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On Total Differential Inclusions.

ALBERTO BRESSAN (*) - FABIÁN FLORES (**)

ABSTRACT - We show the existence of a solution to the total differential
inclusion:

assuming that the convexified problem

admits a smooth solution. The proof relies on a Baire category argument.
Some examples are given, showing that in general our hypotheses cannot be
relaxed.

1. Introduction.

Let 0 c Ran be open, and let F: 0 x R - be a continuous multi-
function. Given a map uo : R, we are concerned with the bound-
ary value problem

By a solution of (1.1), (1.2) we mean a locally Lipschitz continuous func-
tion which coincides with Uo on 8Q and satisfies (1.1) almost
everywhere.

We remark that, if each set F(x, u) is contained in some hyperplane,

(*) S.I.S.S.A., Via Beirut 4, 34014 Trieste, Italy.
(**) Dpto. de Ing. Mat., Universidad de Concepcion, Casilla 4009, Concep-

cion, Chile.
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say

then our problem is essentially overdetermined. Indeed, the first order
quasilinear P.D.E.

with boundary conditions (1.2) usually has at most one solution, which
can be obtained by the classical method of characteristics. When this
solution is found, one only has to check whether it satisfies the addi-
tional conditions (1.1).

The previous observation indicates that differential inclusions in-

volving the gradient of u, such as (1.1), may have independent interest
only when the sets F(x, u) have maximal dimension, i.e.
int co F(x, u) # 0. By K, ext K and int co K we denote here the closure,
the extreme points and the interior of the closed convex hull of a set K,
respectively. The main result of this paper establishes the existence of
extremal solutions to (1.1), assuming that the convexified problem

has a smooth solution. More precisely, one has:

THEOREM 1. Let S2 c I~n be a bounded, open set, F: S~ x I1~ H 2Rn be
a bounded continuous multifunction with compact values, uo : R
be continuous. If the boundary value problem (1.4), (1.2) has a solution
which is continuously differentiable on 0, then the inclusion

also has a solution satisfying (1.2).

The proof, given in § 2, relies on a Baire category argument similar
to [4]. As an easy consequence, this yields a local existence result:

COROLLARY 1. Let F: 0 x a continuous multificnction
with compact values. If int co F( xo , c~ ) ~ ø, then there exists a neigh-
borhood V of xo and a solutions u: of (1.5) with u(xo ) = (o.

Indeed, choosing any y E int co F( xo , w) the linear function
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is a smooth solution of (1.4), defined on some open neighborhood V of
xo . We can thus apply Theorem 1 to the set D = 

In § 3 we provide counterexamples showing that the assumptions of
Theorem 1 cannot be relaxed. In particular, denoting by relint the rela-
tive interior of a convex set, we prove that the existence of smooth sol-
utions to

or

does not guarantee the solvability of (1.1).

2. Proof of Theorem 1.

Since ext co F(x, u) = ext F(x, u), without loss of generality we can
assume that all values of F are convex. We begin by defining a set S of
piecewise continuously differentiable solutions of (1.1), (1.4):

8 * ju E e(Q , R); u = uo on 30, there exist hyperplanes Hl , ... , Hv

By assumption, S # 0. We will apply Baire’s category theorem to the
complete metric space s, where the overline denotes closure in the

topology of 
-

Because of the convexity of the values of F, every u e 8 is a Lips-
chitz continuous solution of (1.1), (1.2). In analogy with [ 1 ), we now in-
troduce the likelihood of a solution u of (1.1) by setting

with

for every compact convex K C Rn and every y E K. Some basic proper-
ties of the function h were proved in [1].
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LEMMA 1. The map ( y, h(y, K) is upper semicontinuous in
both variables; for each K, the function y - h( y, K) is strictly concave
down. Moreover, one has

where c(K) and r(K) denote the Cebyshev center and the Cebyshev
radius of K, respectively.

From [3, p.74] and the above lemma, it follows that the likelihood
functional L is upper semicontinuous on S. Therefore, for every Y) &#x3E; 0,
the set

is relatively open in S. In the next step of the proof, we will show that
each A, is also dense in S.

Let u E s, ~, ~ &#x3E; 0 be given. We will construct a function u E s such
that

By definition of s, there exist finitely hyperplanes Hl , ... , Hv such that
u is continuously differentiable and satisfies (1.4) at every point of the
open set

Let M be a constant so large that all images F(x, u) are contained in the
closed ball B( o, M). By (2.2) this implies

Using Carath6odory’s theorem and the properties of h, for every
we can find points vo , ... , v~z E int F(x, ü(x» and coefficients

po , ... , [ 0 , 1 ] such that
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Using the continuity of F and and the upper semicontinuity of h,
we can find 6 &#x3E; 0 such that

whenever I ~
Now consider the set

and its polar

Because of (2.6), both r and 1’* are bounded and contain the origin as an
interior point. By Lemma 1 in [2], there exists a continuous, piecewise
linear function w: h * H R satisfying

We then choose p &#x3E; 0 such that

The previous construction can be repeated for obtain-

ing a family of polar sets piecewise linear functions wx and con-
stants pz &#x3E; 0 as in (2.5)-(2.11). Observe that the family of sets

is a Vitali covering of the bounded open set 0 t. Applying Vitali’s theo-
rem [5, p. 109], we thus obtain a finite family of disjoint sets, say

such that
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Let wj: r~ - R be the corresponding piecewise linear functions. We
now define u : Q - R by setting

From the above definition it is clear that is eI on the complement of
finitely many hyperplanes. Since 1 (2.11) implies

hence Moreover, (2.10) and (2.9) together imply
VU(X) E F(x, u(x)) and

Since means = 0, using (2.4), (2.12), (2.13), the likelihood of u
can be estimated by

This establishes the density of each A.~ in s, and hence in s, as claimed.
Consider now the countable intersection

Since every Allk is open and dense in the complete metric space s, by
Baire’s theorem A is nonempty. If u E A, then u is a solution of (1.1),
(1.2). Moreover, L(u) = 0. The definition of L and (2.1) now imply
VU(X) E extF(x, u(x)) almost everywhere, proving the theorem.
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3. Examples.

EXAMPLE 1. On R2, consider the multifunction

Then the constant function ’W(Xl, X2) = 0 satisfies (1.6), but the inclu-
sion (1.1) does not have solutions on any open set. Indeed, if

E F(x) on some open ball a, then uxl = 0 and x2 ) _ ~(x2 ) for
some Lipschitz continuous function ~. If b) = (0, ~’ (b)) exists at
some point (a, b) E S~, then b) = (0, ~’ (b)) for all (xl, b) E 0.
Since ~’(6) ~ { -.ri, for almost every x, , the map u cannot satisfy
(1.1).

EXAMPLE 2. On R 2 , consider the circular crown given (in polar co-
ordinates) by

Using again polar coordinates, define the multifunction F: ~ H 2~2
as

Observe that the values of co F are half-circles, with nonempty interi-
or, and that the function :¡¡ = 0 is a solution of (1.7). However, the equa-
tion (1.1) has no solution on D. Indeed, if u = u( p, 0) were such a sol-
ution, the definition (3.1) of F implies 8u/80 * 0. Since u( p, 0) =
= u( p, 27r), we must have

for some Lipschitz continuous function ~:]1, 2[~R. This and (3.1) in
turn imply

We now reach a contradiction because on one hand, by (3.2), 8u/8p =
- ~’ ( p) is a function of p alone. On the other hand, by (3.3), aujap must
vary with 0.
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