RENDICONTI del Seminario Matematico della Università di Padova

MARTA MORIGI On *p*-groups with abelian automorphism group

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p. 47-58

http://www.numdam.org/item?id=RSMUP_1994_92_47_0

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 92 (1994)

On *p*-Groups with Abelian Automorphism Group.

MARTA MORIGI (*)

Introduction.

In this paper we give an answer to the following question: «Which is the smallest order of a non cyclic *p*-group whose automorphism group is abelian?» (here *p* is a prime number). For p = 2 the answer is already well known; namely in 1913 G. Miller explicitly constructed a group of order 2^6 with the property stated above [5]. For $p \neq 2$ the problem was investigated mainly by B. Earnley who proved that no non-cyclic *p*-groups of order less or equal to p^5 have abelian automorphism groups ([1], p.30). In a previous paper Jonah and Konvisser had stated that there exist some groups of order p^8 , $p \neq 2$, whose automorphism groups are abelian of order p^{16} [4] and afterwards B. Earnley generalized this result by constructing a family of groups of order p^{2+3n} with the given property, for each natural number $n \geq 2$ [1].

After these achievements, the unsolved problem was actually whether there existed a non-cyclic group G whose automorphism group is abelian and such that $p^6 \leq |G| \leq p^7$. In this paper the answer is obtained in two steps:

— in the first section we prove that there exist no groups of order p^6 whose automorphism groups are abelian,

— in the second section we give the example of a group of order p^7 whose automorphism group is abelian. This group is special, is generated by 4 elements and is the smallest of an infinite family of groups of order p^{n^2+3n+3} , where n is a natural number.

(*) Indirizzo dell'A.: Dipartimento di Matematica Pura e Applicata, Università di Padova, via Belzoni 7, 35131 Padova.

Notation and preliminary results.

The notation used is standard. In the whole paper if G is a group Z = Z(G) will denote its center, if no ambiguity can arise.

Aut_C $G = \{ \alpha \in Aut G | \alpha \text{ induces the identity on } G/Z(G) \}$ is the group of central automorphisms of G.

 $C_G(S)$ is the centralizer of S in G, if S is a subset of G.

 $\Omega_1(G) = \langle y \in G | y^p = 1 \rangle$, if G is a p-group.

A PN group is a group with no non-trivial abelian direct factors.

Z/pZ is the field with p elements and if $r \in Z/pZ$, $r \neq 0$ then 1/r will denote its inverse.

In the whole paper, we shall often represent the automorphisms of an elementary abelian *p*-group by matrices. Infact such a group is a vector space over the field $\mathbb{Z}/p\mathbb{Z}$ so that, once we have fixed a basis $\{x_i \mid i = 1, ..., n\}$, we can associate to each $\alpha \in \text{Aut} G$ the matrix A = $= (a_{ij})_{i,j=1,...,n}$ with entries in $\mathbb{Z}/p\mathbb{Z}$ satisfying $x_i^{\alpha} = \prod_{j=1}^n x^{a_{ij}}$.

We collect in the following lemmas some known results which will be used in the sequel.

LEMMA 0.1. Let G be a group of class 2. For all $x, y, w \in G, m \in \mathbb{Z}$ and $n \in \mathbb{N}$ we have:

- (i) [x, yw] = [x, y][x, w],
- (ii) [xy, w] = [x, w][y, w],
- (iii) $[x, y^m] = [x^m, y] = [x, y]^m$,
- (iv) $(xy)^n = x^n y^n [y, x]^{n(n-1)/2}$.

PROOF. See [3], p. 253.

LEMMA. 0.2. If G is a PN group

$$|\operatorname{Aut}_{C} G| = \prod_{i=1}^{k} |\Omega_{i}(Z)|^{r_{i}}$$

where p^k is the exponent of G/G' and r_i factors of order p^i occur in the decomposition of G/G' as direct product of cyclic groups.

PROOF. See [6].

LEMMA 0.3. Let G be a finite non-abelian PN group such that G' = Z(G). Then $\operatorname{Aut}_C G$ is abelian. Moreover if $\varphi \in \operatorname{Aut} G$ the function f given by: $g^f = g^{-1}g^{\varphi}$ is a homomorphism of G in Z and we have $g^{\varphi^k} = g(g^f)^k$.

On *p*-groups with abelian automorphism group

PROOF. See [1], 7-8.

LEMMA 0.4. The group of central automorphisms of a p-group, when p is odd, is a p-group if and only if G is a PN group.

PROOF. See [6].

LEMMA 0.5. Consider the extension: $1 \to Z \to G \to G/Z \to 1$ where G is a p-group and G/Z is a direct product of $n \ge 2$ cyclic groups all of the same order p^t . Let T: $G/Z \to Z/Z^{p^t}$ be the homomorphism given by: $\bar{x}^T = x^{p^t}Z^{p^t}$, where $xZ = \bar{x}$, and let $[\![,]\!]: G/Z \times G/Z \to Z$ be defined by: $[\![\bar{x}, \bar{y}]\!] = [x, y]$, where $xZ = \bar{x}$ and $yZ = \bar{y}$ (note that neither map depend on the choice of representatives in G). Now let $(\alpha, \beta) \in \operatorname{Aut} G/Z \times \operatorname{Aut} Z$. Then there exists an automorphism of G which induces α on G/Z and β on Z if and only if the following two diagrams commute:

$$\begin{array}{cccc} G/Z \times G/Z & \xrightarrow{\llbracket, \rrbracket} & Z & & G/Z & \xrightarrow{T} & Z/Z^{p^{t}} \\ & & \downarrow^{\alpha \times \alpha} & & \downarrow^{\beta} & & \downarrow^{\alpha} & & \downarrow^{\overline{\beta}} \\ G/Z \times G/Z & \xrightarrow{\llbracket, \rrbracket} & Z & & G/Z & \xrightarrow{T} & Z/Z^{p^{t}} \end{array}$$

where $(zZ^{p^{t}})^{\bar{\beta}} = z^{\beta}Z^{p^{t}}$.

PROOF. See [1], p. 19.

1. – We show that there exists no non-abelian group of order p^6 whose automorphism group is abelian. (Here, and in the whole paper, p is an odd prime.) The outline of the proof is the following: we first analyze the structure which such a group should have and then we come to a contradiction. We start with the following

OBSERVATION 1.0. If G is a group such that Aut G is abelian then every automorphism of G is central; so in order to prove that the automorphism group of a given group G is not abelian it suffices to show that there exists a non-central automorphism.

The proof follows immediately from the fact that the group of central automorphisms is the centralizer of Inn G in Aut G.

We also need the following result, proved by B. Earnley.

LEMMA 1.1. If G is a non-cyclic p-group such that $\operatorname{Aut} G$ is abelian then:

(i) Z(G) and the Frattini subgroup $\Phi(G)$ of G cannot have cyclic intersection.

(ii) If $|G| = p^6$ then G/Z is elementary abelian of rank 4.

PROOF. See [2], pp. 16 and 48.

PROPOSITION 1.2. Let G be a non-abelian p-group of order p^6 such that Aut G is abelian. Then Z and G/Z are elementary abelian of rank 2 and 4 respectively and $Z = \Phi(G)$. Furthermore, a maximal abelian subgroup of G has order p^4 .

PROOF. By the Lemma above G/Z is elementary abelian of rank 4 and Z is not cyclic, so it must be elementary abelian of rank 2. Then we have: $\Phi(G) \leq Z$, as G/Z is elementary abelian, and it cannot be a proper inclusion because otherwise $\Phi(G) \cap Z$ would be cyclic, contradicting the Lemma above. Let A be a maximal abelian subgroup of G; Z is contained in A and the inclusion is proper because $\langle g, Z \rangle$ is abelian for all $g \in G \setminus Z$; hence $|A| \geq p^3$. Assume $|A| = p^3$ and take $a \in A \setminus Z$, so that $A = \langle a, Z \rangle$. Since $G' \leq Z$, we have $|[a, G]| \leq p^2$, $|G: C_G(a)| \leq p^2$ and there exists $x \in G \setminus A$ such that [x, a] = 1. Then $\langle a, x, Z \rangle$ is abelian and A is properly contained in it, contrary to the assumptions. Thus $|A| \geq$ p^4 . Assume $|A| = p^5$. Hence $G = A \langle y \rangle$ for some $y \in G \setminus A$ and as we have $|G: C_G(y)| \leq p^2$ it follows that $|A \cap C_G(y)| \geq p^3$ and there exists an element $x \in (A \cap C_G(y)) \setminus Z$. Anyway A is abelian and if $x \in A$ centralizes y it centralizes every element of G, hence $x \in Z$, contrary to the assumption. Since G is not abelian we have $|A| \neq p^6$; hence $|A| = p^4$, as we wanted to prove.

PROPOSITION 1.3. Let G be a group of order p^6 such that Z and G/Z are elementary abelian of rank 2 and 4 respectively and assume $Z = \Phi(G)$. If there exists an elementary abelian subgroup A of G of order p^4 , then Aut G is not abelian.

PROOF. By Proposition 1.2 *G* cannot have abelian subgroups of order p^5 , thus $Z \leq A$. As $|G'| \leq p^2$ we have $|[A, g]| \leq p^2$ for all $g \in G$; moreover $[A, g] \neq 1$ for all $g \in G \setminus A$ because *A* is maximal abelian. There are two cases:

(i) There exists $b_1 \in G \setminus A$ such that $|[A, b_1]| = p$.

Hence $|[A: C_A(b_1)]| = p$ and there is $a_1 \in A \setminus Z$ such that $[a_1, b_1] = 1$. Put $A = \langle a_1, a_2, Z \rangle$ and $G = \langle a_1, a_2, b_1, b_2 \rangle$. Let α be the automorphism of G/Z associated to the matrix

(1	0	0	0]
0	1	0	0
$ \begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix} $	0	1	0 0 0 1
1	0	0	1)

referring to the basis $\{a_1Z, a_2Z, b_1Z, b_2Z\}$ and let β be the identity of Z. Then by Lemma 0.5 G has an automorphism γ which induces α on G/Z and β on Z; γ is not central and by the observation 1.0 Aut G is not abelian.

(ii) For all $b \in G \setminus A$ we have [A, b] = Z.

Consider $b_1 \in G \setminus A$; hence $C_G(b_1) \cap A = Z$ and $|G: C_G(b_1)| = p^2$. Put $C_G(b_1) = \langle b_1, b_2, Z \rangle$; thus $G = \langle A, b_1, b_2 \rangle$ and $[A, b_1] = [A, b_2] = Z$. Consider $a_1 \in A \setminus Z$; as $[A, b_1] = Z$, there exists $a_2 \in A$ such that $[a_2, b_1] = [a_1, b_2]$.

We now prove that $a_2 \notin \langle a_1, Z \rangle$.

Deny this statement and assume $a_2 = a_1 z$, with $z \in Z$; by Lemma 0.1 we have $[a_2, b_1] = [a_1 z, b_1] = [a_1, b_1]$, hence $[a_1, b_1][a_1, b_2]^{-1} = 1$, that is $[a_1, b_1b_2^{-1}] = 1$.

It follows that $|[A, b_1 b_2^{-1}]| \leq p$, contrary to the assumptions. Hence $G = \langle a_1, a_2, b_1, b_2 \rangle$.

Let α be the automorphism of G/Z associated to the matrix

1)	0	0	0)
0	1	0	0
$\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}$	0	1	0 1
lo	1	0	1]

referring to the basis $\{a_1Z, a_2Z, b_1Z, b_2Z\}$ and let β be the identity of Z. By the same argument as before the result follows.

PROPOSITION 1.4. Let G be a group of order p^6 such that Z and G/Z are elementary abelian of rank 2 and 4 respectively and assume $Z = \Phi(G)$. If G has no elementary abelian subgroups of order p^4 then Aut G is non-abelian.

PROOF. G^p is contained in Z, so it has order at most p^2 and we have $|\Omega_1(G)| \ge p^4$. From the assumptions it also follows that for all $x, y \in \Omega_1(G) \setminus Z$ such that $xZ \ne yZ$ we have $[x, y] \ne 1$. If $A = \langle x, y, Z \rangle$ we have $A = E \times \langle z \rangle$, where $z \in Z$ and $E = \langle a_1, a_2, u | [a_1, a_2] = u, [a_1, u] = [a_2, u] = 1, a_1^p = a_2^p = 1 \rangle$.

There are two cases:

(i) There exists $b_1 \in G \setminus A$ such that $[A, b_1] = 1$.

Put $G = \langle A, b_1, b_2 \rangle$; then there are $r_1, r_2, s_1, s_2 \in \mathbb{Z}/p\mathbb{Z}$ such that $a_1^{b_2} = a_1 u^{r_1} z^{s_1}$ and $a_2^{b_2} = a_2 u^{r_2} z^{s_2}$.

If $s_1 \neq 0$ we may assume that $s_2 = 0$ (take $k \in \mathbb{Z}/p\mathbb{Z}$ such that $s_2 = s_1 k$ and replace a_1, a_2, u with $a'_1 = a_1, a'_2 = a_1^{-k} a_2$ and $u' = [a'_1, a'_2]$).

Let α the automorphism of G/Z associated to the matrix

<u>۱</u>	1	0	0)
$ \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix} $	1	0	0 0 0 1
0	0	1	0
0	$-r_{2}$	0	1]

referring to he basis $\{a_1Z, a_2Z, b_1Z, b_2Z\}$ and let β be the identity of Z. Then by Lemma 0.5 there is a non-central automorphism γ of G which induces α on G/Z and β on Z and the result follows from the observation 1.0.

If $s_1 = 0$ we come to the same conclusions by replacing the preceding matrix with

1 }	0	0	נט
1	1	0	0
0	0	1	0
$\begin{bmatrix} 1\\1\\0\\r_1\end{bmatrix}$	0	0	1J

(ii) For all $b \in G \setminus A$ we have $[A, b] \neq 1$, that is $C_G(A) = Z$.

We shall now show that in this case $\Omega_1(G) = A$. A is contained in $\Omega_1(G)$ by definition of A and assume that the inclusion is proper. Hence there is $b \in \Omega_1(G) \setminus A$ and by the same argument as in the preceding case there is $a \in A \setminus Z$ such that $a^b = au^r$, $r \in \mathbb{Z}/p\mathbb{Z}$. Take $c \in A$ such that $[a, c] = u^r$ and put $b' = bc^{-1}$; we have [a, b'] = 1, $b' \in G \setminus A$ and $(b')^p = (bc^{-1})^p = b^p = 1$ (Lemma 0.7), but this contradicts the fact that G has no elementary abelian subgroups of order p^4 . Hence $A = \Omega_1(G)$ and A is characteristic in G.

Put $G = \langle A, b_1, b_2 \rangle$ and assume $b_1^p = b_2^{rp}$. By Lemma 0.1 we have $(b_1 b_2^{-r})^p = 1$ and so $b_1 b_2^{-r} \in (G \setminus A) \cap \Omega_1(G)$, which contradicts the fact that $A = \Omega_1(G)$. Hence $\langle b_1^p \rangle \neq \langle b_2^p \rangle$.

We claim that it is possible to choose the generators of G in order to have:

$$G = AB, \qquad A = (\langle a_1, a_2, u | [a_1, u] = [a_2, u] = 1,$$

$$a_1^p = a_2^p = 1, [a_1, a_2] = u \rangle) \times \langle z \rangle;$$

$$B = \langle b_1, b_2 \rangle; \qquad b_1^p = u^k; \qquad b_2^p = z; \qquad [a_1, b_1] = [a_2, b_2] = z;$$

$$[a_1, b_2] = [a_2, b_1] = 1; \qquad [b_1, b_2] = u^{\varepsilon} z^{\eta}; \qquad \xi, \eta \in \mathbb{Z}/p\mathbb{Z};$$

$$G/Z = \langle a_1Z \rangle \times \langle a_2Z \rangle \times \langle b_1Z \rangle \times \langle b_2Z \rangle; \qquad Z = \langle u \rangle \times \langle z \rangle.$$

Up to now the situation is the following:

$$egin{aligned} A &= \langle E
angle imes \langle z
angle \lhd G \;; & A' = \langle u
angle ; & G = \langle A, \, b_1, \, b_2
angle ; \ Z &= \langle b_1^p
angle imes \langle b_2^p
angle ; & B = \langle b_1, \, b_2
angle ; & B \cap A = Z \;. \end{aligned}$$

Take $b \in B$; b induces an automorphism of the elementary abelian group A/A' which in turn determines a matrix of the type:

$$\begin{bmatrix} 1 & 0 & s \\ 0 & 1 & r \\ 0 & 0 & 1 \end{bmatrix}$$

referring to the basis $\{a_1A', a_2A', zA'\}$. In this way we produce a homomorphism

$$\phi \colon B \to S = \left\{ \begin{bmatrix} 1 & 0 & s \\ 0 & 1 & r \\ 0 & 0 & 1 \end{bmatrix} \mid r, s \in \mathbb{Z}/p\mathbb{Z} \right\}.$$

If $b \in \operatorname{Ker} \phi$ we have $a_1^b = a_1 u^s$, $a_2^b = a_2 u^r$ for some $r, s \in \mathbb{Z}/p\mathbb{Z}$, hence $a^{a_i^{-r}a_2^s} = a_i^b$ with $i = 1, 2; a_1^{-r}a_2^s b^{-1} \in C_G(A) = \mathbb{Z}$ and $b \in A \cap B = \mathbb{Z}$. Since $\mathbb{Z} \leq \operatorname{Ker} \phi$ trivially, we have $\operatorname{Ker} \phi = \mathbb{Z}$, $|B^{\phi}| = |B/\operatorname{Ker} \phi| = p^2 = |S| = and \phi$ is surjective.

So we can assume
$$b_1 \in \phi^{\leftarrow} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $b_2 \in \phi^{\leftarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

We have $a_1^{b_1} = a_1 z u^{r_1}$; $a_2^{b_1} = a_2 u^{r_2}$; $a_1^{b_2} = a_1 u^{r_3}$; $a_2^{b_2} = a_2 z u^{r_4}$, with $r_i \in \mathbb{Z}/p\mathbb{Z}$ for i = 1, ..., 4. Multiplying b_1 and b_2 for suitable elements of A we can arrange things in order to have $[a_1, b_1] = [a_2, b_2] = z$ and $[a_i, b_j] = 1$ if $i \neq j$. Hence $[A, B] = \langle z \rangle$. Since $Z = \langle u \rangle \times \langle z \rangle = B^p$ there are $c_1, c_2 \in B$ such that $c_1^p = u$; $c_2^p = z$ and $B = \langle c_1, c_2 \rangle$.

Consider $R = \{ \alpha \in \operatorname{Aut} B | b^{\alpha} b^{-1} \in \langle z \rangle \forall b \in B \}$ and let $\psi: A \to R$ be the homomorphism which associates to each $a \in A$ the inner automorphism induced by a on B. Ker $\psi = C_A(B) = Z$, hence $|A^{\psi}| = |A/Z| = p^2$.

There is also a bijection $R \to \text{Hom}(B, \langle z \rangle)$ which associates to each $\alpha \in R$ the homomorphism f defined by $x^f = x^{\alpha} x^{-1}$.

Thus $|R| = |\text{Hom}(B,\langle z \rangle)| = p^2$ and ψ is surjective, that is the automorphisms of B which induce the identity on $B/\langle z \rangle$ are the restrictions to B of the inner automorphisms induced by the elements of A.

It is easy to check that the functions α_1, α_2 defined by: $c_1^{\alpha_1} = c_1 z^{-1}, c_2^{\alpha_1} = c_2, c_1^{\alpha_2} = c_1, c_2^{\alpha_2} = c_2 z^{-1}$ extend by linearity to automorphisms of *B* which belong to *R*; hence there are $a'_1, a'_2 \in A$ such that $c_1^{a'_1} = c_1 z^{-1}; c_2^{a'_2} = c_2 z^{-1}; c_j^{a'_1} = c_i$ if $i \neq j; i, j = 1, 2$. Moreover $A = \langle a'_1, a'_2, Z \rangle$. Putting $u' = [a'_1, a'_2]$ we obtain $c_1^p = (u')^k$ with $k \in \mathbb{Z}/p\mathbb{Z}, k \neq 0; c_2^p = z, [a'_1, c_1] = [a'_2, c_2] = z$ and $[a'_i, c_j] = 1$ if $i \neq j; i, j = 1, 2$. This establishes our claim.

Consider the matrices

$$M = egin{pmatrix} -1 & \eta/k & 0 & 0 \ 0 & 1 & 0 & O \ 0 & \eta & -1 & 0 \ \eta & -\eta^2/k & \eta/k & 1 \end{pmatrix}, \qquad N = egin{pmatrix} -1 & 0 \ \eta & 1 \end{pmatrix}$$

and let α and β be the automorphisms of G/Z and Z respectively associated to M and N, referring to the basis $\{a_1Z, a_2Z, b_1Z, b_2Z\}$ and $\{u, v\}$. (We remind that η and k are defined by the relations written before.)

By Lemma 0.5 there is a non-central automorphism γ of G which induces α on G/Z and β on Z and we can conclude that Aut G is not abelian.

PROPOSITION 1.4. There is no group G of order p^6 whose automorphism group is an abelian p-group.

PROOF. Deny the statement and assume that there is a group G with the given properties. Then by Lemma 0.4 G is a PN group and the result follows from Propositions 1.2, 1.3 and 1.4.

From the proofs of Propositions 1.3 and 1.4 and from [3] we can also obtain the following

PROPOSITION 1.5. Every non abelian group of order p^6 has a non central automorphism.

2. – In this section we describe a family of p-groups whose automorphism groups are abelian. Among them, the one with smallest order has p^7 elements and it is the smallest non abelian p-group with the property stated above.

PROPOSITION 2.1. For each natural number n there exists a group G(n) of order p^{n^2+3n+3} whose automorphism group is an elementary abelian p-group of order $p^{(n^2+n+1)(2n+2)}$.

PROOF. Let *n* be a natural number and let G = G(n) be the group of class two generated by the set $\{a_1, a_2, b_1, \ldots, b_{2n}\}$ and satysfying the following further relations:

$$[a_{1}, b_{2i+1}] = [a_{2}, b_{2i+2}] = [b_{2i+1}, b_{2i+2}] =$$

$$= [b_{2i+2}, b_{2j+2}] = [b_{2i+1}, b_{2j+1}] = 1; \quad \text{for } i, j = 0, ..., n-1;$$

$$a_{1}^{p} = a_{2}^{p} = 1;$$

$$[a_{2}, a_{2}]^{p} = [a_{2}, b_{2}]^{p} = [a_{2}, b_{2}]^{p} = 1;$$

 $[a_1, a_2]^p = [a_1, b_{2i+2}]^p = [a_2, b_{2i+1}]^p = [b_{2i+1}, b_{2j+2}]^p = 1;$

for $i, j = 0, ..., n - 1; i \neq j;$

$$\begin{split} b_1^p \text{ is the product of the elements of the set} \\ X &= \{[a_1, a_2], [a_1, b_{2i+2}], [a_2, b_{2i+1}], [b_{2i+1}, b_{2j+2}]; \\ &\quad i, j = 0, \, \dots, \, n-1; \, i \neq j\}; \\ b_2^p &= b_1^p [a_1, b_2]^{-1}, \ b_{2i+1}^p = b_{2i}^p [a_2, b_{2i+1}]^{-1}, \ b_{2i+2}^p = b_{2i+1}^p [a_1, b_{2i+2}]^{-1}, \\ &\quad i = 1, \, \dots, \, n-1. \end{split}$$

By a standard construction we can see that G is a group of order p^{n^2+3n+3} ; G' is elementary abelian of rank $n^2 + n + 1$ and basis X, and $\Omega_1(G) = \langle a_1, a_2, G' \rangle$.

We now determine $C_G(a)$, where a is any element of $\Omega_1(G)\backslash G'$. If $a = a_1^{x_1}a_2^{x_2}z$, $g = a_1^{y_1}a_2^{y_2}b_1^{w_1}\dots b_{2n}^{w_{2n}}u$, with $z, u \in G'$; $x_i, y_i, w_i \in \mathbb{Z}$; $i = 1, 2; j = 1, \dots, n$; we have:

$$[a, g] = [a_1, a_2]^{x_1y_2 - x_2y_1} \prod_{i=0}^{n-1} ([a_1, b_{2i+2}]^{x_1w_{2i+2}} [a_2, b_{2i+1}]^{x_2w_{2i+1}}).$$

If $x_1 \equiv 0 \pmod{p}$, we have [a, g] = 1 if and only if $w_{2j+1} \equiv 0 \pmod{p}$ for all $j = 0, \ldots, n-1$ and $y_1 \equiv 0 \pmod{p}$.

If $x_2 \equiv 0 \pmod{p}$, we have [a, g] = 1 if and only if $w_{2j+2} \equiv 0 \pmod{p}$ for all $j = 0, \ldots, n-1$ and $y_2 \equiv 0 \pmod{p}$.

If $x_1 \not\equiv 0 \not\equiv x_2 \pmod{p}$ we have [a, g] = 1 if and only if $w_{2i+1} \equiv w_{2j+2} \equiv 0 \pmod{p}$ for all i, j = 1, ..., n and $y_1 \equiv kx_1, y_2 \equiv kx_2 \pmod{p}$ with $k \in \mathbb{Z}$.

Thus:

$$\begin{split} C_G(a_1) &= \langle a_1, \, b_{2i+1}, \, G' \mid i = 0, \, \dots, \, n-1 \rangle, \\ C_G(a_2) &= \langle a_2, \, b_{2i+2}, \, G' \mid i = 0, \, \dots, \, n-1 \rangle, \\ C_G(a) &= \langle a, \, G' \rangle \quad \text{ if } a \in \Omega_1(G) \backslash (G' \langle a_1 \rangle \cup G' \langle a_2 \rangle). \end{split}$$

 $C_G(a_i)/G'$ is elementary abelian of rank n + 1, for i = 1, 2, and $C_G(a)/G'$ is cyclic of order p for all $a \in \Omega_1(G) \setminus (G' \langle a_1 \rangle \cup \cup G' \langle a_2 \rangle)$.

This also shows that Z(G) = G'.

Let $\varphi \in \operatorname{Aut} G$; hence $C_G(a_i)^{\varphi} = C_G(a_i^{\varphi})$ and we have $a_1^{\varphi} \in \langle a_1, G' \rangle$ or $a_1^{\varphi} \in \langle a_2, G' \rangle$.

We shall say that φ is of type 1 if it fixes $C_G(a_1)$ and $C_G(a_2)$, of type 2 if it interchanges them.

Assume that φ is of type 1 and consider $r \in \{0, ..., n-1\}$.

It must be $b_{2r+1}^{\varphi} \in C_G(a_1)$; $b_{2r+2}^{\varphi} \in C_G(a_2)$ and $[b_{2r+1}^{\varphi}, b_{2r+2}^{\varphi}] = 1$. If $b_{2r+1}^{\varphi} = a_1^{x_1} b_1^{y_1} \dots b_{2n-1}^{y_{2n-1}}$ and $b_{2r+2}^{\varphi} = a_2^{x_2} b_2^{y_2} \dots b_{2n}^{y_{2n}}$; with $x_i, y_j \in \mathbb{Z}$; $i = 1, 2; j = 1, \dots, n$ we have:

$$\begin{bmatrix} b_{2r+1}^{\varphi}, b_{2r+2}^{\varphi} \end{bmatrix} = \begin{bmatrix} a_1, a_2 \end{bmatrix}^{x_1 x_2} \prod_{i,j=0}^{n-1} \cdot \\ \cdot (\begin{bmatrix} a_1, b_{2i+2} \end{bmatrix}^{x_1 y_{2i+2}} \begin{bmatrix} a_2, b_{2i+1} \end{bmatrix}^{-x_2 y_{2i+1}} \begin{bmatrix} b_{2i+1}, b_{2j+2} \end{bmatrix}^{y_{2i+1} y_{2j+2}}).$$

Since b_{2i+1}^{φ} , $b_{2i+2}^{\varphi} \notin \Omega_1(G)$ there exist \tilde{i} and \tilde{j} such that $y_{2\tilde{i}+1} \neq 0 \neq y_{2\tilde{i}+2} \pmod{p}$.

Hence we have $x_2 \equiv 0$, $y_{2j+2} \equiv 0 \pmod{p}$ for all $j \neq \tilde{i}$ and then $\tilde{j} = \tilde{i}$, $x_1 \equiv 0$ and $y_{2i+1} \equiv 0 \pmod{p}$ for all $i \neq \tilde{i}$; that is $b_{2r+1}^{\sigma} \in \langle b_{2\tilde{i}+1}, G' \rangle$ and $b_{2r+2}^{\sigma} \in \langle b_{2\tilde{i}+2}, G' \rangle$.

Consider the permutation $\sigma \in S_n$ such that $b_{2i+1}^{\sigma} \in \langle b_{2\sigma(i)+1}, G' \rangle$. We have $b_{2i+2}^{\varphi} \in \langle b_{2\sigma(i)+2}, G' \rangle$ and furthermore:

$$\begin{split} [a_1, a_2]^{\varphi} &= [a_1, a_2]^r , \qquad [a_1, b_{2i+2}]^{\varphi} = [a_1, b_{2\sigma(i)+2}]^{s_i} , \\ &[a_2, b_{2i+1}]^{\varphi} = [a_2, b_{2\sigma(i)+1}]^{v_i} , \\ &[b_{2i+1}, b_{2j+2}]^{\varphi} = [b_{2\sigma(i)+1}, b_{2\sigma(j)+2}]^{w_{ij}} , \end{split}$$

with $0 \le i \ne j \le n - 1$; $r, s_i, v_i, w_{ij} \ne 0$. Hence we can see that σ permutes the cyclic groups generated by the elements of the set X.

56

We must have

$$(\star) \qquad (b_{2i+1}^{\varphi})^p = (b_{2i+1}^p)^{\varphi}$$

hence $b_{2\sigma(i)+1}^p \in \langle (b_{2i+1}^p)^{\varphi} \rangle$ and as in the representation of b_{2i+1}^p there are exactly $n^2 + n - 1 - 2i$ elements of X with non-zero exponent we must have $n^2 + n - 1 - 2i = n^2 + n - 1 - 2\sigma(i)$, that is σ must be the identity. In the same way, if $\varphi \in \operatorname{Aut} G$ is of type 2, we have $b_{2i+1}^{\varphi} \in \langle b_{2\tau(i)+2}, G' \rangle$ and $b_{2i+2}^{\varphi} \in \langle b_{2\tau(i)+1}, G' \rangle$, with $\tau \in S_n$; and the condition (\star) leads to a contradiction.

Hence every $\varphi \in \operatorname{Aut} G$ is of type 1 and induces on G/G' an automorphism associated to a diagonal matrix M with entries in $\mathbb{Z}/p\mathbb{Z}$ of the type

where the basis of G/G' is $\{a_1G', a_2G', b_1G', ..., b_{2n}G'\}$. We have:

$$\begin{split} [a_1, a_2]^{\varphi} &= [a_1, a_2]^{\alpha_1 \alpha_2}, \qquad [a_1, b_{2i+2}]^{\varphi} = [a_1, b_{2i+2}]^{\alpha_1 \beta_{2i+2}}, \\ &[a_2, b_{2i+1}]^{\varphi} = [a_2, b_{2i+1}]^{\alpha_2 \beta_{2i+1}}, \\ &[b_{2i+1}, b_{2i+2}]^{\varphi} = [b_{2i+1}, b_{2i+2}]^{\beta_{2i+1} \beta_{2j+2}}, \end{split}$$

with $0 \leq i \neq j \leq n-1$.

From the conditions $(b_1^{\varphi})^p = (b_1^p)^{\varphi}$ and $(b_2^{\varphi})^p = (b_2^p)^{\varphi}$ we obtain: $\alpha_1 \alpha_2 = \beta_1 = \alpha_2 \beta_{2i+1} = \alpha_1 \beta_{2i+2}$ for all i = 0, ..., n-1 and $\beta_2 = \alpha_1 \alpha_2$;

and it follows that M is the identity.

Hence we have proved that every automorphism of G is central and by Lemma 0.2 we have $|\operatorname{Aut} G| = |\operatorname{Aut}_C G| = p^{(n^2 + n + 1)(2n + 2)}$. From the fact that Z has exponent p it follows that $(g^f)^p = 1$ for all $f \in \operatorname{Hom}(G, Z(G))$ and for all $g \in G$, thus $\varphi^p = 1$ for all $\varphi \in \operatorname{Aut} G$. Moreover Z(G) = G', so by Lemma 0.3 Aut G is an elementary abelian p-group, as we wanted to prove.

OBSERVATION. For n = 1 we obtain that G = G(1) has order p^7 , it is generated by 4 elements $\{a_1, a_2, b_1, b_2\}$, it has class 2, it satisfies the relations

$$a_1^p = a_2^p = 1; \quad [a_1, b_1] = [a_2, b_2] = [b_1, b_2]^p = 1;$$
$$[a_1, a_2]^p = [a_1, b_2]^p = [a_2, b_1]^p = 1;$$
$$b_1^p = [a_1, a_2][a_1, b_2][a_2, b_1]; \quad b_2^p = [a_1, a_2][a_2, b_1]$$

and its automorphism group is elementary abelian of order p^{12} . From this facts and Proposition 1.5 we obtain the following

PROPOSITION 2.2. Let p be an odd prime. The smallest order of a p-group whose automorphism group is abelian is p^7 .

REFERENCES

- B. E. EARNLEY, On finite groups whose group of automorphisms is abelian, Ph.D. thesis, Wayne State University (1975), Dissertation Abstracts, V. 36, p. 2269 B.
- [2] H. HEINEKEN H. LIEBECK, The occurrence of finite groups in the automorphism group of nilpotent groups of class 2, Arch. Math., 25 (1974), pp. 8-16.
- [3] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, New York (1967).
- [4] D. JONAH M. KONVISSER, Some non-abelian p-groups with abelian automorphism groups, Arch. Math., 26 (1975), pp. 131-133.
- [5] G. A. MILLER, A non-abelian group whose group of isomorphisms is abelian, Messenger Math., 43 (1913), pp. 124-125.
- [6] P. R. SANDERS, The central automorphisms of a finite group, J. London Math. Soc., 44 (1969), pp. 225-228.

Manoscritto pervenuto in redazione il 19 dicembre 1992.