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Distribution of Solutions of Diophantine Equations
f1 (@) fo () = f3(x3), where f; are Polynomials. - II.

A. SCHINZEL - U. ZANNIER (*)

Introduction and statement of results.

The present paper is a sequel to[1] and the notation of that paper is
retained, in particular a; is the leading coefficient and 4; the discrimi-
nant of the quadratic polynomial f; (1 < ¢ < 3). The purpose of the paper
is to perform the programme outlined in Remark 7 of[1], at least in the

simplest case, when a; =1, 4,=16 (1=1,2), ag =1, \/41_3542.
As a by-product one obtains the following purely algebraic

THEOREM 1. Let k be a_ﬁel(i, é1, &9, d3 € k, 3162 # 0, 30 = 3132 + &3.
The equation

1 (pf — ¢1)(p3 — 83) = p§ — &3

has infinitely many solutions in polynomials p; € k[t] not all constant
only if one of the following three conditions is satisfied

(2a) Vések and \/s;ek for an i€{0, 1,2},

2b) Wf—ek and 1’—ekfo'r(m ie{l,2},
/33 /53
(26) '5;, é\—zek.

Then the set S of all solutions of (1) in polynomials p; € k[t] not all con-
stant is the minimal set S, with the following properties. For every
choice of quadratic roots, every choice of c¢e {1, —1} and every

(*) Indirizzo degli AA.: A. SCHINZEL: Math. Inst. P.AN,, P.0. Box 137,
00950 Warszawa (Poland); U. ZANNIER: D.S.T.R. Ist. Univ. Arch., S. Croce 191,
30135 Venezia (Italy).
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p € k[t1\k

aw <p\/?+v?(pﬂé+_\/£_\/;)>s

if we have (2a) with i1 =0,
Bb)  (Ve1, p, Vés) €8Sy if we have (2a) with i=1,

Be)  (p, Véu, Vis) €S, if we have (2a) with i=2,

3d) <p, \/%, \,j—?p>eSo if we have (2b) with i =1,
’30 ,33 . by .
3e) < 3.0 P 3—p>eSo if we have (2b) with i =2,
2 2
/3_2 /_33 2 _ /2 /ﬁ
(3f) <P,p 31 + 81’5((1) 6\1) 3 +p ) )>ES0

if (2¢) holds .
Moreover if (p,, pz, p3) €Sy, c€ {1, —1}, then

2pZp, +2 -8 2p2ps+ 2 Z_s)-2¢
(4a) <P1, Pi P2 ?12’3 1Pz , Pi Ps 81’11’28(11’1 1 1D eS,,
1

2p, p2+2 ) 2pZps + 2 2—8,)—¢
(4b)<1’1p2 eP1P3 —S2P1 P D5 D3 + 20p; po (Ps — 82) — 823 €S,

32 y M2 82

If Ve, ek (i =1, 2, 3) then the set S can be obtained simpler as the
minimal set S, with the following properties. For every choice of
quadratic roots and every p € k[t]\k we have (3b), (8c), (3d) and (3e)
with S, replaced by S,. Moreover if (p;, ps, P3)€S;, ne{l, —1},
then

Vo Ve

<P1P2+7)P3 p1p3+np1(p22—82)>
=z B es;,

» P2
Vo, Ve,

< DP1P2 + NP3 p1P3+77P2(P12—31)>
1s €S,
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The principal result runs as follows.

THEOREM 2. Ifa,=az=a3=1,4,=4,=16, \/A—3 €47, then the
number N (x) of integers x5 such that |x3 | < x and there exist integers
xy, Xy such that

fi(xy) fa(ae) = f3(a3)

satisfies the asymptotic formula

N(z) = 2Vx + O(x1/3).

1. Proof of Theorem 1.

LEMMA 1. Under the assumptions of the theorem all solutions of
the equation (1) in which one but not each polynomial p; € k[t] is con-
stant are given by

(5a) (p, Véa, V&3),  if Véu, Vasek,
(5b) (Vay, p, Vs, if Vo1, Vesek,

o [o) [ [5
S 83 . [60 8
(5) <\/32 3 p>, 25 ek,

where p € k[t1\k and the choice of quadratic roots is arbitrary.

PROOF. Suppose that (p;, ps, p3) is a required solution. By sym-
metry we may assume that p, € k. If p2 = ¢,, we obtain the case (5b). If
p? # &,, we have

(ps = Vpi — 6102) (03 + VpF — 6102) = 83 — (pF — 81) &,

and since the two factors cannot simultaneously be constant we have
83 — (p2 — 4,)8, = 0, which gives (5d). On the other hand, (5a), (5b),
(5¢), (6d) are solutions of (1) with the required properties. ®

LEMMA 2. Under the assumptions of the theorem all solutions of
the equation (1) in polynomials p; € k[t] such that degp, = degp, > 0
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are given by

é é ) é
(6b) <p,p\/a—f+\/a—f,e((p2—81) a—f+p\/3—f)>
. Sy o3
YN VE <R

where p e k[t]\k, the choice of quadratic roots is arbitrary and
ee{l, —1}.

PROOF. Suppose that (p;, ps, ps) is a required solution. Let (p;)
denote the leading coefficient of p; and choose ¢ = I( P1p2)/U(ps) and

Vpf — &1 so that at ¢ = ®, \/p? — 4; = p,(¢) + o(1), which implies
pf — 81 =p (t) + O(|¢]| ~deEP),

(If char k>0 the notation should be suitably interpreted). Then
define

2
- Vpi-2
P+ eVpE—aps = (g + e Vpi — aypy) B VBT \/? -
1

We have at t = «

p3 + \/pE — 6, ps = O( |¢|%eers —degpr)
but also
83 — da(pf — &)
P+ eVpf —é1pe

Py —eVpi-éip = = O(|t|?%ep~degm) = (O(1),

hence

: : Pt Vi — 2,

ps —eVpf —é1ps = (ps — e Vpf — 8, pp) = \/a‘_l =
1

= O |t|3degp1 ~ degps )
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and so
p: = 0(1).

However py, ps, ps3 satisfy (1) and p, k(\/é‘_l)[t], hence by virtue of
Lemma 1 applied with £(\/3,) instead of k we have for a suitable choice
of quadratic roots either

(pZI ’ p?»,) = <\/8_2’ 8\/%)

oy = /ﬁ /ﬁ
(p27p3>_< 3175 81p1>'

In the first case we obtain

+Vpi-¢
Ps + e VpE — d1pe = (Vo5 + fo*é‘l'\/g)%
1

or

which gives (6b).
In the second case we obtain

P) S |\ t+ Vpi-2
ps+eVpi—aipp=c|y| = pe+ Vpi -8 | ¥—=—
V2, Y B>

which gives (a). On the other hand, (6a) and (6b) are solutions of (1)
with the required properties. ®

ProoF oF THEOREM 1. We have under the specified conditions
(2a), (2b), or (2c) for p € k[t1\k

<p,pl/§i@,s(p2 @ —\/3_0)> (P1 V52, V53),
(Vé1, p, Vas), <p,\gf,\/§p>, <\/§—E,p,\/%p>,
<pap\/§+\/%15((172_31)\/%+p\/§)>58
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and if (p;, ps, p3) € S then for i =1, 2

2p2ps_; + 2ep;ps — ips_i |°
(piz_é‘i)(( Di Ps €Pi P3 b3 1) _6‘3—1')_

&

=(pf—81)(p§—32) —pi= —¢s.

[ 2pfps + 2epips i (p} — 8:) —dips 2
%
2p} - & 2ep;

2ep; (pf — 8;)  2pf — 4,
(p1, P2, ps) ¢ k3 then also for i =1, 2

Moreover =220 (i=1,2), thus if

2pfpsi + 2epips—Sips—;  2p!Pst2epips i (pf—3i) —dips 3
P, Y ’ ai ¢k )

hence Sy ¢ S. In order to prove that S c Sy, we proceed by induction with
respect to m = max {degp,, degp,, degps}. If m = 1(1) implies that
pZ—2d,ek or pf—é,ek, hence by Lemma 1 either (2a) holds with
ie{1,2} and (p;, ps, p3s)eSy by (8b) or (8¢c) or (2b) holds and
(P1, P2, P3) €Sy by (3d) or (3e).

Assume now that (1) implies (p;, pz, ps) € Sy provided m < n and
let

max {deg p;, degp,, degpz} =n > 1.

If p2—¢,=0 or pZ—¢,=0 we have (2¢) with i=1 or 2 and
(p1, D2, P3) €Sy by (8b) or (8c). If pZ—d,=0=pZ—2¢, we have
degps = n. If deg p, = 0 we have (2a) with i = 1 and (p;, pz, p3) € Sy by
(3d). If degp, = 0 we have similarly (2a) with i = 2 and (p;, ps, p3) €Sy
by (3e). We may assume therefore that degp; > 0, degp, > 0.

Consider first the case, where degp; = degp,. By Lemma 2 this can
happen only if we have either

do+ Ve o+ Ve
pYorVh, pzs(pzvzalv;_w—)

M p=p, p 3 o]»

or

_ _ /2 /2“3 - 2 _ /3_2 /ﬁ
® p1=p, p2=p 81+ 5, Ps e((p 1) 51+p 31)-
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Now, (7) implies that (2a) holds with ¢ = 0 and we have (3a); (8) im-
plies that (2¢) holds and we have (3f), hence (p;, psz, ps) € So.
Consider now the case, where degp; < degp,. Choose ¢=

= Upyp2)/Ups) and \/p? — &, so that at ¢ = © \/pf — &, = p, (¢) + o(1),

which implies
Vpi—é1=p () + O(|t] ~degpr),

Then define
_‘\/ 2.__3 2
9) p3+eVpi—éips =(p3+efo—81p2)(p—‘%—‘) .
1
We have at { = »
pi + eVpE = 51p5 = O( || em~2aom),
but also

35 — 82 (pf — &1)

2
P3s—eVpr — 1P =
ps +eVpf — 81,

hence

=0( |t|2degm—degps)’

2
P1+VP12—6‘1) _

(10) pg —eVpE—81ps = (ps— eVp{ — 81p2)
V3,

= 0O( |t|4degp1—degp3)
and so
pg' = 0( |t|max{degpa ~ 2degp;, 4degp; — degps} ),
ps = O( |t|max{degpa-3degp1,3degm—degpa} ).
Since 1 < degp, < deg p, = deg p; — degp, we obtain

max {degp;, degp;, degps } <n.
On the other hand, p;, ps, ps € k[t] and satisfy (1), hence by the induc-
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tive assumption (p,, ps, ps ) € So. Now however

2
. | o+ Vpf—¢
(1) ps—eVpf = d1p2 = (p5 +efo—é‘1p2)(—i——\/a_l——l)
1

and so

b

_ 2pfps +2epips — 615 py= 2pZps + 2ep; ps (PF—61) — 813
2~ ’ 3 —
6\1 é‘l

hence by (4a) (p1, p2, p3) € So.
By symmetry between (4a) and (4b) the same holds if

degp, < degp; .

In order to prove the last assertion of the theorem we observe that for
i=1,2,

. . 2
(12) (pf—ai>((’i’£3;/—';’7—p‘°’) —o“s_i)—

_(Pip3 + nps_i(pf — &)

VE

2
) =(pf — 8, )(pf — &) — P

and
pi "

9 =6‘i¢0,
n(pi—38;) pi

which implies S; ¢ S. The proof of the inclusion S c S, is similar to that
of the inclusion S c S, with this difference that the case degp; = degp.
is treated in the same way as degp; < degp, and in the formulae (9),
(10) and (11) the exponent 2 is replaced by 1.

2. Proof of Theorem 2.
We shall deal with the equation

(13) Y3 — o3 =(yf — Ny - 4)

where ¢; = 4b%, be Z.
We define r as the minimal set of triples (p;, ps, p3) of polynomials
in Q[«] with the following properties
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(i) For every choice of ¢, ne {1, —1} we have
(ia) (x, 2¢, 2bn)e T,
(ib) (2¢, x, 2bn) e 7.

(ii) For every choice of ne {1, —1}, putting p = (p;, s, P3) € T
both

. + + npp(pf — 4)

(iia) §D1,,,(P)=<P1, p1p22 nP3 , D1DPs 7)22 1 cr
and

. + PP + 11 (p3 — 4)

(ib) ?02,77(P)=<M2—7m3»172, e

LEMMA 3. If (p;, P2, p3) € T, then
(iii) p; e Zlx] for i =1, 2, 3;
@iv) (p1, P2, p3) satisfies (13);
) for all ny, ns, nze {1, —1} there exists (q;, gz, q3) € T such
that n;p;(x) = q;(ex) for 1 =1, 2, 3;
i) if xge C is such that p;(xy)eZ, i=1,2, 3, then xye Z.

PRrOOF. Since (p;, p2, p3) is obtained by a finite iteration of opera-
tions of type ¢ , starting from either (ia) or (ib), and since (ia) and (ib)
satisfy the four assertions of the Lemma, it suffices to prove that if
some triple p satisfies the assertions, then ¢; ,(p) does.

Now, since p satisfies both (iii) and (iv) by assumption, we have
ps = p1 P2 (mod 27Z[x]) whence (iii) holds for ¢ j,» (D). Also, (iv) follows
from (12). (v) follows from the identity

PPzt nps  PiPs tpe(pf —4) |
N1P15 M2 2 R/E] 2 -

= 01, yinensn (M1P15 M102D2, N1M3P3) -

As to (vi) we observe that if the components of ¢ ; , (p)(xy) belong to Z,
the same is true for the components of ¢; _, o9, ,(p)(@,), by the same
argument which proved p; € Z[x]. But ¢; _, op; , is the identity, and
induction applies. ®

LEMMA 4. Let (s, sz, S3) be a solution of (13) in polynomials
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s; € Q[t] not all constant. Then there exists a polynomial p e Q[t] and
a triple (py, pz, ps) € v such that s;(t) = p;(p(t)) i=1,2,3.

This follows from the last assertion of Th. 1 on noticing that b% + 4 is
not a square, for b= 0. =

The proof of the last assertion of Th. 1 also shows.

LEMMA 5. Each triple p = (p:, p2, p3) € T may be obtained start-
g from some triple py € v such that the maximum degree of the com-
pomnents of py is 1, and applying successively operations of type ¢; , in
such a way as to increase strictly the maximum degree at each
step.

Define |p| = maxdegp;.

LEMMA 6. Ifper and |p| =1, then, either

P = (n1(x + a), 273, 2bns)

or
P = 27y, n2(x + a), 2by;)

for some a € Z and some 7y, ns, nze {1, —1}.

Proor. Let p = (py, ps, p3). By (13) either p, € Q or p; € Q and by
Lemma 1 either p = (p(x), 275, 2bys) or p = (2n, p(x), 2bns) for some
p e Z[x], degp = 1. Now, for instance by (vi) of Lemma 3 the leading
coefficient of p must be *=1. (Alternatively one may show by induction
that leading coefficients of nonconstant polynomials appearing in some
triple in = are *1). =W

LEMMA 7. Let p =(py,ps,p3)er, |p| =2, dy=degp <d,=
=degp,, and assume p’=goj,,](p)=(p1',p2’,p;{) is such that
|p'| > |pl|, di =degp{ <d; =degp;. Then

(dl,d1+d2> or
(d{,d3) =14 (dy—dy, dy) or
(dg, dy + dg)

where the second possibility may happen only if ds > 2d, . (Observe that
| p| =2 implies that min degp; = 1.)
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Proor. From (13) one gets p?— pips=35— 4(pi+ps)+ 16,
whence

deg(p1p2 + ps3) + deg(p1p2 — p3) = 2ds ,

say that deg(p,p, + p3) = degp; = d; + dy (the argument being sym-
metrical if deg(p:p; — ps) = degps). So deg(pip: —p3) =dy — d;.
If j=1, since |p'| > |p| we must have n =1, and we fall in the
first case. If j = 2 we may have either n = 1 falling in the third case, or
n = —1, provided d, — d, > d,;, and we fall in the second case. ®

Let now p,, p, € 7. We define p; ~ p, if p, (2) = p; (n(x + a)) for some
aeZ, ne{l, —1}. Clearly this is an equivalence relation which pre-
serves the max deg function, so we may define N'(D) to be the number
of equivalence classes of triples p in = such that |p| < D.

LeEMMA 8. N(D) < D*, for all D = 2.

Proor. By Lemma 5 we obtain each triple in ¢ starting from the
equivalence class of either (ia) or (ib) and applying operators ¢; , to in-
crease the degree at each step (observe ¢, , preserves the equiva-
lence). After the first step we obtain an equivalence class of one of the
eight triples given by (6b) with p replaced by x, ie. (x, ¢;(x+
+ nb), e5(x? + nbx — 4)), where ¢, ¢5, ne {1, —1}. Define for pairs
(dy, dy) of integers with 1 < d, < d, three operations

al(dy, dg) =(dy, di + dz),
‘B(dly d2)=<d2’ dl +d2>’
Y(dlv dZ) = (dZ_ dl’ d2>,

where y is defined only if d, > 2d;. In view of Lemma 7 we have
N(D) < 8C(D) + 8 where C(D) is the number of sequences &, ..., &
such that each ¢, is either «, or 3, or y and the sum of the components of
8k o...081(1, 1) is bounded by D. If every ¢; is of type « we have at most
D — 1 such sequences. Otherwise let r be the greatest index such that
é, is either 8 or v, so ¢, is « for r<u <k.

Put ¢,0...08,(1, 1) = (m, n). Then, setting k = r + s we have n +
+ (s + 1)m < D. Also (m, n) is in the image of either 8 of y so m = n/2,
whence

3
+3

Assume 4,=p. Then, if (m',n')=¢,_10...08;(1,1) we have

(14) n+ms< (n+(s+1)m)SiD.
s s+3
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B(m', n') = (m, n), whence
15) m’+n'<—§—(m+n).

If on the other hand 8, = v, necessarily 8, _; = a. Observing that yooa =
=, and setting (m’', n') =8, _50...04;(1, 1) again we have m' + n' <
<(2/3)(m + n). In conclusion we may write

(16) C(D)+1<D+2ZC(

=0

ZD)
s+3)/°

Clearly, C(2) = 1. Assume that C(y) + 1< (1/8)y* for2<y <D -1,
D = 3. Then (16) shows

1 4 X 2 4 1 4 1 4
( < = —_ — .
D)+1<D+ (D 3§_—_:0(8 3))<D+1 D*< D

The inequality C(D) + 1 < D* holds, by induction, for all integers
D=2 =

REMARK 1. The inequality N(D)<D2® (B constant) may be
proved also by the (essentially equivalent) method of proof of Th. 4
in[1], c¢f. Remark 7. Perhaps the present method is slightly sim-
pler.

DEFINITION 1. We say that a solution of (13) (¥, ¥, ¥3) in inte-
gers ¥y, Ya, Ys is polynomial if there is a polynomial solution (s;, s,, S3)
of (18) with s; € Q[%], not all constant, and a complex number %, such
that

yi=si(t0) 7,=1, 2, 3.

By Lemma 4 we have y; = (p(t,)) for some triple (p;, ps, p3) € 7,
p € Q[t]. By (vi) of Lemma 3 we have

amn Yyi=pi(@) 1=1,2,3
for some x, € Z.

DEFINITION 2. We define the degree d(y) of a polynomial solution
Y = (Y1, Y2, Ys) to be min |p| where p =(py, pz, ps) is a triple in =

such that (17) holds for some ;e Z.

We choose now C; = max{1/21/d; + 16, exp720}.
Let (1, ¥2, ¥3) be an integer solution of (13), where 0 < y; <
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< ¥,, 0 < y;. If y2 < 4 we have clearly a finite number of possibilities for

Yo, ys. If y7 >4 we set w=yf —4, L=+ Vw)/2, £=ys + 3 Vo,
B=24;— 4w, C= |B| ¢"!. There exists a unique a € Z such that

CI/Z < Eca < CI/ZC.
In view of the choice of C; such a satisfies

log (y5 + %2 Vw) G if y;<Cy,

1
18) |a| < to s i
18) |al log ¢ 2 {2logy3/10gy1 if y,20C.

We set yg + ¥ Vw = £° and observe that ys*, y5 are integers and
that (y,, ys, ysF) is a solution of (13).
Moreover we have easily (ef.[1], formula (33))

(19) |y2*|$ |B|1/2C1/2 < Cl if3$y1$017
Vw 2yl if g = Cy;
C f3<y, <(C,
(20) gl <yt Lo e
2y ify, =C,.
We set

(yr, Ly |, lyst 1), ifyn < |y,
<|y2*|’yl’ly3*|>’ ify1>|?/2*l’
a(yy, ¥, ¥3) = la] .

@1 ¢(y1,yz,y3)={

LEMMA 9. If the solution y = (y;, ¥z, y3) is polynomial, the same
is true of ¢(y), and conversely. Moreover if ¢(y) is of degree d, then
d(y) <29l g,

The proof of the first statement is immediate. We prove the second
statement by induction on |a|. If @ = 0 we have ¢(y) = y, hence the in-
equality 3(y) < 2!*!3(p(y)) holds. Assume that it is true whenever
|a(y)| < and that

(y1, |93 1, |yd 1) or

p(y) =
{<|y3|9 Y1, |y§'(})|>9
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where
yrtyfVw=e, o] =n.
Put
v =(y, lys |, |45 1), where y5 +y; Vw=eg=e.
By the inductive assumption
22) 3(y') <2 1a(e(y) -

By the definition of (') and by Lemma 3 (vi) there exists a triple p' =
=(p{,ps,ps) e and an integer x, € Z such that

1 =pi(x), ¥ =pi®) (E=2,3),
and | p'| =dy’. However

Ys + yo Vw =& = (y3 + y3 Vw) £ ~#"e

hence
(Y1, Y2, Y3) = P1, —sgna (P )(X0)
and
(23) AY) < |p1, -sgma(P')| < degpi +degps <2|p'|.

The inequalities (14) and (15) imply the desired inequality
a(p)<2"3(p(p)). =

We now define the following procedure, applied to any solution of
(13) in natural numbers y,, %5, ¥3; namely we apply several times the
function ¢ until we reach a solution z;, 2z, 23 such that z; =2 0i =1, 2, 3,
2, < 2y, 21 < C;. By (19) this will happen sooner or later. We have z =
=(21, 22, 23) =™ (Y1, Y2, ¥3) (possibly m =0). Three cases may occur.

A) z2 = 4: now the solution z is clearly polynomial and 3(z) = 1.
B) 22 < 4: as observed before we have 2, < Cy, 23 < C;.

C) 3 <2z, <C,. Now a new application of ¢ produces a solution
with components bounded by C;, by (19), (20).



Distribution of solutions of diophantine equations ete. - II 43

We set

) z if we are in case B),
Py, Y2r Ys) = o(z) if we are in case C).
We first deal with case A):

By Lemma 9 the solution (¥, %2, ¥3) is polynomial of degree
< 2lal+ . +lamlg(z) = 2lal+ - +laml To estimate such degree we define
(YY) =max{|a, | + ... + |a, |} where the maximum is taken over all
solutions with y3 < Y.

If y; <C; we have m =0 and no a; appears. Thus if ¥ < C; we
have II(Y) = 0. If y, = C,, then, by (18), |a, | <2 (log Y/logy; ), whence
by (22)

logY

(YY) <2 —— + II(y$?).
logy, u
Since %; <y, we have yZ = (yZ — 4)%, whence y, < VY + 4, so
1 logY
n) <2 -BY | v+ apry <2 28X 4 ey,
log C, log C;
By an easy induction we get
logY  logY
24 I <1 <
@4) (1) <10 logC, 72

for all integers y = 1.

LEMMA 10. Let s = (s, Sz, S3) be a solution of (13) in natural
numbers s;. Then the number H(Y) of solutions (¥, Yz, ¥s), ¥ =0,
ys < Y such that the solution p(yy, ys, y3) introduced above coincides
with 8 satisfies

H(Y) K, Y'3 .
(Clearly we assume that (y,, ys, y3) folls in case B) or C))

PrOOF. Let y = (¥, ¥z, ¥3) be counted in H(Y). If y; < C; then ei-
ther y =8 or ¢(y)=s. If y, > C, then, by (20), ¢(y) is counted in
H((Y + 4)*/%).

On the other hand the number of solutions (¥, ¥z, ¥s), ¥3 < Y, such
that ¢(y;, ¥2, ¥3), is a given solution is easily seen to be bounded by
C; logY, C; = Cy(83) (ef.[1], formula (30)) whence

H(Y) < CylogY - {H((Y + 4)%*) + 1}.
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Iterating this inequality we get the Lemma, and even
H(Y) <;,exp(3(loglogY)’). ®

REMARK 2. Imitating the proof of Theorem 4 in[1] one can prove
H(Y)<log’ Y.

LEMMA 11. Let p e R[x] be a polynomial of degree n = 1 with the
leading coefficient at least 1 in absolute value, and let I be an interval
of length T. Then

#pZ)ND) < #{zxeZ|p@) el} <nT/"+n.

Proor. The first inequality is trivial. Let us prove the second by
induction on =, the case m =1 being immediate. Set ;=
=min{x e Z|p(x) e [} and put

(&) = P@* ) = p@)
Py () = z .

Observe that
—xye Z, p(rg) e [ S xy = a1, p(ay) — p(eey) € I — p(xy)
(@ — 1)1 (@ — 1) el = p(2y) =1,
say. I, is an interval of length T containing 0. So
#{rxeZ|px)el} < #{xeN|ap,(x)el,} <
s#{zeN|zsT/"} + #{xeN|e>TY" ap;(x)el,} <

) 1
<TUn 41+ #{ze N|pi(2) e T/n Il}

since I; contains 0. By induction the last set contains < (n —1)-
(TP Unmyln=14 - 1=(m—-1)T"+n—1 elements, whence the
Lemma follows. =

REMARK 3. Dr. F. Amoroso has observed that the lemma can be
improved by using the properties of the transfinite diameter.

PROOF OF THEOREM 2. Define now %, (Y) as the number of natu-
ral numbers y; < Y such that there exist y;, ¥, such that ¥, y,, y3 is a
polynomial solution of degree p.

Then #,(Y) is bounded by the cardinality of the union of sets of
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type y3(Z) N {0, 1, ..., Y}, where y; runs over the third components of
triples in 7 of degree = u. But we may clearly take one triple only from
each equivalence class.

By Lemma 11 each such set has <uY'*+ u < 2uY'* elements,
and, combining this with Lemma 8 we get

(25) # 2, (V) < 2027V

When p = 2 we directly see that y; (x) may be taken as + (22 + nbx — 4)
where n e {1, —1}. The set y3(Z) N {0, ..., Y} contains either O(1) ele-
ments or \/1_/ + O(1) elements, whence

(26) # 5 (Y) =Y + 0(1)

(In fact (x — 02 +b(x —b) —4=20%—bx —4.)

By the observations following Lemma 11 and by (24) we see that
each solution (y,, ¥;, ;) is either polynomial of degree < 2'°%¢Y/7 or we
fall in case B) or C), where Lemma 10 applies. Thus, since 2°8¥/72 <
< Y'Y, we get, putting everything together

#{ys|0<ys<Y, yf — 3= (yf —4)(y§ — 4) for some y,, yo € Z} =

=VY + 0( > y5Y‘/f‘) + O(H(Y)) =

2<us Y2

= O(Y'?) + 0(1/1/4 > ;ﬁ) =VY +0(Y'5).

p< YU

The equation f; (x;) f; (€2) = f5 («3) under the assumption of the theorem
reduces to (13) by a linear substitution. The condition |x3| <« be-
comes |ys3| <+ O(1) and the theorem follows from (27) on setting
Y =2+ O(1) and allowing y; both positive and negative. =R

Note added in proof.

K. Kashihara in his paper Explicit complete solution in integers of
a class of equations (ax® — b)(ay® — b) = 2% — ¢, Manuscripta Math., 80
(1993), pp. 873-392, gives a method to find all integer solutions of the
equation in the title for a #0, ¢ and b= =1, +2, +4. However
Kashihara does not give any asymptotic formulae.

Paper [1] requires a small correction at page 62, lines 3, 5; namely in
the expressions under square root on the left, a minus sign must be in-
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serted before A43/4. Also, we point out the following paper related
to[1]: S. D. CoHEN, P. ERDOS, M. B. NATHANSON, Prime Polynomial
sequences, J. London Math. Soc. (2), 14 (1976), pp. 559-562.
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