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Representable Equivalences
for Closed Categories of Modules.

SONIA DAL PIO - ADALBERTO ORSATTI (*)

0. Introduction.

0.1. All rings considered in this paper have a nonzero identity and
all modules are unital. For every ring R, Mod-R (R-Mod) denotes the
category of all right (left) R-modules. The symbol MR (RM) is used to
emphasize that M is a right (left) R-module.

Categories and functors are understood to be additive. Any subcat-
egory of a given category is full and closed under isomorphic objects.
N denotes the set of positive integers.

0.2. Recall that a non empty subcategory SR of Mod-R is closed if ~R
is closed under taking submodels, homomorphic images and arbitrary
direct sums. Clearly SR is a Grothendieck category.

It is easy to show that a closed subcategory SR of Mod-R has a gen-
erator and for every generator PR of SR we have:

where Gen (PR ) is the subcategory of Mod-R generated by PR and
Gen (PR ) is the smallest closed subcategory of Mod-R containing
Gen (PR).

0.3. Let SR be a closed subcategory of Mod-R, PR a generator of ~R ,
A = End (PR ). In the search for subcategories of Mod-A which are
equivalent to the functors:

(*) Indirizzo degli AA.: Dipartimento di Matematica Pura ed Applicata, Uni-
versita di Padova, via Belzoni 7, 1-35100 Padova.
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play a crucial role. Indeed we have the following representation
theorem:

Let A and R be two rings, 6DA a subcategory of Mod-A such that
AA E O)A, ~R a closed subcategory of Mod-R. Assume that an equiva-
lence (F, G) between 6DA and ~R is given:

Then there exists a bimodule APR such that

1) PR E ~R, A = E nd (PR ) canonically.
2) The functors F and G are naturally equivalent to the functors

TIOA and H IS,, respectively.

On the other hand a remarkable result of Zimmermann-Huis-

gen [ZH] and Fuller [F] states that, if PR E Mod-R and A = End (PR ),
the following conditions are equivalent:

(a) Gen (PR ) = Gen (PR ).

(b) The functor H: Gen (PR ) -~ Mod-A is full and faithful and AP is
flat.

Therefore H induces an equivalence between Gen (PR ) and Im (H).
We say that a module PR of Mod-R is a W-module if Gen (PR ) is a closed

subcategory of Mod-R or, equivalently, if Gen (PR ) = Gen (PR ).

0.4. Let PR be a W-module, A = End (PR ). The main purpose of this
paper is to find a satisfactory description of Im (H). Instead of using
the Popescu-Gabriel Theorem (cf. [St] Theorem 4.1. Chap. X) we pre-
fer to proceed in a more concrete manner using always the role of the
functors H and T that lead to an interesting torsion theory on
Mod-A.

Set

Since AP is flat, Ker (T) is a localizing subcategory of Mod-A, i.e.

Ker (T) is the torsion class of a hereditary torsion theory in Mod-A.
The corresponding torsion-free class is obtained in the following man-
ner : let QR be a fixed, but arbitrary, injective cogenerator of Mod-R,
KA = HomR (PR , the subcategory of Mod-A cogenerated by
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KA . Then 6D(KA) is the requested torsion-free class and KA is injective
in Mod-A.

The Gabriel filter r----consisting of right ideals of A-associated to
the torsion theory is given by

Equivalently

For every L E Mod-A denote by LI, the module of quotients of L with re-
spect to I’. Set

The main result on the torsion theory (Ker ( T), 6D(KA)) is the follow-
ing : for every L E Mod-A

Then it is easy to show that Im (H) = Mod - (A, r).

0.5. Various properties of W-modules are investigated, in particu-
lar their connection with Fuller’s Theorem on Equivalences.

The work ends with an example concerning the closed subcategory
of Mod-R consisting of semisimple modules.

0.6. REMARK. The class Ker (T) was also investigated by[WW].

1. Representable equivalences.

1.1. Through this paper we use the following standing notations.
Let A, R be two rings and APR a bimodule (left on A and right on R).
Consider the adjoint functors:

For every L E Mod-A and M E Mod-R there exist the natural mor-

phisms :
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and

In the sequel the functors T and H will be suitably restricted and
corestricted.

1.2. Let A, R be two rings, ~A and SR subcategories of Mod-A and
Mod-R respectively. Assume that a category equivalence (F’, G) be-
tween ~A and SR is given:

In this situation we always assume that AA E 6DA.
Set PR = F(A). Then we have the bimodule APR, with A = End (PR )

canonically.

1.3. LEMMA. in the situation (1.2) the functor G is naturally 
alent to the functors HomR (PR , - ) ~ I SR -

PROOF. Let M E §R and consider the following natural isomor-

phisms :

1.4. DEFINITION. We say that the equivalence (F, G) is repre-
sentacble by the bimodule APR(PR = F(A)) if F ~ G = H g . In
this case we say that the bimodule APR represents the equivalence
(F, G).

1.5. Let PR E Mod-R and let Gen (PR ) be the subcategory of Mod-R
generated by PR . Recall that a module M E Mod-R is in Gen (PR ) if
there exists an exact sequence ~ M 2013~ 0 where X is a suitable set.

Gen (PR ) is closed under taking epimorphic images and arbitrary direct
sums. Denote by Gen (PR ) the smallest closed subcategory of Mod-R
containing Gen (PR). Gen (PR) = Gen (PR) if and only if Gen (PR) is
closed under taking submodules. Let APR be a bimodule and let QR be a
fixed, but arbitrary, cogenerator of Mod-R. Set KA = HomR (P, Q) and
denote by 6D(KA) the subcategory of Mod-A cogenerated by KA .



243

1.6. LEMMA. Let APR be a bimoduLe. Then and
Im (H) C W(KA ).

PROOF. See IM021 Prop. 2.2.
For every M E set

Then tp (M) E Gen (PR ) and HomR (PR , M) = HomR (PR , tp (M)) in a nat-
ural way.

1.7. LEMMA. Let APR be a bimodule. Then

a) Im (H) = H(Gen (PR ));
b) M E Gen (PR ) if and only if pM is surjective;
c) L E if and only if a L is injective.

PROOF. See IM021 page 207.

1.8. PROPOSITION. The equivalence (F, G) is representable by the
bimodule A PR (PR = F( A ) ) if and only if for every L E 6DA and for every
M E GR the canonical morphism a Land pM are both isomor-

phisms.

2. W-modules.

2.1. Let ~R be a closed subcategory of Mod-R. Then ~R has a gener-
ator PR and

Indeed let p the filter of all right ideals I of R such that R/I E ~R . Then
PR =EDR/I is a generator of GR and it is easy to check that (1)

Ie p
holds.

2.2. DEFINITION. Let PR E Mod-R, A = End (PR ). Consider the
functors H = HomR (PR , - ) and T = - OA P. We say that PR is a

Wo-module if

(*) the functor H: Gen (PR ) -~ Mod-A subordinates an equivalence be-
tween Gen (PR ) and Im (H)

(whose inverse is given by T I I. (H)

2.3. REPRESENTATION THEOREM. Let 6) A and ~R be subcategories
of Mod-A and Mod-R respectively. Assume that AA E ~A and that ~R is
closed under taking arbitrary direct sums and homomor~phic images.
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Suppose that a category equivalence (F, G) between 6DA and £JR is

given:

Then (F, G) is representable by the bimodule APR (PR = F(A),
A = End (PR )) and ~R = Gen (PR ), Therefore PR is a

Wo-module.

PROOF. By Lemma (1.2), Since Gen(PR) c §R and by
Lemma (1.6), the functor T I A is a left adjoint of the functor G. Since
(F, G) is an equivalence F is a left adjoint of G. Therefore F ~ 
Thus by Lemma (1.6) SR = Gen (PR ). Finally, by Lemma (1.7), 6DA =
= Im(H).

2.4. Under the assumptions of Theorem (2.3) suppose that ~R is a
closed subcategory of Mod-R. Then PR is a Wo-module such that

= Gen (PR ) = Gen (PR).

2.5. Let PR E Mod-R and assume that Gen (PR) = Gen (PR). Then
the condition (*) of 2.2. holds by the following important

2.6. THEOREM. Let PR E Mod-R, A = End (PR ). The following con-
ditions are equivalent:

(a) For every positive integer n, PR generates all submodules

of PR .

(b) Gen (PR ) = Gen (PR ).

( c ) AP is flat and the functor H: Gen (PR ) ~ Mod-A is full an
faithful.

Moreover if the above conditions are fulfilled, then

1) H subordinates an equivalence between Gen (PR ) and
Im (H).

2) The canonical image of R into End (AP) is dense if End (AP) is
endowed with its finite topology.

PROOF. The equivalences (a) - (b) - (c) are due to Zimmermann-
Huisgen (cf. [ZH], Lemma 2.2). The statement (2) is due to Fuller ([F],
Lemma 1.3).

2.7. DEFINITION. Let PR E Mod-R. We say that PR is a W-module
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closed subcategory of Mod-R or equivalently
1.

3. Some properties of W-modules.

3.1. PROPOSITION. Let PR be a W-module, A = End (PR ), B =

= End (AP). Then the bimodule APB is faithfully balanced and Gen (PB )
is naturally equivaLent to Gen (PR ).

PROOF. By Proposition (4.12) of [AF], APB is faithfully balanced.
Endow R with the P-topology r. r is a right linear topology on R and
has as a basis of neighbourhoods of 0 the right ideals of the form
AnnR (F) where F is a finite subset of P. Let be the filter of all right
ideals of R which are open in (R, ~). 

Then ~ = Gen (PR ). Indeed it is obvious that
On the other hand let M E ~ and X E M. Then AnnR (r) a

~ AnnR ... , Pn) p,, I is a finite subset of P. We
have

Since I It follows

that n xR E Gen (PR ) since xR is an homomorphic image of

R/, n 1AnnR (pi). By Theorem 2.2, B is the Hausdorff completion of
i=1

(R, z-), since r is the relative topology on R/AnnR ( P) of the finite topol-
ogy of End (AP). Let f the topology of B. It is clear that i is the P-topol-
ogy of B. For every I let I be the closure of I/AnnR (P) in B. Then
~z = ~l: is a basis of neighbourhoods of 0 in (B, z) and

both in Mod-R and in Mod-B. Therefore Gen(PR) =
= Gen(PB).

3.2. REMARK. Let PR be a W-module, A = End (PR ), H (D AP-
Then, in general, Im (H) ~ 6)(KA) (cf. Lemma 1.6), as the following
example shows.

EXAMPLE. Let PR a generator of Mod-R, A = End (PR ). Clearly PR
is a W-module. Assume that Im (H) = Then by Proposition 3.2
of [M0], Im (H) = Mod-A. (This is a generalization of Fuller’s Theorem
on Equivalences [F]). It follows that the functors T and H give an
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equivalence between Mod-A and Mod-R. By a well known result of
Morita [M], PR is a progenerator of Mod-R. If PR is a generator non pro-
generator in Mod-R then Im (H) ~ 

3.3. The Remark 3.2 shows that the theory of W-modules is not
trivial even if PR is a generator of Mod-R so that Gen (PR ) = Mod-R.
(See 

3.4. We conclude this section giving another generalization of
Fuller’s Theorem on Equivalences. Namely, if PR is a W-module and if
Im (H) is closed under taking homomorphic images, then Im (H) _
= Mod-A. For this purpose we need some preliminar results.

3.5. Let PR E Mod-R, A = End (PR ), M E Gen (PR ). Consider an epi-
morphism h: PR(X) - M - 0 where X is a suitable set. Clearly h =
- where hx E HomR (PR , M). Therefore there exists a natural
injection

An Azumaya’s Lemma (cf. [A], Lemma 1) guarantees that, if p M is in-
jective, then the canonical morphism

is surj ective.

3.6. LEMMA. Let PR be a W-module, A = End (PR) and assume
that Im (H) is closed under taking homomorphic images. Let
M E Gen (PR ) and let h = an epimorphism of onto M.
Then

PROOF. We have in Mod-A the exact sequence

By assumption V E Im (H). Applying the exact functor - (9 AP we get
the exact sequence:
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Since PR is a W-module, p M is an isomorphism (cf. Theorem 2.3 and
Proposition 1.8). Therefore, by Azumaya’s Lemma, T(i) is surjective so
that = 0. It follows V = 0 since the bimodule APR represents a
category equivalence between Im (H) and Gen (PR ).

3.7. DEFINITION. Recall that a module PR E Mod-R is 2:-quasi-pro-
jective if for every diagram with exact row

there exists a E HomR (PR , PkX» such that f = h 0 a.

3.8. DEFINITION. Let PR E A = End (PR ). Recall that PR is
self-small if for every set X # 0 we have

canonically.

3.9. PROPOSITION. Let PR E Mod-R, A = End (PR). The following
conditions are equivalent:

(a) For every M E Gen (PR ) and for every epimorphism h =

(b) PR is -Y-quasi-projective and self-snall.

PROOF. (a) ~ (b). Consider the diagram (1) of 3.7. By assumption
we have with ax E A and almost all ax’s vanish. Consider

the morphism g : given by g = (ax)xex, Then f = h o g. There-
fore PR is .L’-quasi-projective. Let us show that PR is self-small. Let

ix : the x-th inclusion and consider the diagram with exact
row
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We have with ax E A and almost all ax’s vanish. Let g =

x. · Then hence HomR (PR , PR) = A (X).

(b) - (a). Let f E HomR (P, M) and let h: 0 be an epi-
morphism. Then there exists a morphism g : such that

f = h o g. On the other hand g = with ax E A and almost all ax’s
vanish, hence f E 2: hx A.

zEX

3.10. THEOREM. Let PR be a A = End (PR ) and assume
that Im (H) is closed under taking homomorphic images. Then
Im (H) = Mod-A.

PROOF. We have = A « ® AP = PR in a natural way. By
Lemma 3.6 and Proposition 3.9 PR is self-small, hence 
= HomR (PR , = A (x). Thus A « E Im (H). Let L E Mod-A. There
exists an exact sequence A « -~ L ~ 0, so that L E Im (H).

4. The torsion theory (Im (T), 

From now on we assume the reader familiar with some elementary
facts on torsion theories. See [St] or [N].

4.1. In all this section PR is a W-module with A = End (PR). Set, as
usual, T = - (9 AP and H = HomR (PR , - ). The bimodule APR repre-
sents an equivalence between Im (H) and Gen (PR ) = Gen (PR ).

4.2. Consider the following subcategory of Mod-A

4.3. LEMMA. is a localizing subcategory of Mod-A i.e.
the torsion class for a hereditary torsion theory on

Mod-A.

PROOF. It is obvious that Ker (7J is closed under taking homomor-
phic images, direct sums and extensions. On the other hand, since AP is
flat, Ker(T) is closed under taking submodules.

The Gabriel filter 1’ canonically associated to the localizing subcate-
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gory is given by setting

Clearly

Let L E Mod-A. The torsion submodule tr (L ) of L is defmed by
setting

Then the category of torsion-free modules is

For every L E Mod-A, L/tr (L ) is torsion free. If no confusion arises, we
write t(L) instead of 

Let QR be a fixed, but arbitrary, injective cogenerator of Mod-R,
KA = HomR (PR , QR ), the subcategory of Mod-A, cogenerated
by KA . Since AP is flat, KA is injective in Mod-A.

4.4. LEMMA.

PROOF. For every L E Mod-A we have the canonical isomor-

phisms :

Since QR is a cogenerator in Mod-R we have

4.5. PROPOSITION.

PROOF. Let L e Then tr(L) = 0. Let l E L, 1 # 0. Then
lA f1. Ker ( T ) hence, by Lemma 4.4, HomA (lA, KA ) # 0. Let f : KA
a non zero morphism. Since KA is injective in Mod-A, f extends to a
morphism 1: L - KA and f (L) ~ 0. It follows L e 

Conversely let L E and let L ’ ~ L such that L ’ e Ker ( T ). By
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Lemma 4.4 we have HomA (L ’ , KA ) = 0. On the other hand there exists
an exact sequence 0 - L -~ KI where X is a suitable set. Then L ’ - 0,
so that L E ~r .

4.6. COROLLARY. (a) The torsion theory (Ker (T), 6D(KA)) is cogen-
erated by the injective module 

(b) Since Im (H) g the modules in Im (H) are torsion-
free.

4.7. PROPOSITION. For every L E Mod-A consider the canonical

mor~phism aL: L - HomR (PR , L ® AP). Then:

PROOF. We have:

4.8. Let L E Mod-A, I, J E r, I ; J. Consider the natural mor-

phism

given by restrictions. For every L E Mod-A set:

and, since A is torsion-free

It is well known that Lr is a right A-module, Ar is a ring and moreover
Lr is a right Ar-module.

is called the ring of quotients of A and Lr the module of quotients
of L with respect to the Gabriel filter r. For every L E Mod-A, Lr is also
called the Localization of L at r.

For every L E Mod-A there exists a canonical morphism L -~ Lr
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such that

A - Ar is a ring morphism.

4.9. LEMMA. Let I E r.
Then HomA (A/I, A) = 0 and ExtA (A/I, A) = 0.

PROOF. See Proposition 1.2.

4.10. COROLLARY. The canonical mor~phism A -Ar is a ring
isomorphism..

PROOF. By Corollary 4.6 A is torsion-free. Let I E r and let
I-A be the canonical inclusion. By Lemma 4.9 the exact se-

quence

gives rise to the exact sequence:

Therefore a*: HomA (A, A) - HomA (I, A) is an isomorphism i.e. any
morphism I -~ A extends uniquely to an element of A. Then, if I, J E r
and I % J, the restriction map HomA (I , A) - HomA ( J, A ) is an

isomorphism.

4.11. DEFINITIONS. Recall that a module L E Mod-A is r-injective
if for every I E r the restriction morphism

is surjective.
L is r-injective if and only if for every

N E Ker( T).
A module L E Mod-A is called r-closed if for every I E 1’ the above

morphism (1) is an isomorphism.
The following results are classical in torsion theories.

4.12. THEOREM. Let L E Mod-A The following conditions are

equivalent:
(a) L is 
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(b) L E and L is 

(c) for every morphism a: U ~ V in Mod-A such that

Ker ( a ) E Ker ( T ) and Coker (,x) E Ker ( T ), the transposed
morphism an isomorphism;

(d) the canonical morphism L - Lr is an isomorphism.

4.13. COROLLARY. For every L E Mod-A, Lr is r-closed.

5. A characterization of Im (H).

5.1. In all this section we work in situation 4.1.
Denote by the subcategory of Mod-A whose objects are

all the r-closed modules in Mod-A. By Theorem 4.12 we can write

Our main result is the following theorem which, together with Theo-
rem 2.6, gives easily the Popescu-Gabriel Theorem in our setting.

5.2. THEOREM. Let PR E Mod-R be a W-module, A = End (PR ),
H = HomR (PR , - ), T = - ® AP. Then for every L E Mod-A we have

PROOF. For every L E Mod-A, we have

Indeed, consider the exact sequence

Tensoring by AP and since tr(L) and are in we

get (1).
We now prove that, for every L E Mod-A, Lr E Im (H) from which it

will follow

by Theorem 2.3.
Indeed assume L = Lr . Since L E (cf. Theorem 4.12), aL is in-

jective. Consider the exact sequence
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Since T and H are adjoint functors there exists the commutative

diagram

Since T(L) E Gen (PR ), P T(L) is an isomorphism hence T( a L) is an iso-

morphism too. Applying T in (2) we get the exact sequence

It follows Coker (7L) Ei Ker (T). Since L is F-injective, the exact se-

quence (2) splits hence:

therefore Coker (aL) = 0 because HT(L) is torsion-free. Thus aL is an
isomorphism and L E Im (H).

5.3. COROLLARY. Under the assumptions of Theorem 5.2

PROOF. Let L E Im (H). Then L = HT(L), hence L = Lr . If L = Lr
then L = HT(L), hence L E Im (H).

6. The trace ideal of AP in A.

6.1. Let PR be a W module, A = End (PR ). Define the trace ideal r
of AP in A by setting

T is a two-sided ideal of A.

6.2 LEMMA Proposition 1.5 and Theorem 1.6). Let PR be a
W-module, A = End (PR ). Then r c n I.

ier

If moreover PR is a generator o, f Mod-R, then:
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c) the left annihilator of r is 0;

d) r is finitely generated as a two-sided ideal;

e) r is essential as a right ideal.

6.3 COROLLARY. Let PR be a generator of A = End (PR).
Then for every L E Mod-A

7. An example: closed spectral subcategories of Mod-R.

7.1. Let SR be a closed subcategory of Mod-R, PR a generator of SR,
A = End (PR ). Set, as usual, T = - 0 AP, H = HomR (PR , - ). Let r be
the Gabriel filter associated to the hereditary torsion theory
(Ker (T), 6D(KA)). Then SR is naturally equivalent to the subcategory
Im (H) = Mod - (A, r) of Mod-A.

Recall that the subcategory Mod - ( A, r ) is closed under taking in-
jective envelopes and direct products in Mod-A.

7.2. We are interested in finding conditions in order that every
module L E Mod - ( A, r) is injective in Mod-(A, 1) or, equivalently, in
Mod-A.

7.3 LEMMA, The sequence in Mod-(A, r)

is exact in Mod-(A, I) if and only if

1) f is injective;

PROOF. Assume that (1) is exact in Then we have the
exact sequence
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Since SR is closed, (2) is exact in Mod-R. Therefore the sequence

is exact in Mod-A; thus f is injective and 1m (f) = Ker (g).
Assume that Ker (T). Then we have the exact sequence

in Mod-A:

Applying T we get T(N/Im (g)) # 0, in contrast with (2).
Conversely, if conditions 1), 2) and 3) hold for the sequence (1), then

the sequence (2) is exact in ~R and (1) is exact in Mod-(§4 r).

7.4. Assume that every module in is injective. Let

be an exact sequence in Since L is injective, we have

where L ’ = Im (g ) ~ N. Let us show that

L ’ = N cononically.

Observe that L ’ E Mod - (A, r). In fact L ’ is torsion free and, being in-
jective, it is r-mjective. We have N = LED L ", with L " = N/ Im (g).
Since L ’ E W (KA ) and L " E Ker ( T ) we get N = L ’ .

7.5 PROPOSITION. Assume that every module in Mod-(A~ 1’) is in-

jective. The sequence

with L, M, N E Mod - (A, r) is exact in Mod-A if and only if it is exact
in Mod-A.

In this case (1) splits.

7.6 LEMMA. Let M E SR = Gen (PR ), N E Mod-R and let f : M --~ N
be a morphism. Then Im (f)  tp (N).

PROOF. Assume that M = is a set. Let h: P« -~
-~ N be a morphism. Then with hx E HomR (P, N). Let
p E P «. Then p = with pz E P and pz = 0 for almost all x E X.
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We have

Let M E Gen (PR ), f E HomR (M, N). There exists a diagram

with h a surjective morphism. It is hence

Im ( f o h) ~ tp (N) and Im ( f o h) = Im ( f ).

7.7 PROPOSITION. Let £1R be a closed subcategory of Mod-R, PR a
generator o, f A = End (PR ). The following conditions are equiva-
lent :

(a) every module in is injective;
( b ) £1R is a spectral category.

In this case every module in £1R is semisimple.

PROOF. ( a ) ~ ( b ) By Proposition 7.5 every short exact sequence in
gR splits. Therefore such a sequence splits in Mod-R. Then every mod-
ule in gR is semisimple so that gR is spectral.

(b) ~ (a) Let Then L = H(M), with
M E £1R’ Since QR is a cogenerator in Mod-R, there exists an exact se-
quence in Mod-R

where X is a suitable set. By Lemma 7.6, 
e Gen (P R) = Since f1R is spectral, M is a direct summand of tp 
Therefore L = H(M) is a direct summand of On the other

hand, = = KA which is injective.

7.8 PROPOSITION Let f1R be a closed spectral subcategory of Mod-R,
PR a generator of f1R and A = E nd (PR ). Then:

a ) for every L e Mod-A the following conditions are equiva-
lent :

(i) L E Mod - ( A, r );
(ii) L is a direct summand of a module of the form A x, where

X is a non empty set;

b) the ring A is von Neumann regular and right self injective.
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PROOF. a) ( i ) ~ ( ii ) Let X be a non empty set. We show that

H(P£* ) is a direct summand of Ax. In fact:

Since H(P£* ) is injective, H(P£* ) is a direct summand of AX. Let
L E Mod - (A,1-’) be an injective module. Then L = H(M), for some
M E gR . Then H(M) is a direct summand of a module of the form

H(PkX», hence L is a direct summand of A~.

(ii)=&#x3E;(i) If L is a direct summand of AX, L is torsion free and it is
r-injective, being injective. Therefore L E Mod - ( A,1-’ ).

b) Since PR is semisimple, A is von Neumann regular (cf. [St],
Chap. I, Prop. 12.4). Clearly A is right self-injective.

7.9. Let gR be a closed spectral subcategory of PR a genera-
tor of gR and A = End (PR ). In this case the filter 1-’ has a nice descrip-
tion using the trace ideal of AP in AA.

7.10. Fix a simple module ,S E Mod-R and denote by the spec-
tral subcategory of Mod-R consisting of all semisimple modules which
are a direct sum of copies of S.

Fix a positive cardinal number a. Then

is a projective generator and an injective cogenerator of 2J(S). Let
D = End (SR ), A = End (PR ). Then D is a division ring and A is the
ring of all a x a matrices, with entries in D, whose columns have only a
finite number of non zero elements. It follows that A = End (D(a»,
where D (a) is considered as a right vector space over the division ring
D.

Let 1, be the usual Gabriel filter on A. Let 7 be the trace ideal of AP
in AA:

a) AP is a semisimple module in A-Mod.

PROOF. Since PR is an injective cogenerator of 1:(S), then PR is

strongly quasi-injective in the sense of [MO1]. Applying Proposition
6.10 of [M01] we have

Soc (AP) = Soc (PR) = P

and thus AP is semisimple.
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Let L~ be the minimal two-sided non zero ideal of A. As it is well
known, L~ consists of all the endomorphism of D(") whose image is fi-
nite dimensional. L~ has the following properties:

i) L(JJ = Soc (4A) = Soc (AA );
ii) the right ideals of A containing L~ are exactly the essential

right ideals of A.

Therefore we have, by i),

Thus T  Lw 

b) The trace ideal r = L~.

PROOF. Let us show that 0; it will follow that r = Lw, since r is
two-sided and L~ is the minimal two-sided non zero ideal of A.

Let J be a maximal right ideal of R such that R/J = SR. The exact
sequence

gives rise, by applying HomR ( - , PR ), to the exact sequence

Thus

since SR is finitely generated. Therefore AP contains a direct summand
of the form Annp ( J ) = HomR (,S, PR ) = D (a) and it is well known that
HomA (D ~"~ , A) ~ 0.

c) Let f be an endomorphism of PR such that Im (f) is finitely
generated. Then f E L(J)’

PROOF. In fact f may be represented by an oc x « matrix having
only a finite number of non zero rows. Then this matrix represents an
endomorphism of D(") whose image is finite dimensional. Therefore
f E Lw.

d) L~P = P; hence L~ E r and thus

PROOF. Let x E 0, and let f be the projection of PR onto the
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submodule F generated by x, such that f(x) = x. Since F is finitely gen-
erated, f E L~. Thus L~P = P.

The last statement follows from Lemma 6.2.

We now consider closed spectral subcategories of Mod-R in the gen-
eral case.

7.11 PROPOSITION. Let SR be a closed spectral subcategory of
Mod-R, PR a generator of SR and A = End (PR ). Let r be the usual
Gabriel filter on A and r be the trace of AP in AA. Then:

Consequently r consists of all essential right ideals of A.

PROOF. Let be a system of representatives of all non iso-
morphic simple modules in f1R’ Set Dd, = E ndR (,Sd ). We have

where the a s’s are non zero cardinal numbers. PR is a projective genera-
tor and an injective cogenerator of SR. Next we have:

where .
Let T be the trace ideal of AP in A; note that .~ is essential in

where L,, (a) is the smallest two-sided ideal of the ring Aa. Hence

Then

Hence
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As we know, Let us show that In fact

7.12 REMARK. We think that a number of more interesting exam-
ples may be constructed from the recent paper of Albu and Wis-
bauer [AW].
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