RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

MARIA J. FERREIRA MARCO RIGOLI RENATO TRIBUZY An extension of a result of H. Hopf to Kähler submanifolds of \mathbb{R}^n

Rendiconti del Seminario Matematico della Università di Padova, tome 94 (1995), p. 11-15

http://www.numdam.org/item?id=RSMUP_1995_94_11_0

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

An Extension of a Result of H. Hopf to Kähler Submanifolds of \mathbb{R}^n .

MARIA J. FERREIRA (*) - MARCO RIGOLI (**) - RENATO TRIBUZY (***)

In the early fifties H. Hopf, [H], proved that a constant mean curvature surface, homeomorphic to a sphere, immersed in Euclidean 3-space is a standard round sphere.

As Wente has recently shown, [W], the topological assumption on the Euler characteristic is an essential requirement.

Let M be a Kähler manifold of complex dimension m and let $f: M \to \mathbb{R}^n$ be an isometric immersion. Considering the complexified tangent and normal bundles of f we can split the second fundamental tensor α according to type as $\alpha = \alpha^{(2,0)} + \alpha^{(1,1)} + \alpha^{(0,2)}$. We denote with H the mean curvature vector.

It is trivial to see that, when M is a surface, the parallelism of H in the normal bundle can be equivalently expressed by

(1)
$$\nabla^{\perp} \alpha^{(1,1)} \equiv 0.$$

It looks thus quite natural to try to generalize the Hopf's result to higher dimensional Kähler immersed submanifolds of \mathbb{R}^n , under the assumption (1) (see Corollary below).

(*) Permanent address: Departamento de Matematica, Faculdade de Ciencias, Universidade' de Lisboa, rua Ernesto de Vasconcelos, B.C. 1 Lisboa, Portugal.

(**) Permanent address: Dipartimento di Matematica, Università di Milano, Via Saldini 50, Milano, Italy.

(***) Permanent address: Departamento de Matemática, ICE, Universidade do Amazonas, 69000 Manaus, AM, Brazil.

In order to state our theorem we need to recall a further ingredient: the notion of isotropy. This has been introduced (in the real case) by Calabi, [C], and (in the complex case) by Eells and Wood, [EW], in their work on minimal surfaces.

Let ∇ represent the covariant derivative on the pull-back of the trivial \mathbb{C}^n -bundle over \mathbb{R}^n and consider its type decomposition $\nabla = \nabla^{(1, 0)} + \nabla^{(0, 1)} = \nabla' + \nabla''$. Let \langle , \rangle denote the complex bilinear extension of the canonical inner product of \mathbb{R}^n .

We say that an isometric immersion $f: M \to S^t \subset \mathbb{R}^n$ is second order isotropic if

(2)
$$\langle \nabla^{\prime \alpha} f, \nabla^{\prime \beta} f \rangle \equiv 0$$

for $\alpha + \beta \ge 1$ and $\alpha, \beta \le 2$.

THEOREM. Let M be a compact, connected, simply connected Kähler manifold with positive first Chern class $C_1(M)$. Let $f: M \to \mathbb{R}^n$ be an isometric immersion such that $\nabla^{\perp} \alpha^{(1,1)} \equiv 0$. Then M is isometric to a Riemannian product $M_1 \times \ldots \times M_r$ of Kähler manifolds and f splits into a product of immersions

$$(3) \quad f = f_1 \times \ldots \times f_r \colon M = M_1 \times \ldots \times M_r \to \mathbb{R}^{n_1} \times \ldots \times \mathbb{R}^{n_r} = \mathbb{R}^n$$

where, for each $l \in \{1, ..., r\}$, $f_l : M_l \to \mathbb{R}^{n_l}$ is minimal is some sphere and second order isotropic.

As a consequence we have:

COROLLARY. Under the same assumptions of the theorem one has:

i) if M has codimension 1, then n = 3 and f(M) is a round 2-sphere;

ii) if M has codimension 2, then either f(M) is the product of two round 2-spheres in \mathbb{R}^6 or f(M) is a round 2-sphere in \mathbb{R}^4 .

REMARK. If the codimension of M is at least 3 there are other examples, beside round spheres, as we can see considering, for instance, the Veronese surface in $S^4 \,\subset \mathbb{R}^5$.

PROOF (of the theorem). Consider the (symmetric) 2-form

$$\omega = \langle \alpha^{(2, 0)}, H \rangle.$$

We claim that ω is a holomorphic section of $\bigotimes^2 T^* M^{(1,0)}$. Indeed, let $1 \le i, j, k \le m$ and let $\{z_i\}$ be local holomorphic coordinates on M. We

An extension of a result of H. Hopf to Kähler submanifolds of \mathbb{R}^n 13

then compute

$$\begin{split} \frac{\partial}{\partial \overline{z}_{i}} \left\langle \alpha \left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}} \right), H \right\rangle &= \\ &= \left\langle \nabla_{\overline{\partial}/\partial \overline{z}_{i}}^{\perp} H, \alpha \left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}} \right) \right\rangle + \left\langle H, \left(\nabla_{\partial/\partial \overline{z}_{i}} \alpha \right) \left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}} \right) \right\rangle + \\ &+ \left\langle H, \alpha \left(\nabla_{\partial/\partial \overline{z}_{i}} \frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}} \right) \right\rangle + \left\langle H, \alpha \left(\frac{\partial}{\partial z_{j}}, \nabla_{\partial/\partial \overline{z}_{i}} \frac{\partial}{\partial z_{k}} \right) \right\rangle. \end{split}$$

We now use (1) and the Codazzi equations

$$(\nabla_{\partial/\partial \overline{z}_i} \alpha) \left(\frac{\partial}{\partial z_j}, \frac{\partial}{\partial z_k} \right) = (\nabla_{\partial/\partial z_j} \alpha) \left(\frac{\partial}{\partial \overline{z}_i}, \frac{\partial}{\partial z_k} \right)$$

to see that the first two terms in the above sum are zero. Furthermore,

since
$$\nabla$$
 preserves type and $\left[\frac{\partial}{\partial \overline{z}_i}, \frac{\partial}{\partial z_j}\right] \equiv 0$ we have
 $\nabla_{\partial/\partial \overline{z}_i} \frac{\partial}{\partial z_j} \equiv 0.$

It follows that $\frac{\partial}{\partial \bar{z}_i} \left\langle \alpha \left(\frac{\partial}{\partial z_j}, \frac{\partial}{\partial z_k} \right), H \right\rangle \equiv 0$ proving our claim.

On the other hand, since $C_1(M) > 0$, from Yau, [Y], we know the existence of a Kähler metric on M with positive Ricci curvature. Using then a Bochner type technique one proves the non existence of non zero holomorphic sections of $\otimes^2 T^* M^{(1,0)}$ (for instance, as in Kobayashi and WU, [KW]). Hence

(4)
$$\omega \equiv 0$$

We now follow [FT]. First of all observe that $f: M \to \mathbb{R}^n$ with M compact and the parallelism of H imply that H is never zero. Secondly, (4) and (1) imply that the Weingarten operator A_H defined on TM by

$$\langle A_H X, Y \rangle + \langle \alpha(X, Y), H \rangle$$

is parallel too. Therefore, the pointwise eigenspaces of A_H define parallel distributions T^1, \ldots, T^r , orthogonal to each other, such that

$$TM = T^1 \oplus \ldots \oplus T^r.$$

Using de Rham's decomposition theorem we deduce that M can be written as a Riemannian product

$$M = M_1 \times \ldots \times M_r.$$

Furthermore, indicating with J the complex structure of M, (4) implies $J \circ A_H = A_H \circ J$ so that the subbundles T^l are invariant with respect to J. Therefore each factor M_l is Kählerian.

To show that f can be written as a product of immersions as in (3) we adapt a technique of Moore, [M]. For details see [FT].

Minimality of f_l in some sphere follows from the observation that the mean curvature vector H_l is parallel and the immersion is umbilical in the direction of H_l .

In order to check the second order isotropy of f_l the only non trivial point to verify is that

$$\langle \nabla'^2 f_l, \nabla'^2 f_l \rangle \equiv 0.$$

But, if α_l is the second fundamental tensor of f_l , this is equivalent to prove that the form

$$\psi = \langle \alpha_l^{(2,0)}, \alpha_l^{(2,0)} \rangle$$

is identically null.

We proceed as we did for ω to show that ψ is a holomorphic section of $\otimes^4 T^* M^{(1,0)}$ so that the condition $C_1(M) > 0$ implies $\psi \equiv 0$.

PROOF (of the Corollary).

i) Since M has codimension 1 and it is compact then M cannot split into a product. It follows that $f: M \to S^{2m} \subset \mathbb{R}^{2m+1}$ is a minimal isometric immersion. Compactness of M implies that M is diffeomorphic to S^{2m} , but M is Kähler and thus m = 1.

ii) Suppose now that M has codimension 2. It follows from $\langle \alpha^{(2,0)}, \alpha^{(2,0)} \rangle \equiv 0$ that the image of $\alpha^{(2,0)}$, Im $\alpha^{(2,0)}$, is orthogonal to Im $\alpha^{(0,2)}$ in the Hermitian inner product. According to the theorem we have two possibilities: either $f = f_1 \times f_2 : M_1 \times M_2 \to \mathbb{R}^6$ with $f_1(M_1)$ and $f_2(M_2)$ round 2-spheres in \mathbb{R}^3 , or $f: M^{2m} \to \mathbb{R}^{2m+2}$ is minimal in some sphere $S^{2m+1} \subset \mathbb{R}^{2m+2}$. Let us consider this latter case. Observe that $\dim_{\mathbb{R}} T^{\perp} M \otimes \mathbb{C} = 4$. We claim that $\alpha^{(2,0)} \equiv 0$. Indeed

 $\dim_{\mathbb{R}} \operatorname{Im} \alpha^{(2, 0)} = \dim_{\mathbb{R}} \operatorname{Im} \alpha^{(0, 2)}$

furtherfore Im $\alpha^{(2,0)}$ and Im $\alpha^{(0,2)}$ are orthogonal and therefore if

An extension of a result of H. Hopf to Kähler submanifolds of \mathbb{R}^n 15

 $\alpha^{(2,0)} \equiv 0$ we would have somewhere:

 $\dim_{\mathbf{R}} \operatorname{Im} \alpha^{(2, 0)} + \dim_{\mathbf{R}} \alpha^{(0, 2)} + \dim_{\mathbf{R}} T^{\perp} S^{2m+1} \otimes \mathbb{C} \ge 6$

contradiction.

Now observe that $T^{\perp}M \cap TS^{2m+1}$ is a parallel subbundle of $T^{\perp}M$ because it is orthogonal to the parallel vector field H and M has codimension 2. Let v be a unitary smooth section of $T^{\perp}M \cap TS^{2m+1}$. Then the Weingarten operator A_v is parallel and trace $A_v = 0$ because H is orthogonal to v. Moreover, since A_v is parallel, the same argument used in the proof of the theorem shows that either $A_v \equiv 0$ or f splits into a product of factors. This latter alternative is not possible because of the co-dimension assumption.

We can thus use a result of Erbacher, [E], on the reduction of codimension, to have that $f(M^{2m})$ is contained in some (affine) \mathbb{R}^{2m+1} . Hence $f(M^{2m}) \subseteq S^{2m}$ and from i) it follows that m = 1.

REFERENCES

- [C] E. CALABI, Minimal immersions of surfaces in Euclidean spheres, J. Diff. Geom., 1 (1976), pp. 111-125.
- [E] J. ERBACHER, Reduction of the codimension of an isometric immersion, J. Diff. Geom., 5 (1971) pp. 333-340.
- [EW] J. EELLS J. C. WOOD, Harmonic maps from surfaces to complex projective spaces, Advances in Math., 49 (1983), pp. 217-263.
- [FT] M. J. FERREIRA R. TRIBUZY, Kählerian submanifolds of \mathbb{R}^n with pluriharmonic Gauss maps, to appear in Bulletin de la Societé Mathématique de Belgique.
- [H] H. HOPF, Differential Geometry in the Large, LNM, 1000 (Springer, 1983).
- [KW] S. KOBAYASHI H. H. WU, On holomorphic sections of certain Hermitian vector bundles, Math. Ann., 189 (1970), pp. 1-4.
- [M] J. D. MOORE, Isometric immersions of Riemannian products, J. Diff. Geom., 5 (1971), pp. 159-168.
- [W] H. C. WENTE, Counter example to a conjecture of H. Hopf, Pac. J. Math., 121 (1986), pp. 193-243.
- [Y] S. T. YAU, On the Ricci curvature of a compact Kähler manifold and the complex Mauge-Ampere equation, I Comm. Pure Appl. Math., 31 (1978), pp. 339-411.

Manoscritto pervenuto in redazione il 7 gennaio 1994.