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Generating Numbers for Wreath Products.

C. DAVID (*)

The aim of this paper is to prove the following theorem.

THEOREM. For every positive integer m there exists a group A with
d(A) = m and a cyclic group B such that d(A wr B) = 2.

Here, as always, d stands for the minimum number of genera-
tors.

Our notation for calculating in wreath products is as follows. If G, H
are groups, the wreath product, G wr H, is a splitting extension of the
base group G * (which is isomorphic to the restricted direct product of
H I copies of G) by a group isomorphic to H, G fl Gh where
Gh = G and is the isomorphism.  " 

The action of H on G * is the usual one:

For ease of notation, we denote the identity element of H by ê. We also
note that for x, y E G and m, n E H with 7% # n then xm yn = 

If G = A wr B then G/G ’ = A/A’ x B/B ’ , so that examples will be
easier to find when A is perfect. (In any case we will need d(A/A’ ) ~
~ 2).

The proof of the theorem is in two parts. In the first, Lemma 1, we
show that if d(A) = m, d(B) = 1 and A =  « ~2~ , ... a ~~~ ~ with A
perfect and the orders o(a ~ 1 ~ ), o(a ~2~ ), ... o(a ~m~ ) co-prime and B =
= (z : z m -1 = 1), then d(A wr B ) = 2. In the second part we show that
such an A exists for each m, using results of P. Hall [1] on direct pow-
ers of simple groups.

LEMMA 1. Let , ... « ~m~ ~ be a perfect group, where

(*) School of Mathematics, University of Wales, College of Cardiff, Sen-
ghennydd Road, Cardiff CF2 4AG.
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a cyclic group of order m - 1. Then d(AwrB) = 2.

Let H = (x, y), where

We shall prove that A wr B = H. Firstly, as

pressed in terms of x. But

and in the same way

belong to H, and therefore so do all commu-

A similar argument applies to the commutators

Next we show that (a Em&#x3E; ) -1 [a ~’~ , is a product of commutators
and elements each of which is in H.

The resulting product is

Since A = (Cl (1), ..., this means that H contains AJ . But AE is
perfect so that A~ is contained in H. As y = and E H we see
that z is in H. So ~AE , z ) is contained in H, that is H = A wr B, so that
d(A wr B ) = 2 .
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We now have to show that we can find an .
with A perfect, o(« ~2~ ), ... , o(« ~m -1~ ) co-prime and d(A) = m.
We look at the direct product Ap of n alternating groups Ap , choosing n
and p so that = m.

To obtain the general result we have found it helpful to construct a
set of co-prime numbers, as follows.

Set ao = 2, a1 = 3, and for n ~ 2, an + 1 = + 1.
We use the following two results about this sequence. The proof of

the first of these is elementary and we omit it.

LEMMA 2.

LEMMA 3. (1 + not a proper divisor of an , for every n
and k.

PROOF. By definition, an = an - 1 (an - 1 - 1) + 1. If ( 1 + kan _ 1 ) is a
proper divisor of an , then an = + kan - 1) for some t &#x3E; 1 and

k  an _ 1 - 1. Thus an _ 1 ( an -1 - 1 ) + 1 = t( 1 + kan _ 1 ) and hence
We have therefore t = ran - 1 + 1 for some integer

r&#x3E; 0.
So

But all the terms are positive so there is a contradiction, and we con-
clude that 1 + kaan - 1 is not a proper divisor of an .

We now return to our construction of the direct product Ap of n al-
ternating groups Ap . We set our p to be am, the m-th member of our se-
quence of co-prime numbers. Consider the following elements of Ap
written as strings in the usual way:
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Here for 1 ~ k ~ n, a 1k is an 

a 2k is the product of ( am - am -1-cycles ,

a 3k is the product of (am - l)/am - 2 am - 2 -cycles ,
........................................................................

is the product of (am - 1)/7 7-cycles ,

amk is the product of ( am - 3)/2 2-cycles and a single 3-cycle .

(Note that a~ is constructed in a different way from the others.)

Let 4 be the set of all columns There are

such columns. We shall show later that the elements of each column

generate Ap ; we assume that at this stage.
The authomorhpism group Aut Ap = ,Sp acts on 4 by the rule

The number of elements in each Sp-orbit is at most so the number
of orbits is at least

So the number of Sp-inequivalent columns is at least

We now use an application of results in a paper of P. Hall [1] which are
used similarly in a paper of James Wiegold [2].

For any finite group G, let §n (G) denote the number of m-bases of
G, that is, ordered m-tuplets (xl , X2, ... xm ) of elements of G that gen-
erate G. Two m-bases are equivalent if there is an automorphism of G
taking one to the other preserving order. This defines an equivalence
relation, and the number h(m, G) of equivalent classes is

since Aut G permutes the m-bases regularly.
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Hall in [1] shows the following result.
For every finite group G and every integer m ~ 1

Here the sum is taken over all subgroups of G, and ,u is the Möbius
function of G given by the rules: ~(G) = 1, and
proper subgroup H of G. ~

So we have

For non-abelian simple G, it is shown in [1] that h(m, G) is equal to
the greatest number 1 for which the 1-th direct power of G can be

generated by m elements. This means, for example, that as ~2 (A5 ) = 19
then the direct product of nineteen A5’s can be generated by two ele-
ments but not the direct product of twenty. In our case G = Ap , and we
see that if the direct product of n groups isomorphic to Ap can be gener-
ated by ( m - 1) elements, then the maximum value of n is

If the direct product of n groups isomorphic to Ap is to be generated
by m elements, and not less than m, then n must be greater than

(1/|Aut Ap|) E u(H)
But I and so, showing that n is

greater than will be sufficient for our

needs.
It can be shown that n ~ «am !)/2)m -1 /am! if Ap can be generated

by (m - 1) elements. To show that = m, it is enough to show
that

or equivalently
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The numerator of the fraction on the left hand side has am factors.
The denominator has

Using Lemma 2 we can show that the number of factors in the de-
nominator is less than the number of factors in the numerator.

So the factors of the denominator can be paired with a subset of the
factors of the numerator so that each numerator factor is at least equal
to its paired denominator factor. This shows that the left hand side is
greater than 1, which is more than enough. ,

We now have to show that every column will generated Ap . *

To do this we shall show that the entries generate a primitive sub-
group of Ap containing a 3-cycle. Theorem 13.3 of Wielandt [3] then
completes the proof.

Let x be an am-cycle and y be any product of 
am - -cycles in A~ .

Then (x, y) is certainly transitive and we shall show that it is

primitive.
Let T be a block containing the point which is not moved by y, so

Ty = T. Let r be the number of cycles in y that contain elements of T.
So T contains exactly ( 1 + elements.

So for imprimitivity we must have (1 + as a proper divisor
of am, But Lemma 3 shows that this is not so and therefore the group
~x, y~ is primitive.

The generating m-tuple is such that

is an am cycle,

((21k,OC2k) is primitive, and

(a mk )2 is an three-cycle.

This shows that the m-tuple generates Ap.
So we have m elements of co-prime orders generating the genuinely

m-generator group A’ which is perfect.

I thank Prof. J. Wiegold for suggesting the problem and for his in-
valuable help and encouragement.



77

REFERENCES

[1] P. HALL, The Eulerian functions of a group, Quart. J. Math. (Oxford), 7
(1936), pp. 134-151.

[2] J. WIEGOLD, Growth sequences of finite groups, J. Austral. Math. Soc., 17,
pp. 133-141.

[3] H. WIELANDT, Finite Permutation Groups, Lectures, University of Tübin-
gen (1954/55); English trans., Academic Press, New York (1964).

Manoscritto pervenuto in redazione il 21 gennaio 1993
e, in versione definitiva, il 22 marzo 1993.


