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Distribution of Solutions of Diophantine Equations
f1 (x1)f2(x2)=f3 (x3), where fi are Polynomials. - II.

A. SCHINZEL - U. ZANNIER (*)

Introduction and statement of results.

The present paper is a sequel to [1] and the notation of that paper is
retained, in particular ai is the leading coefficient and d the discrimi-
nant of the quadratic polynomial f ( 1 ~ i ~ 3). The purpose of the paper
is to perform the programme outlined in Remark 7 of [1], at least in the
simplest case, when ai = 1, 4 = 16 ( i = 1, 2 ), a3 = 1, 4 3 E 4 ~ .

As a by-product one obtains the following purely algebraic

THEOREM 1. Let k be a2, e3 E k, a1 S2 ’ 0, ao = a1 e2 + e3 - ·
The equation

has infinitely many solutions in polynomials pi e k[t] not all constant
only if one of the following three conditions is satisfied

for an

for an

Then the set S of all solutions of (1) in polynomials pi E k[t] not all con-
stant is the minimal set So with the following properties. For every
choice of quadratic roots, every choice of c E ~ 1, -1 ~ and every

(*) Indirizzo degli AA.: A. SCHINZEL: Math. Inst. P.A.N., P.O. Box 137,
00950 Warszawa (Poland); U. ZANNIER: D.S.T.R. Ist. Univ. Arch., S. Croce 191,
30135 Venezia (Italy).
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if we have (2a) with i = 1 ,

if we have (2a) with i = 2 ,

if we have (2b) with i = 1 ,

if we have ( 2 b ) with i = 2 ,

if (2c) holds .

then

E k (i = 1, 2, 3) then the set S can be obtained simpler as the
minimal set S, with the following properties. For every choice of
quadratic roots and every p E k[t]~k we have (3b), (3c), (3d) and (3e)
with So replaced by ,S1. Moreover if ( pl , p2 , P3) -1 ~,
then
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The principal result runs as follows.

THEOREM 2. If a1 = a2 = a3 = 1, 41 = 42 = 16, VA3 E 4Z, then the
N (x ) of integers X3 such that x and there exist integers

x1, x2 such that

satisfies the asymptotic formula

1. Proof of Theorem 1.

LEMMA 1. Under the assumptions of the theorem all solutions of
the equation (1) in which one but not each polynomial pi e k[t] is con-
stant are given by

where p e k[t]~k and the choice of quadratic roots is arbitrary.

PROOF. Suppose is a required solution. By sym-
metry we may assume that pi e k. If pr = aI, we obtain the case (5b). If

we have

and since the two factors cannot simultaneously be constant we have
8g-(Pf-81)82=0, which gives (5d). On the other hand, (5a), (5b),
(5c), (5d) are solutions of ( 1 ) with the required properties.

LEMMA 2. Under the assumptions of the theorem all solutions of
the equation (1) in polynomials pi E k[t] such that degp1 = degp2 &#x3E; 0



32

are given by

where the choice of quadratic roots is arbitrary and
e E {1, -1}

PROOF. Suppose is a required solution. Let 
denote the leading coefficient of Pi and choose ~=~(pip2)/~(p3) and
~i -- ~1 so that at t = OJ , ~roi - ~1 = pi (t) + o( 1 ), which implies

(If char I~ &#x3E; 0 the notation should be suitably interpreted). Then
define

We have at t = 00

but also

hence
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and so

However pi , P2 , P3 satisfy ( 1 ) and p/ e 1~( ~ 1 ) [ t ], hence by virtue of
Lemma 1 applied with k(6) instead of k we have for a suitable choice
of quadratic roots either

or

In the first case we obtain

which gives (6b).
In the second case we obtain

which gives (a). On the other hand, (6a) and (6b) are solutions of (1)
with the required properties.

PROOF OF THEOREM 1. We have under the specified conditions
(2a), (2b), or (2c) for p E 
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and if (pi, P2, then for i = 1, 2

Moreover

hence ,So c ,S. In order to prove that S c ,So we proceed by induction with
respect to m = max{degp1, degp2, deg p3}. If m = 1 ( 1 ) implies that

~1 E k or 82 E k, hence by Lemma 1 either (2a) holds with
and ~2 , P3) E ,So by (3b) or (3c) or (2b) holds and

~2 , E S’o by (3d) or (3e).
Assume now that (1) implies (pi, P2, P3) So provided m  n and

let

max {degp1, deg p2 , n &#x3E; 1.

If pi - 81 = 0 or 82 = 0 we have (2a) with i = 1 or 2 and

by (3b) or (3c). If ~1 - ~1 ~ 0 ~ p2 - ~2 we have
degp3 = n. If deg p2 = 0 we have (2a) with i = 1 and (pi, ~2 , ,So by
(3d). If deg pi = 0 we have similarly (2a) with i = 2 and (pl , P2, So
by (3e). We may assume therefore that degp1 &#x3E; 0, degp2 &#x3E; 0-

Consider first the case, where deg pi = deg p2 . By Lemma 2 this can
happen only if we have either

or
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Now, (7) implies that (2a) holds with i = 0 and we have (3a); (8) im-

plies that (2c) holds and we have (3f), 
Consider now the case, where degp1  deg p2 . Choose c =

= and pi - ~1 so that at t = 00 pi - ~1 = PI (t) + o(l),
which implies

Then define

We have at t = 00

but also

hence

and so

Since 1  degp1  degpz = degp3 - deg p1 we obtain

On the other hand, pi , p2B p3 E k[t] and satisfy (1), hence by the induc-
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tive assumption ( pi , p2 , Now however

hence by (4a) (pi, p2 , E So .
By symmetry between (4a) and (4b) the same holds if

In order to prove the last assertion of the theorem we observe that for

i=1,2,

and

which implies 81 c ,S. The proof of the inclusion SCSI is similar to that
of the inclusion S c So with this difference that the case degpi = deg p2
is treated in the same way as deg p1  degpz and in the formulae (9),
(10) and (11) the exponent 2 is replaced by 1.

2. Proof of Theorem 2.

We shall deal with the equation

where ag = 4b2, 
We define r as the minimal set of triples ( pi , p2 , of polynomials

in with the following properties
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(i) For every choice of c, 77 E ~ 1, -1 ~ we have

(ii) For every choice of q E ~ 1, -1 ~, putting
both

and

LEMMA 3. If (pl , p2 , P3) E T, then

(v) for all Y) 1, Y)2, ~ 3 exists ( ql , q2 , Q3) E T such
that Y) i Pi (x) 1, 2 , 3 ;

(vi) if ro e C is such that ~, 9 i = 1, 2, 3, then xo E Z.

PROOF. Since (PI’ 9 P2 Ps) is obtained by a finite iteration of opera-
tions of starting from either (ia) or (ib), and since (ia) and (ib)
satisfy the four assertions of the Lemma, it suffices to prove that if
some triple p satisfies the assertions, does.

Now, since p satisfies both (iii) and (iv) by assumption, we have
Pl P2 (mod whence (iii) holds Also, (iv) follows

from (12). (v) follows from the identity

As to (vi) we observe that if the components ( p )(xo ) belong to Z,
the same is true for the components of ~~, _,~ o ~~, ,~ ( p )(xo ), by the same
argument which proved E But pj, _,~ o ~p~, ,~ is the identity, and
induction applies. 

’ ’

LEMMA 4. Let be ac solution of (13) in polynomials.
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si E 0[t] not all constant. Then there exists a polynomial p E 0[t] and
a triple (PI, p2 , p3 ~ E T such that si (t) = pi (p(t)) i = 1, 2, 3.

This follows from the last assertion of Th. 1 on noticing that b 2 + 4 is
not a square, for b ~ 0. m

The proof of the last assertion of Th. 1 also shows.

LEMMA 5. Each triple p = p2 , p3 ) Er may be obtained start-
ing from some triple po E r such that the maximum degree of the com-
ponents of po is 1, and applying successively operations of type rp j, Y) in
such a way as to increase strictly the maximum degree at each

step.

Define I p max deg pi.

L E MMA 6. If pET and I p 1, then, either

or

for some and some 1)1,1)2,1)3 E-= f 1 9 -1 ~ .

PROOF. Let p = (pal p2 , Pa)’ By (13) either p2 E Q or p, E Q and by
Lemma 1 either p = ~ p(x), 2772, 2br~3 ) or p = (21), 2br~3 ~ for some
p E Z[xl, degp = 1. Now, for instance by (vi) of Lemma 3 the leading
coefficient of p must be ± 1. (Alternatively one may show by induction
that leading coefficients of nonconstant polynomials appearing in some
triple in r are ± 1 ).

where the second possibility may happen only if d,~ &#x3E; 2d1. (Observe that
I p ~ ~ 2 implies that min 1. )
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PROOF. From (13) one gets
whence

say that deg (p1p2 + = deg P3 (the argument being sym-
metrical if = So deg (p1p2 - Ps) = d2 - dl .

If j = 1, since I P’ [ &#x3E; p ~ I we must have r~ = 1, and we fall in the
first case. If j = 2 we may have either = 1 falling in the third case, or
n = - 1, provided d2 - d1 &#x3E; dl , and we fall in the second case.

Let nowpl, p2 E 7. We define p, - P2 ifp2 (X) = Pi (r~(x + a)) for some
a E ~, ~ E ~ 1, -1 ~. Clearly this is an equivalence relation which pre-
serves the max deg function, so we may define .N’ (D ) to be the number
of equivalence classes of triples p in 7 such that I p D.

LEMMA 8. J~(D) ~ D 4 , for all D ~ 2.

PROOF. By Lemma 5 we obtain each triple in r starting from the
equivalence class of either (ia) or (ib) and applying operators pj,n to in-
crease the degree at each step (observe pj,, preserves the equiva-
lence). After the first step we obtain an equivalence class of one of the
eight triples given by (6b) with p replaced by x, i.e. 
+ r;b), e2 (x2 + q br - 4)), where e1, E:2, r; E {1, 9 -1}. Define for pairs
(di , of integers with 1 ~ ~2 three operations

where y is defined only if d2 &#x3E; 2d1. In view of Lemma 7 we have
N(D) £ 8C(D) + 8 where C(D) is the number of sequences el, ... , ~k
such that each ~i is either a, or (3, or y and the sum of the components of
~~ 0 ...0 a1 (1, 1) is bounded by D. If every ~ is of type a we have at most
D - 1 such sequences. Otherwise let r be the greatest index such that
ear is either (3 or y, so 6IA is « for 

Put 6r o ... 0 81 ~ 1, 1) = n). Then, setting k = r + s we have n +
+ (s + 1 ) m ~ D. Also (m, n) is in the image of either (3 of y so m ~ n/2,
whence

Assume s~. _ ,~. Then, if (7% ’ , n ’ ) = &#x26;~ - i o .. , o &#x26; i ( I , I ) we have
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f3(m’, n’) _ (m, n), whence

If on the other hand a r = y, necessarily ~r _ 1 = a. Observing that y o a =
= {3, and setting (m’, n’ ~ _ ~r _ 2 0 ... o ~1 ~ 1, 1) again we have m’ + n’ ~
~ (2/3) (m + n). In conclusion we may write

Clearly, C(2) = 1. Assume that (
D ~ 3. Then (16) shows

The inequality C(D) + 1 ~ D~ holds, by induction, for all integers
D ~ 2.

REMARK 1. The inequality (B constant) may be

proved also by the (essentially equivalent) method of proof of Th. 4
in[I], cf. Remark 7. Perhaps the present method is slightly sim-

pler.

DEFINITION 1. We say that a solution of (13) (2/1~2~3) in inte-
gers yl , Y2, y3 is polynomial if there is a polynomial solution s2 , s3 ~
of (13) with si E not all constant, and a complex number to such
that

By Lemma 4 we have Yi = (p(to)) for some triple
p e ~[t]. By (vi) of Lemma 3 we have

for some xo E Z.

DEFINITION 2. We define the degree (3(y) of a polynomial solution
y = (Y1, Y2, to be min Ipl I where p = (pi, p2, p3&#x3E; is a triple in r

such that (17) holds for some xo E Z.

We choose now C1 = max {1/2 ~3 + 16, exp720}.
Let (yi , be an integer solution of (13), where 0 ~ yi %
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we have clearly a finite number of possibilities for

In view of the choice of C1 such a satisfies

We set 1 and observe that y3 are integers and
y2 , is a solution of (13).

Moreover we have easily (cf. [1], formula (33))

We set

LEMMA 9. If the solution y = polynomial, the same
is true of and conversely. Moreover if 9(y) is of degree d, then
a(~J) ~ 2la d.

The proof of the first statement is immediate. We prove the second
statement by induction on . If a = 0 we have rp ( y ) = y, hence the in-
equality a(y)  holds. Assume that it is true whenever

I  n and that



42

where

Put

By the inductive assumption

By the definition of 9( y’ ) and by Lemma 3 (vi) there exists a triple p’ -
= (pi~ P2 , and an integer such that

and . However

hence

and

The inequalities (14) and (15) imply the desired inequality

We now define the following procedure, applied to any solution of
(13) in natural numbers yl , y2 , Y3; namely we apply several times the
function p until we reach a solution z1, z2 , z3 such that zi &#x3E; 0 i = 1, 2, 3,

z2 , zi £ Cl . By (19) this will happen sooner or later. We have z =
=(~i~2 z3 ~ y2 , Y3) (possibly m = 0 ). Three cases may occur.

A) z1 = 4: now the solution z is clearly polynomial and a(z) = 1.

B) 2:~  4: as observed before we have Z2 - Cl , z3 ~ Cl .

C) 3 ~ zi £ Cl . Now a new application of 9 produces a solution
with components bounded by G1, by (19), (20).
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We set

if we are in case B),
if we are in case C).

We first deal with case A):
By Lemma 9 the solution (Yl, Y2, is polynomial of degree

~ 21all + ... + lam = 21all + ... + estimate such degree we define
H(Y) = max I I a1 I + ... + where the maximum is taken over all
solutions with Y.

If yl  C1 we have m = 0 and no a2 appears. Thus if Y  C1 we
have II( Y) = 0. If C1, then, by (18), [ ai [ £ 2 (log Y /logY1), whence
by (22)

Since Y2 we have y23 &#x3E; (y2 - 4 )2 , whence ,

By an easy induction we get

for all integers y ; 1.

LEMMA 10. Let s = (Sl, s2 , S3) be a solution of (13) in natural
numbers si . Then the number H(Y) of y2 , 0,

Y such that the solution p( y1, y2 , introduced above coincides
with s satisfies

(Clearly we assume y2 , Y3) falls in case B) or C))

PROOF. Let y = y1 , y2 , y3 &#x3E; be counted in H(Y). If C1 then ei-
ther y = s or = s . If yl &#x3E; C1 then, by (20), is counted in

H((Y + 4)3/4 ).
On the other hand the number of solutions ( yi , y2 , y3 ~, y3 ~ Y, such

y2 , y3 ), is a given solution is easily seen to be bounded by
C2 log Y, C2 = C2 (~3 ) (cf. [1], formula (30)) whence
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Iterating this inequality we get the Lemma, and even

REMARK 2. Imitating the proof of Theorem 4 in [1] one can prove
H(Y) Y.

LEMMA 11. Let p E be a polynomial of degree n ~ 1 with the
leading coefficient at least 1 in absolute value, and let I be an interval
of length T. Then

PROOF. The first inequality is trivial. Let us prove the second by
induction on n, the case n = 1 being immediate. Set x, =

and put

Observe that

say. h is an interval of length T containing 0. So

since I1 contains 0. By induction the last set contains ~ (n - 1 ) ~
, (T~ - 1/n )1/n -1 + n - 1 = (n - 1 ) T l~n + n - 1 elements, whence the
Lemma follows.

REMARK 3. Dr. F. Amoroso has observed that the lemma can be

improved by using the properties of the transfinite diameter.

PROOF OF THEOREM 2. Define now as the number of natu-
ral numbers Y such that there exist yl , y2 such that y1, Y2, y3 is a

polynomial solution of degree g.
Then 4i~ (Y) is bounded by the cardinality of the union of sets of
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type Y3 (z) 1, ... , YI, where Y3 runs over the third components of
triples in r of degree = tA. But we may clearly take one triple only from
each equivalence class.

By Lemma 11 each such set has ~ + fJ. ~ elements,
and, combining this with Lemma 8 we get

When IA = 2 we directly see that may be taken as ± ( x 2 + 77bx - 4)
where 72 E {1, -1}. The set U {0, .... YI contains either 0( 1 ) ele-
ments or O( 1 ) elements, whence

(In fact (.r - ~ + ~ - &#x26;) - 4 = ~ - ~ - 4.)
By the observations following Lemma 11 and by (24) we see that

each solution (yi , is either polynomial of degree - 21ogY/72 or we
fall in case B ) or C), where Lemma 10 applies. Thus, since 
~ Y 1 ~72 , we get, putting everything together

The equation f1(x1)f2 (x2 ) = f2 (X3 ) under the assumption of the theorem
reduces to (13) by a linear substitution. The condition be-
comes x + O( 1 ) and the theorem follows from (27) on setting
Y = x + O( 1 ) and allowing Y3 both positive and negative.

Note added in proof.

K. Kashihara in his paper Explicit complete solution in integers of
a class of equations ( ax 2 - b ) ( ay 2 - b) = z 2 - c, Manuscripta Math., 80
(1993), pp. 373-392, gives a method to find all integer solutions of the
equation in the title for a ~ 0, c and b = ± 1, ± 2, ± 4. However
Kashihara does not give any asymptotic formulae.

Paper [1] requires a small correction at page 62, lines 3, 5; namely in
the expressions under square root on the left, a minus sign must be in-
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serted before 4 3 /4. Also, we point out the following paper related
to [1]: S. D. COHEN, P. ERDBS, M. B. NATHANSON, Prime Polynomial
sequences, J. London Math. Soc. (2), 14 (1976), pp. 559-562.

REFERENCE

[1] A. SCHINZEL - U. ZANNIER, Distribution of solutions of diophantine equa-
tions f1 (x1) f2 (X2) = f3 (x3), where fi are polynomials, Rend. Sem. Mat. Univ.
Padova, 87 (1992), pp. 39-68.

Manoscritto pervenuto in redazione il 23 novembre 1992.


