thus we may choose a and b so that [ a, b] = 1 and G’ =
= x (b P ). Consequently, we can choose c and d both to have order p.
It follows that and must both be contained in N =
= (Z, b, c, d). From this we easily deduce that either [c, d] = 1 or Z(N)
properly contains Z ( G ). In the former case, G splits over the Abelian
normal subgroup (Z, a, b) and has an automorphism of order 2. In the
latter case, a non-central automorphism is easily constructed using
3.7.

This completes the proof of Lemma 4.2.

We continue immediately to

LEMMA 4.3. Let G be a member of Class II. Then G has a non-cen-
tral automorphism.

PROOF. Let G be a counterexample. Write

where a p n + 1, bP and cP are all in G ’ . Cent G is Abelian so, by 3.5, we
must have a ~ I _ ~ n + 1 and Z ( G ) = G ’ If b and c could be chosen
to commute, then A = (G’, b, c) would be Abelian with G/A = 
and so G would have a non-central automorphism by 3.7. It follows that
[a, b] = 1 WLOG. If b could be chosen to have order p, then a non-cen-
tral automorphism fixing B = (Z, a, b~ elementwise could be construct-
ed using 3.7. If c could be chosen of order p, then G would split over B
and have an automorphism of order 2, by 3.8. Thus we can take it that
G’ = (bP) x (cup). Set zl = = cP and Z3 = aP . There exist i, j, k, 1 in
Zp such that

Let a be the map on G/Z associated with the matrix

relative to the basis {Za, Zb, Zc}. Let be the map defined

by

One may verify that the conditions of Lemma 4.1 are satisfied pro-
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vided the following equations hold:
.... I r

Since det I , one can readily check that a solution (y, d, E, ~) ~

~ (1, 0, 0, 1) to these equations exists in all cases. Furthermore we can
choose our solution to satisfy y # 0 and ~ ~ 0, thus guaranteeing that a
and P define (non-trivial) automorphisms of G/Z and Z respectively,
and hence the existence of a non-central automorphism of G.

This completes the proof of Lemma 4.3.

Next we have

LEMMA 4.4. Let G be a member of Class III. Then G has a non-cen-
tral automor~phism.

PROOF. Let G be a counterexample. Write

where bP and cP are all in G ’ . Cent G is Abelian so we must, by 3.5,
have a I WLOG. Let Z = z1, z2 , z3 with and G’ _
- (Zl, z2 , WLOG, there exist k, 1 in Zp such that

I distinguish two cases, according to whether [a, G] n(Z3) is trivial
or not.

So first suppose that [a, G] n (z3 ~ _ ~ 1 ~. Then there is no loss of
generality in assuming that [a, b] = 2:1, [ a, c] = z2 and [b, c] = zl’-’. .
Let a be the automorphism of G/Z associated with the matrix

relative to the basis IZa, Zb, Zc}. Let fl be the automorphism of Z de-
fined by
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One verifies easily that the conditions imposed by Lemma 4.1 re-
duce to the matrix equation

But fl is an automorphism of Z for any choice of E and 0. Hence a sol-
ution (y, d, E, ~) ~ (0, 0, 0, 0) to equation (21) is guaranteed, and G has
a non-central automorphism.

Now secondly suppose that [ac, G] is non-trivial. In this case,
there is no loss of generality in assuming that [a, b] = [ac, c] = z2
and [ b, c] = zl . Let a be the automorphism of G/Z associated with the
matrix

relative to the basis {Za, Zb, Zc}. Let fl be the automorphism of Z de-
fined by

One easily verifies that the conditions imposed by Lemma 4.1 re-
duce to the following 3 equations in the 3 unknowns a, 0, y

Notice that the first two imply the third when fl ~ 0. But there obvi-
ously exists a solution (a, ~8, y) to the first two equation for which
a ~ 0, p ~ 0. Hence G has a non-central automorphism.

This completes the proof of Lemma 4.4.

I now turn to the final and most complicated case.

LEMMA 4.5. Let G be a member of Class IV. Then G has a non-cen-
tral automorphism.

PROOF. Clearly, (G : Gp Z) ~ p 2 , and (G : CG (x)) ~ ~ro 2 for all x E G.
The case in which for all x E G is that
which causes the most dificulty, and we assume this to be the case in
what follows, until otherwise indicated. Write
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where Gp = ~G’ , b, c, d). Cent G is Abelian so, by 3.5, a can be chosen
so that I a [ _ ~ n + 1 and Z = (aP, G’. We must have Z/Zp = x

x but will find it necessary not to assume that e p E G’ . The fol-

lowing two assertions are easily verified:

(i) G has no Abelian subgroup of index p2.
(ii) Let x1 E GBZ. Let X2 E CG (x1 )B~Z, Let X3 E (x2 )BCG (Xl

Then CG (CG (Xl), x3&#x3E;-therwise stated, (CG (xl), CG (x2), CG (x3)) = G.

We divide the analysis into 2 parts, according to whether Z(Gp)BZ is
empty or not (the non-central automorphism we finally construct will
be slightly different in the two cases).

So first suppose that Z(Gp ) c Z. It is easy to see that for some g not
in We claim that a has this property
WLOG. Suppose not. Then if g has the property we must have gP E G ’ .
Let [g, b] _ [g, c] = 1. Then [ b, c] ~ 1 by assertion (i) so [ b, d] = 1
WLOG. By assertion (ii), a can be chosen so that [c, a] = 1. Let x E
E CG (d)BZ(a, c, g). Clearly x exists. But x cannot be chosen to lie in (c, g)
by assertion (ii). Therefore, we can replace a by x and we have [a, c] =
= [a, d] = 1, thus proving our claim. By similar reasoning it is easy to de-
duce that, for an appropriate choice of a, b, c, d and e, the following
commutation relations hold:

Let G’=(ZI)X(Z2) where Now there exist 

m, n, q, r, s, t in Zp such that

Let a: G/Z ~ G/Z be the mapping associated with the matrix

relative to the basis Zb, Zc, Zd, Ze}. Let be the map-
ping defined by
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a and ~i define automorphisms of their respective groups provided
y # 0. The conditions imposed by Lemma 4.1 reduce, as may be verified
by the reader, to the following set of equations:

for the seven variables y, ... , v. If det set y = 1. Otherwise,

set y = 2, say. In either case, a solution (v, 3 ) # ( o, 0) to (28) is guaran-

teed. Now CG ( d ) is not maximal in G, so det Thus when

we substitute 6 into (26), the existence of a solution (I, E) is guaran-

teed. Similarly, CG ( b ) is not maximal in G, so det , and

I I

when we substitute v into (29) the existence of a solution (Ø, p) is

guaranteed.
Hence (26)-(28) have a solution according to which a is a non-trivial

automorphism of G/Z, and we conclude that G has a non-central auto-
morphism in this case.

Secondly, suppose that Z(Gp ) ~ Z. Gp is not Abelian, by assertion
(i), so Z ( Gp ) _ ~ G ’ , b) WLOG. A series of routine calculations lead us to
conclude that a, c, d and e may be chosen so that the following commu-
tation relations hold:

Let zl and z2 be defined as before. Then there exist

i, j , k, l, m, n, q, r, s, t in Zp such that

Let a and B represent exactly the same mappings of G/Z and Z re-
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spectively as before. Once again a and ~8 define automorphisms of their
respective groups provided y # 0. This time, the conditions imposed by
Lemma 4.1 reduce to the following, slightly different, set of equa-
tions :

Now one reasons in precisely the same manner as before, to con-
clude that G possesses a non-central automorphism.

We have now dealt entirely with the case in which ( G : Gp ) _
= ( G : CG (x)) = p~ for all r g Z(G). Next, we continue to assume that
( G : Gp Z) = p 2 , but also that there exists x such that ( G : CG ( x )) _ ~ . If
x could be chosen to lie in Gp , then we could easily construct a non-cen-
tral automorphism using 3.7. Keeping the same notation for G/G’ as in
equation (24), I claim that for an appropriate choice of a, b, c, d and e,
e p E G ’ , ( G : C~ ( a )) = p and the following commutation relations hold:

In what follows I am assuming that eP E G ’ . I prove the claim in a num-
ber of stages.

Step 1. Z ( Gp ) c Z ( G ). Suppose the contrary. Gp is clearly non-
Abelian, by 3.7, so let Z ( G~ ) _ ~ G ’ , b). x (as defined above) lies outside
Gp . Then we can choose c and d so that CG (x) _ (Z, c, d, x, y) for some

Gp Z. Then CG (g ) is maximal in G for some g e (c, d ~~G ’ , and G has a
non-central automorphism by 3.7-contradiction!

Step 2. Suppose Gp i.e.: that x can be chosen so that [ x, b ] =

- [x, c] = [x, d] = 1. If xp E G’ then G/~Gp , x) = Cp~ , so G has a non-cen-
tral automorphism, by 3.7, unless n = 1, in which case a and e are inter-
changeable. This means we can choose x for a. Now [b, c] = 1 WLOG,
whence (a, b, c) is Abelian. There is some g in CG ( e ) ~Z~ a, b, c), but g
cannot lie in (b, c) by 3.7. Thus, we replace a by g to obtain [ a, b ] =
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= [a, c] = [ b, c] = [ a, e] = 1. But now it is clear that d can also be chosen
to commute with e, and the claim is established in this case.

Step 3. We must have Gp for some choice of x. Suppose not.
For a given x we can still choose b and c so that [x, b] _ [x, c] = 1. If
[b, c] = 1, proceed as in Step ~. Thus [b, d] = 1 WLOG. Let y E
E x). Routine calculations show that y and c can be chosen
to commute, whence A = (Z, x, c, y ) is a normal, Abelian, complement-
ed subgroup of G and G has an automorphism of order 2 by 3.8-contra-
diction ! Our claim regarding equation (36) is now established in full.

Now write with and z2 = ep . There exist
i, j , k, 1 in Zp such that

Let a be the automorphism of G/Z associated with the matrix

relative to the basis {Za, Zb, Zc, Zd, Ze }. Let ¡3 be the identity map on
Z. The conditions imposed by Lemma 4.1 are readily checked to reduce
to the matrix equation

for the four unknowns y, d, E, 0. The above system is underdeter-

mined, thus guaranteeing the existence of a non-trivial solution

(y, d, E, ~) ~ (0, 0, 0, 0) and consequently of a non-central automor-
phism of G.

We have now shown that Lemma 4.5 is true when (G : GpZ) = p 2 .
One proceeds in exactly the same way as above when one assumes that
(G : Gp Z) = p or that G = Gp Z. In fact, the argument simplifies in

places but, in any event, I do not think it necessary to go into any fur-
ther detail. Hence, the proof of Lemma 4.5, and consequently that of the
main theorem, is complete.
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