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03A0-Normally Embedded Subgroups
of Finite Soluble Groups.

A. BALLESTER-BOLINCHES - M. D. PÉREZ-RAMOS (*)

1. Introduction and statement of results.

All groups considered here are finite and soluble.
Let G be a group and let a be a set of primes. A subgroup H of G is

said to be a-normally embedded in G if a Hall ;r-subgroup of H is a Hall
a-subgroup of some normal subgroup of G. A Hall a-subgroup of a nor-
mal subgroup of G is a typical example of a 1l-normally embedded sub-
group of G. It is clear that if H is yr-normally embedded in G then H is
p-normally embedded in G, in the sense of [3, Definition (7.1a)], for
every prime p E 1l but the converse does not hold in general (see
example 2 of [4]). A subgroup H of G is said to be normally embedded in
G if H is p-normally embedded in G for all primes p.

Fischer, Lockett and Ti Yen (see [3, I; (7.9)]) proved that the set of
all normally embedded subgroups of a group G into which a given Hall
system of G reduces forms a sublattice of the subgroup lattice of G.
This result is an easy consequence of the following Theorem:

THEOREM (Lockett [3]). Let U and V be normally embedded sub-
groups of a group G into which a given Hall system E of G reduces.
Then UV = VU, and UV are normally embedded subgroups
of G into which T reduces.

The hypothesis «normally embedded» cannot be relaxed to simply
« p-normally embedded» in the above Theorem in order to obtain the
same result. It is enough to consider the group G = ~4 , the symmetric

(*) Indirizzo degli AA.: Departament d’Algebra, Universitat de Val6neia,
C/Doctor Moliner 50, 46100 Burjassot (Val6neia), Spain.
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group of degree 4, the Hall system

and the subgroups U = ((13)(24)) and V = ((l 2)). It is clear that U
does not permute with V. However U and V are 3-normally embedded
subgroups of G into which Z reduces.

Bearing in mind the result of Lockett, it turns out to be natural to
wonder whether the set of all .7l’-normally embedded subgroups of a
group G is a sublattice of the subgroup lattice of G, that is, if U and V
are .7l’-normally embedded subgroups of G, is it true that U f1 V and

( U, V) are x-normally embedded subgroups of G ? The answer is nega-
tive in general as the next examples show:

EXAMPLE 1. Let G = the wreath product of the cyclic
group of order 5 with the symmetric group of degree 4. The wreath
product is taken with respect to the natural representation of ~4 (of de-
gree 4). The group G is expresible as a semidirect product G = NG * ,
N fl G * = 1 where N is an elementary abelian group of order 54 and G *
is the symmetric group ~4 . N is generated by elements aI, a2 , a4 of
order 5 and (x E G * , where ix is the image of i under the
permutation x of ~ 4 ). Let U = G * and V = Un , where n = a, + a2 +

clear that U and V are R-normally embedded
subgroups of G. However (see for instance [3, A;
(16.3)]) is not -r-normally embedded in G because is isomorphic to
the symmetric group of degree 3.

EXAMPLE 2. Let X be the symmetric group of degree 4. It is
known (see [3, B; (16.3)]) that X has an irreducible and faithful X-mod-
ule W over GF(3), the finite field of 3 elements. Let G = [W]X be the
corresponding semidirect product and take yr={3}. Consider U E
E Syl2 (X) and V = Ux for some x E X - It is clear that U and V
are .7C-normally embedded subgroups of G but X = ( U, V) is not Jt-nor-
mally embedded in G.

The aim of this paper is to give some sufficient conditions for U n V
and U, V) to be R-normally embedded in G provided that U and V are
.7C-normally embedded in G.

We prove the following results:

THEOREM 1. Let,7r be a set of primes and let G be a groups. Assume
that U and V are Jt-normally embedded subgroups of G. Then U fl V is
.7l’-normally embedded in G provided that one of the following condi-
tions is satisfied:
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i) U permutes with V
’ 

ii) There exists a Hall n-subgroup of G reducing into U and V.

iii) U is a subnormal subgroup of G.

iv) u nV is a nilpotent subnormal subgroup of G.

THEOREM 2. Let n be a set of primes. Assume that U and V are n-
normally embedded subgroups of a group G. Then ( U, V) is n-normal-
ly embedded in G provided that one of the following conditions is

satisfied:

i) U permutes with V

ü) There exists a Hall system Z of G which reduces into U and V

iii) Either U or V is a subnormal subgroup of (U, V).

Combining Theorem 1.0 (ii) and Theorem 2.0 (ii), we obtain the fol-
lowing generalization of [3, 1;(7.9)].

COROLLARY 1. Let Z be a Hall system of a group G and let n be a
set of primes. If U and V are n-normally embedded subgroups of G into
which E reduces, then U fl V and (U, V) are n-normally embedded sub-
groups of G.

We shall adhere to the notation used in [3]. This book will be the
main reference for basic notation, terminology and results.

For the sake of completeness, we state two results used in proving
our Theorems. Their proofs are analogous to those [3, I; (7.3)] and [3, I;
(7.6)].

LEMMA 1. Let U be a n-normally embedded subgroup of a group
G. Let K:5 G and H , G. Then:

i) If U ~ H, then U is n-normally embedded in H.

ii) UK/K is a n-normally embedded subgroup of G/K.
iii) If K  H and H/K is n-normally embedded in G/K, then H is

n-normally embedded in G.

iv) U fl K is a n-normally embedded subgroup of G.

LEMMA 2. Let P, and P2 be subgroups of a Hall n-subgroup
of G and assume that P, and P2 are n-normally embedded in G.
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Then P1P2 = P2P1 and Pl P2 are a-normally embedded
subgroups of G.

Recall that a Hall a-subgroup H of G reduces into a subgroup U of G
if is a Hall .7r-subgroup of U.

LEMMA 3 [Theorem D [2]). Assume that U and V are R-normally
embedded subgroups of a group G. If a Hall .7r-subgroup G ¡c of G reduces
into U and V, then G,~ reduces into U f1 V.

2. The proofs.

PROOF OF THEOREM 1. (i) If UV = VU, then it follows from [1
Lemma 1.3.2] that there exist a Hall yr-subgroup Un of U and a Hall
n-subgroup Var of V such that Hall yr-subgroup of UV.
So we have that

where for any group X we denote the highest .7r-number dividing
. Consequently lunvl, , that is, U~ n V¡c is a Hall

n-subgroup of U n V. From Lemma 2.0 we deduce that U ¡c n V~ is a
n-normally embedded subgroup of G. Then it is clear that U n V is a
n-normally embedded subgroup of G.

(ii) Assume now that there exists a Hall R-subgroup G,, of G such
that G,~ reduces into both U and V, that is, U¡c = G~ fl U and Vjr = G~ n
n V are Hall .7r-subgroups of U and V respectively. By Lemma 2.0 it is
clear that Un n V¡c is a ;r-normally embedded subgroup of G.

On the other hand, it follows from Lemma 3.0 that Gn reduces into
U n V, that is, UR n VR = GR n u nV is a Hall n-subgroup of U n V.
Now it is clear that U n V is a n-normally embedded subgroup of G.

(iii) By [3, 1; (4.16)], we know that there exists a Hall n-subgroups
Gn of G reducing into V. Since U is subnormal in G, we also have that G~
reduces into U by [3, I; (4.21)]. We are now in the hypothesis of (ii) to
deduce that U n V is a n-normally embedded subgroup of G.

(iv) Since un V is a nilpotent subnormal subgroup of G, it must
F(G). Moreover U is a Jt-normally embedded subgroup of G

and so is U fl F(G) by Lemma 1.0 (iv). It is clear that U fl F(G) is sub-
normal in G. Consequently it follows from (iii) that U f1 V = U f1 V n
f1 F(G) is a n-normally embedded subgroup of G.
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REMARKS AND EXAMPLES. None of the stated hypothesis in the
Theorem 1.0 can be dispensed with in order to obtain the same result,
as the following examples show:

1) Recall Example 1. There we consider a group G with two jr-
normally embedded subgroups U and V such that U n V is not a-nor-
mally embedded in G. Notice that in this example U does not permute
with V, U is not a subnormal subgroup and there is no Hall jr-subgroup
of G reducing into both U and V. So Theorem 1.0 fails whether we do
not assume any of the hypothesis (i), (ii) or (iii).

2) We see next that in Theorem 1.0 (iv) the hypothesis that U f1 V
is a nilpotent subgroup is essential.

Consider the group G = ~3 wr C3 , the regular wreath product of the
symmetric group of degree 3 with a cyclic group of order 3. Let S1 x
x S2 x S3 be the basis group of G, where S1 = S2 == 8g = ~3 , and for each
i E ~ 1, 2, 3}, let ( bi ) E and (cm) E Syl2 (,Si ). Take.7r = 121 and the
groups U = Sl x (c2 ~ x and V = S1 X (c2 ~ x So considered,
we have that U and V are yr-normally embedded subgroups of G, !7 n V
is a subnormal subgroup of G and U n V = E3 is not nilpotent. It is clear
that U n V is not jr-normally embedded in G.

3) In Theorem 1.0 (iv) it is also necessary that U n V is subnormal
in G.

Consider the group G = ~3 wr C2 , the regular wreath product of the
symmetric group of degree 3 with a cyclic group of order 2. Let Sl x ,S2
be the basis group of G, where SI == 82 == ~3 , and for each i e {1, 2}, let
( bi ) E and (at) E such that af = a2 and bi = b2 where
C2 = (c). Take Jt = {2}, U = (oi, a2 ~ C2 and V = It is clear
that U and V are ;r-normally embedded in G is a nilpo-
tent subgroup of G which is not subnormal in G. Moreover U n V is not
Jt-normally embedded in G.

PROOF OF THEOREM 2. (i) Since UV = VU, there exist a Hall jr-
subgroup Un of U and a Hall ;r-subgroup VR of V such that U, Vn = VR Un
is a Hall jr-subgroup of UV. But is a jr-normally embedded sub-
group of G because of Lemma 2.0, and consequently UV is a-normally
embedded in G.

(ii) Let T = ( U, V) and let N be a minimal normal subgroup of G.
Arguing by induction on G ~ I and using Lemma 1.0, we may assume
that TN is a 7r-nonnally embedded subgroup of G.

If 1, we deduce the result taking N ~ CoreG ( T ).
If On, (G) ~ 1, it is enough to consider N ~ 0~, (G). In this case T is a
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n-normally embedded subgroup of G because a Hall .7r-subgroup of T is
a Hall z-subgroup of TN.

Consequently we may assume that Core (T) = I and O~~ (G) =1.
Let Z be a Hall system of G reducing into U and V and let G~ be the

Hall R-subgroup of G in E. Then GR nU = Un and are Hall

yr-subgroups of U and V respectively. Since U and V are ;r-normally em-
bedded subgroups of G, it follows by Lemma 2.0 that Un Vn = Vn Un is a
;r-normally embedded subgroup of G. Hence Un Vn is a Hall .7l-subgroup
of a normal subgroup of G, say M.

If M # 1, take N a minimal normal subgroup of G contained in M.
Since On (G) = 1, it is clear that N  URVR  T which is a R-normally
embedded subgroup of G.

If M = 1, then U and V are .7l’ -subgroups of G. So U and V are con-
tained in the Hall .7r’-subgroup of G in Z and consequently T = (!7, V) is
a Jt ’-subgroup of G. Clearly T is then a 7r-normally embedded subgroup
of G.

(iii) Assume that U is a subnormal subgroup of (U, V). We know
that there exists a Hall system of (U, V) reducing into V, 
Take a Hall system E of G such that ~ 

It is clear that E reduces into V, and since U is subnormal V),
we have that X also reduces into U. Now ( U, V) is a n-normally embed-
ded subgroup of G because of (ii).

REMARKS AND EXAMPLES.

1) Recall Example 2. There we consider a group G with two jr-
normally embedded subgroups U and V such that U, V) is not .7l-nor-
mally embedded in G.

Notice that in this example UV # VU, neither U nor V are subnor-
mal subgroups of ( U, V) and there exists no Hall system of G reducing
into both U and V. So none of the hypothesis in Theorem 2.0 can be dis-
pensed with to obtain the result.

Moreover in this example each Sylow 3-subgroup of G reduces into
U and V. So the result fails if in Theorem 2.0 (ii) we only consider a Hall
n-subgroup reducing in U and V instead of a complete Hall sys-
tem.

2) If U and V are n-normally embedded subgroups of G and U n
n V is a nilpotent subnormal subgroup of G, it is not true in general that
(U, V) is a n-normally embedded subgroup of G.

For instance let X = E3 and let V be an irreducible and faithful X-
module over GF( 7), the Galois field of 7 elements. Then 2  dimGF(7) V.
Consider G = [V1Y, the corresponding semidirect product, and U E
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E Sylg (X). Then it is clear that U is a normal subgroup of X. By a well
known theorem of Clifford VU = where each Vi is an irreducible
and faithful U-module over GF(7). So dimGF(7) Vi = 1. In particular, if

E Via, then CU (vl) = 1. Take V = UV1. If n _ ~ 7 ~, it is clear that U
and V are ;r-normally embedded in G and U fl V = = 1 is a nilpo-
tent subnormal subgroup of G. However ( U, V) is not a z-normally em-
bedded subgroup of G.

3) If U and V are ,r-normally embedded subgroups of G and
( U, V) is subnormal in G, it is not true in general that ( U, V) is a :n-nor-
mally embedded subgroup of G.

Let X = ~3 be the symmetric group of degree 3 and take G = X Wr C2
the regular wreath product of X with a cyclic group of order 2. Let
X # = Xl x X2 be the basis group of G, where XI == X2 == X. Take U a Sy-
low 2-subgroup of X, and V = Ux , where 1 ~ x E Xi - U. If ~ _ ~ 3 ~,
then U and V are z-normally embedded in G, X, = ( U, V) is subnormal
in G but X, is not .7r-normally embedded in G.

This research has been supported by Proyecto PB90-0414-C03-03 of
DGICYT, Ministerio de Educaci6n y Ciencia of Spain.
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