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Centralizers of semisimple subgroups in
locally finite simple groups
Rendiconti del Seminario Matematico della Università di Padova,
tome 92 (1994), p. 79-90
<http://www.numdam.org/item?id=RSMUP_1994__92__79_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1994__92__79_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Centralizers of Semisimple Subgroups in

Locally Finite Simple Groups.

M. KUZUCUO011DGLU (*)

The classification of finite simple groups has led to considerable
progress in the study of the locally finite simple groups or LFS-groups
as we will call them. In [7], B. Hartley and the author studied the cen-
tralizing properties of elements in LFS-groups. LFS-groups are usual-
ly studied in two classes; infinite linear LFS-groups and infinite non-
linear LFS-groups. Infinite linear LFS-groups are the Chevalley
groups and their twisted analogues over infinite locally finite fields

[1], [2], [6] and [12]. Here we are mainly interested in non-linear

LFS-groups.
In [9] we have defined semisimple elements for LFS-groups and

studied the centralizers of these elements. Here we extend the defini-
tion of a semisimple element given in [9] to semisimple subgroups.

DEFINITION. Let G be a countably infinite LFS-group and F be a
finite subgroup of G. The group F is called a K-semisimple subgroup of
G, if G has a Kegel sequence K = ( Gi , such that ( I Mi I , =

= 1, Mi are soluble for all i and if Gi /Mi is a linear group over a field of
characteristic pi, then (pj , I F I ) = 1.

This definition is a generalization of the K-semisimple element in
[9]. In particular every element in a K-semisimple group is a K-

semisimple element in the sense of [9]. B. Hartley and the author
proved in [7], Theorem B that centralizers of K-semisimple elements in
non-linear LFS-groups involve infinite non-linear LFS-groups.

In [5], the centralizers of subgroups are studied and the following
questions are asked:

Is it the case that in a non-linear LFS-group the centralizer of every
finite subgroup is infinite?

(*) Department of Mathematics, Middle East Technical University, 06531
Ankara, Turkey.

E-mail: matmah@trmetu.bitnet.
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Does the centralizer of every finite subgroup involve an infinite
non-linear simple group?

A finite abelian group F in a finite simple group G of classical type
or alternating is called a nice group if whenever G is of type Bl or DL ,
then Sylow 2-subgroup of F is cyclic. If G is alternating group or of
type A, or Cl, then every abelian subgroup is a nice group. In particular
every abelian group of odd order is a nice group.
A finite abelian group in a countably infinite locally finite simple

group G is called a K-nice group if F is a nice group in almost all Kegel
components of a Kegel sequence K of G. We prove here:

THEOREM 1. If F is a K-nice abelian subgroup and K-semisimple
in a non-linear LFS-group G, then CG (F) has a series of finite length
in which the factors are either non-abelian simple or locally soluble
moreover one of the factors is non-linear simple. In particular CG (F)
is an infinite group.

THEOREM 2. Suppose that G is infinite non-linear and every fi-
nite set of elements of G lies in a finite simple group. Then

(i). There exist infinitely many finite abelian semisimple sub-
groups F of G and local systems L of G consisting of simple subgroups
such that F is nice in every member of L.

(ii) There exists a function f from natural numbers to natural
numbers independent of G such that C = CG (F) has a series of finite
length in which at most f( factors are simple non-abelian groups
for any F as in (i). Furthermore C involves a non-linear simple
group.

Let us recall the definition of the group theoretical classes Tn and
Tn, r given in [7].

DEFINITION. Tn, r consists of all groups (not necessarily locally fi-

nite) having a series of finite length in which at most n factors are non-
abelian simple and the rest are soluble groups, the sum of whose de-
rived lengths is at most r.

DEFINITION. Tn consist of all locally finite groups having a series of
finite length in which there are at most n non-abelian simple factors
and the rest are locally soluble.

The following Lemma is given in [7] Lemma 2.1.
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LEMMA 1. (i) The classes Tn and Tn, r are closed under taking
normal subgroups and quotients.

(ii) Let N a M a G. If G E Tn, r and M/N is soluble, then the de-
rived length of M/N is at most r.

(’iii) If M a G, M E Tm and G / MET w then G E Tm + n’

LEMMA 2. Let G be a group and A be a finite automor~phism group
of G. Let N be a normal A-invariant subgroup of G and CIN =
CGIN (A).

(i) If N ~ Z(G), then CG (A) a C and CICG (A) is isomorphic to a
direct product of subgroups of N. In particular CICG (A) is an abelian
group.

(ii) If [N, G, G... , G] = 1 with a finite number of terms of G and
C E Tn (respectively Tn, r), then CG (A) E Tn (respectively Tn, r)’

The commutator in (ii) is left normed, so that N lies in the hyper-
center of G.

PROOF (i) Let A = (aI’ an). For each i = 1, 2, ... , n define a

map

is a homomorphism with Ker oai = GC(ai)’ So CICC (ai) is isomorphic
to a subgroup of N. Then we get

Since each of is isomorphic to a subgroup of Z( G ), the group
C/CG (A ) is abelian.

(ii) Let No = N, N1 = [N, GL ... , N2 + 1 = [Ni , G]. Then Nk = 1.
We get each Ni  G and a series

Let = Ci /Ni and Ck = CG (A). Since Nk _ 1 ~ Z(G), by (i) we
have is abelian.

 Ci ; to see this we define a map ~,, for each aj E A as in the
first case: 

I

f - Ily - aT /AT
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the intersection of the kernels of these maps is Ci + 1; and Ci /Ci + 1 is
abelian. Hence CG (A) « C and by Lemma 1 we get CG (A) E Tn .

LEMMA 3. [7], 2.3) (i) If G E then G has a finite series of
length at most 2 n + 1, the factors of which comprise at most n non-
abelian simple factors, at most n + 1 soluble groups of derived length
at most r and no others.

(ii) L Tn = Tn .
Centralizers of elements in symmetric groups are well known.

LEMMA 4 ([7], 2.4). - Let G be the symmetric group Sym(l) and x be
an element of order n in G. Suppose that the cycle decomposition of x
involves ki cycles of length i ( 1 ~ i ~ nil n ). Then

where Dr denotes direct product , and Li is a permutational wreath
product Ci ? Sym of the cyclic group Ci of order i and the symmetric
group Sym (ki ) acting naturaly on ki points. If ki = 0, then Li is to be
interpreted as 1.

LEMMA 5. Let F = (aI, ... , an) be an abelian subgroup of G =
= Sym (1) and m. Then CG (F) E Tg(m) where g is a function of m
independent of G.

The proof of the Lemma 5 goes along the lines of the proof of the
Lemma 4. We replace the argument on cycles of an element of equiva-
lent length with the equivalent representations of F on the orbits of F.
But the bound in the Lemma 4 is no longer valid; the number of non-
abelian simple factors in Lemma 5 is less than or equal to the number of
subgroups of F.

Similarly this Lemma holds for alternating group Alt (1).
If 1 is sufficiently large, then CG (F) involves alternating groups of

arbitrary high orders.

LEMMA 6. Suppose that G is infinite and every finite set of ele-
ments of G lies in a finite alternating subgroup. Let F be an abelian
subgroup of order m in G. Then C = CG (F) has a series of finite length
in which the factors consist of at most g(m) simple non-abelian groups.
Further C involves a non-linear simple group.

PROOF. G has a local system consisting of alternating subgroups
and each subgroup in the local system contains F. Now by Lemma 5 we
have CGi (F) E where Gi is isomorphic to an alternating group and i
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is taken from the index set I. CG (F) becomes locally By Lemma 3
we get C E and we are done.

Now we will mention some of the facts about infinite LFS-groups.
Some of the questions about infinite LFS-groups can be reduced to
questions about countably infinite LFS-groups by using [8], Theorem
1.L.9 and Theorem 4.4. The question of whether the centralizer of a fi-
nite subgroup involves an infinite simple group or not is one of these
types of questions. If in every countably infinite non-linear LFS-group
the centralizer of every finite subgroup involves an infinite simple
group, then in any infinite non-linear LFS-group centralizer of a finite
subgroup also involves an infinite simple group. Therefore we confine
ourselves to countable LFS-groups. For countable LFS-groups [8]
Theorem 4.5 says that for every countably infinite LFS-group there
exists a Kegel sequence K = ( Gi , Ni ) where Gi’s form a tower of finite

m

subgroups of G satisfying G = U Gi , Ni  Gi , such that Gi INi is a fi-
i=1 i

nite simple group and Gi fl Ni + 1 = 1 for each i. By [8] , Theorem 4.6 if
G is an infinite linear LFS-group one can always choose an infinite sub-
sequence (Gj, Nj) such that Nj = 1 for all j.

By using classification of finite simple groups one can find that
every LFS-group is either linear or Gi /Ni are all alternating or a fixed
type of classical linear group over various fields with unbounded rank
parameter. See [7] for more details about Kegel sequences.

THEOREM 3. Let G be a connected reductive linear algebraic group
and F be a finite subgroup of order m contained in a maximal torus T
in G. Then CG (F) E where k is the number of simple components
of the semisimple part of G when it is written as a product of simple
linear algebraic groups and f is a function from natural numbers to
naturale numbers and is independent of G.

By using the above theorem we prove:

THEOREM 4. Let G be a connected simple Linear algebraic group of
classical type. Let F be a finite subgroup of order m contained in a
maximal torus of G. If F is fixed pointwise by a Frobenius automor-
phism o~ of G, then (CG (F))7 E T f~m~ where f is a function from natural
numbers to natural numbers and is independent of G.

PROOF OF THEOREM 3. Let G be a connected reductive linear alge-
braic group. Then by [10] (E 1.4) G = Z ° G ’ where ZO is the connected
component of the centre of G and G’ is the commutator subgroup. G’ is
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a connected semisimple group, moreover G ’ n Z° is a finite normal sub-
group of G. If

then by Lemma 1 the group C E Tf(m)k’ But G/Z° is a semisimple group.
Hence we may assume that G is semisimple. Then G = G1 G2 ... Gk
where Gi are simple linear algebraic groups.

Let Z = = Z(G) where Zi = Z( Gi ). Then

where Fi’s are the images of F under the projection of G onto Gi. Now if
the number of non-abelian simple factors in CGiZ/Z (Fi) is at most f(m),
then the number of non-abelian simple factors of Then

by Lemma 1 we have CG (F) E For exceptional types the connect-
ed components of the Dynkin diagram is already fixed so we may as-
sume that the simple components of the semisimple part of G are of
classical type.

Therefore it is enough to prove the following:

If G is a simple linear algebraic group of classical type, F a finite
subgroup of G of order ~ m and contained in a maximal torus T of G ,
then CG (F) E T f~m~ .

where Xa’s are the root subgroups with respect to the torus T. The
group CG (F)° is a reductive group. Since every element in F is semisim-
ple and CG (ai)ICG (ai)’ is an abelian group by [10], Corollary 4.4, we
get that CG (F)/CG (F)° is an abelian group. Now by Lemma 1, it is

enough to show that CG (F)° E 
Since the maximal torus T and the character group of the root lat-

tice are isomorphic as abelian groups, for every element ai E T, there
exists a character of the root lattice corresponding to ai .
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Let

IF is a subroot system of 0 in the sense that T is itself a root system
and if the sum of any two roots in F is a root in P, then their sum is
again in ~F. The subroot system may not be connected but it can be
written as a union of connected root systems. But by [4], page 25 every
root system determines the simple group up to isogeny and the groups
corresponding to disjoint connected components centralize each other.
Each connected component of F corresponds to a subgroup K of CG (F)o
such that K/Z( K ) is simple.

Hence in order to find the number of non-abelian simple factors of
CG (F)° it is enough to find the number of connected components of IF.

Let LE be the corresponding Lie algebra of the linear algebraic
group G over an algebraically closed field E. Then Xai acts on the Lie
algebra as for all h in the Cartan subalgebra of LE and

= for all 
Given a connected root system and non-trivial characters Xai of or-

der mi , i = 1, 2, ... , n, we need to show that the number of irreducible

components of

is less than f(m).
So the problem reduces actually to a root system problem.
In [9] we found that for each xa2 the number of connected compo-

nents of F is at most mi + 2. Here by using similar methods as in [9] we
show that the number of connected components of F is at most

f(m) = m.

We give the proof only for the type A, because the other classical
types can be handled easily by adapting the same technique.

Let s be the least common multiple of (m1, m2 , ... , mn ). Since each
is of order mi, for each i, is identity on the root lattice. So for each

r E T, is s th root of unity.
Now iet W be the root system of type Al’ By [3] page 45

where e1, e2 , ... , is an orthonormal basis of an Euclidean space of
dimension 1 + 1. The following vectors form a fundamental system
for AL

e~ ) is an s th root of unity. In order to make calculations
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L+ 1

easier we would like to extend Xa. for all i from root lattice to 2: Zei.
i 

~ 

As root lattice and 2: Zei are abelian groups and X a. is a homomor-
i=1 

phism from the root lattice to the divisible abelian group K * of the
multiplicative group of the field K, Xai can be extended from root

l

lattice to i 2: = 1 Zei . We can define x a2 ( eL + 1 ) for case Al as we please.
z = i

So Hence
Therefore is an s th root of unity for all i =

= 1, 2, ...l + 1. For each n-tuple (À 1, ... , Àn) of the sth roots of 1 the
sets

form a partition of ~ 1, 2, ..., l + 1 } into not more than s n disjoint sets.
Since the roots of AL are of the form ei - ~ j , we have

if and only if i and j belong to the same S(À 1, ..., ~ n ). Then the
set

and j belong to the same ..., ~ n ) ~

forms a subroot system of 0.
The elements ej - ek of having index in ... , À n), with the

property that k, j E 1, ..., À n) and there exists no m between 1~ and j
in S(À 1, ..., À n), form a basis d for IF.

Observe that any two roots in L1 having their indices from different
S(~ 1, ... , ~ n ) are orthogonal i.e. If i, j E ,S(~ 1, ... , ~1 n ) and n, m E
E ,S(,u 1, ... , ,u n ) where S(a 1, ... , 9 - - -, lan)g then ei - ej and
en - em are orthogonal. We also observe that the roots in 4 having their
indices from a fixed 9 An) form a connected root system. If

with j1  j2 ...  it(i), &#x3E; then ~ e - s e : t i

s, t E S(h 1, 1 ... , is a root system of type At(i) - 1 as the root system
arising from ..., Àn) contains only one type of root. Therefore
each nonempty S(À1, ... , 9 A n) with IS(À1, ..., Àn)1 ~ 2 gives a connect-
ed component and the connected components arising from different

... , are orthogonal to each other. Hence the number of irre-
ducible components of F is less than or equal to the number of nonemp-

... , with ... , 2 which is less than or equal to
sn  mn  mm.
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Hence has less than or equal to m n connected components
and each of them is of type Ak for some k.

It is clear that if the rank parameter 1 is greater than m n, then IF is
non-empty. If moreover 1 &#x3E; then CG (F) involves simple groups
of rank greater than t. Hence CG (F) involves subgroups isomorphic to
alternating groups Alt (t).

For the other cases CG (F)° is also reductive and we have CG (F)’ =
- Z ° C where C is a semisimple connected linear algebraic group and
C = Cl C2 ... Ck , where each Ci is a simple linear algebraic
group corresponding to the roots in the corresponding irreducible root
system. Hence C has a series of finite length consisting of at most f (m)
non-abelian simple factors. Since the type of the root system deter-
mines the type of the linear algebraic group up to isogeny, we know the
possible types as well.

PROOF OF THEOREM 4. Let F be the subgroup satisfying the as-
sumptions of the theorem. Then by [10] Lemma 5.9 there exists a maxi-
mal o-invariant torus T of G containing F. Then F becomes a semisim-
ple subgroup in the linear algebraic group G. So we can use all the
theory for the semisimple subgroups of linear algebraic groups. By
Theorem 3, CG(F) E Tf(m) and by previous observation CG (F)/CG (F)°
is an abelian group. It is clear that CG (F) is a-invariant. Hence CG (F)°
is a-invariant moreover CG (F)/CG (F)’ is a-invariant.

CG (F) is closed and CG (F)o is closed and connected, then by [4]
page 33

which is abelian. Since we are interested in the number of non-abelian

simple factors it is enough to find the number of non-abelian simple fac-
tors of (CG (F)’)7. The group CG (F)o is a reductive group. So CG (F)’ =
= CZO where C is a connected semisimple subgroup of G. Since Z ° and C
are o invariant and Z° is abelian, by Lemma 1 it is enough to find the
number of non-abelian composition factors of C~ . Let C = C1 C2 ... Ck
where each Ci is a simple linear algebraic Let Z =

- Z( C) = Z( Cl ) ... Z( Ck ). Then CjZ = C = C1 C2... Ck and Ci = Ci Z/Z.
By Krull Schmidt Theorem (Ci Z)Q then by taking the derived
group we see that (Ci)’7 = ((Ci Z)’ )~ _ ((CjZ)’)7 = Cj . Therefore per-
mutes the Ci’s. Let Oj, i = 1, 2, ... , r be the orbits of J on

C2 , ... , Ck I and let Ki = fl D. Hence C is the central product of
_ D E Oi 

_

K’ ... Kr . Let K be any one of the orbits of a on C say for simplicity the
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one containing C,

- t( 1)- - - i

and (C1)0" = C1, Then K is the direct product of groups Cf’ and

where cje Cl . This implies that ci = co for all i

Hence

Since o is a Frobenius automorphism, at is also a Frobenius auto-
morphism. Cl is a simple group and the fixed points of a Frobenius au-
tomorphism of a simple linear algebraic group form a group of the same
type possibly the twisted version of it. So GCI E T1. Since C =

= KlK2 ... Kr. We have where r ~ f(m). Hence as

required.

COROLLARY. Let X be a finite sample group of classical type and F
be a nice abelian subgroups of order m consisting of semisimple ele-
ments. Then Cx (F) E T f~m~ .

PROOF. Let X be a simple group of classical type and F be an
abelian subgroup as above. We may assume that X = where G
is a linear algebraic group of adjoint type and J is a Frobenius automor-
phism of G. Then F becomes an abelian subgroup of commuting
semisimple elements of G. Now by [10], Theorem 5.8(c) and 5.11 there
exist a maximal torus of G containing F. By [10], Corollary 5.9 there
exists a o-invariant maximal torus of G containing F. Then 
= CG (F) = n OP’(G(j).NowbyTheorem3,Theorem4
and Lemma 1 we have the result.

PROOF OF THEOREM 2. If all finite subgroups are contained in an
alternating group, then every finite subgroup is semisimple and by
Lemma 6 we are done. Hence we may assume that, all finite subgroups
are contained in linear groups of fixed classical type. Now if there
exists a prime p such that every finite subset of G is contained in a fi-
nite simple group of fixed classical type over a field of characteristic p,
then F can be chosen as any abelian subgroup of G such that p does not
divide in case simple groups of type BL or D, we choose F abelian
with cyclic Sylow 2-subgroup. If there exists no such a prime p, then
each prime appears only finitely many times as a characteristic of the
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field. Now choose any abelian subgroup F of G, let and consid-
er lpi I pi I ml.

Since each pi appears only finitely many times we may discard
finitely many of the Gi’s and obtain a local system in such a way that
F 5 Gi for all i where i is in some index set I and F is semisimple in
every member Gi of the new local system. If necessary we take a sub-
group of F with cyclic Sylow 2-subgroup. Now by Corollary we have
Ci = CG2 (F) E T f~m~ for all i. Now using Lemma 3 C E Hence we
are done.

PROOF OF THEOREM 1. Let F be a K-nice abelian subgroup and
K = (Gi, Mi ) be the given Kegel sequence of G. If necessary by passing
to a subsequence, we may assume that Gi /Mi are all alternating or all
belong to a fixed classical family. Then either Theorem 4 applies and
GGi/Mi (F) E T f~m~ or Lemma 4 applies and CGi/Mi (F) E Since

(IMil, IFI)=1 we get in the first
case and in in the second case. By assumption M/s are soluble
hence by Lemma 1 either CGi (F) E T f~m~ for all i or CGi (F) E Tg(m) for all
i. By Lemma 3 we get CG (F) e Tf(m) or 

Since CGi (F) involves alternating groups of unbounded orders and
CG (F) has a series of finite length in which each factor is either non-
abelian simple or locally soluble, one of the factors of the series of
CG (F) must be non-linear.

We may extend Theorem 1 to somewhat more general LFS-groups.
This will be the extension of [7] Theorem B ’ from a single semisimple
element to an abelian subgroup consisting of semisimple elements.

THEOREM 5. Let G be a non-Linear LFS-group and F be an
abelian subgroup of order m in G. Let n be the set of prime divisors of
the order of F. Suppose there exists a Kegel sequence K = (Gi , Ni) of G
such that F is nice for all Kegel components Gi INi and

(i) soluble.

(ii) hypercentral in Gi.
(iii) Gi /Ni is either an alternating group or a classical group de-

fined over a field of characteristic not in 7r.

Then CG (F) belongs to T f~m~ and involves a non-linear simple
group.

We omit the proof as the technique is similar to the proof of Theo-
rem 1.
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