RENDICONTI del Seminario Matematico della Università di Padova

SONIA DAL PIO Adalberto Orsatti

Representable equivalences for closed categories of modules

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p. 239-260

http://www.numdam.org/item?id=RSMUP_1994_92_239_0

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Representable Equivalences for Closed Categories of Modules.

Sonia Dal Pio - Adalberto Orsatti (*)

0. Introduction.

0.1. All rings considered in this paper have a nonzero identity and all modules are unital. For every ring R, Mod-R (R-Mod) denotes the category of all right (left) R-modules. The symbol M_R ($_RM$) is used to emphasize that M is a right (left) R-module.

Categories and functors are understood to be additive. Any subcategory of a given category is full and closed under isomorphic objects. N denotes the set of positive integers.

0.2. Recall that a non empty subcategory \mathcal{G}_R of Mod-*R* is *closed* if \mathcal{G}_R is closed under taking submodels, homomorphic images and arbitrary direct sums. Clearly \mathcal{G}_R is a Grothendieck category.

It is easy to show that a closed subcategory \mathcal{G}_R of Mod-*R* has a generator and for every generator P_R of \mathcal{G}_R we have:

$$\mathcal{G}_R = \operatorname{Gen}\left(P_R\right) = \overline{\operatorname{Gen}}\left(P_R\right)$$

where Gen (P_R) is the subcategory of Mod-*R* generated by P_R and $\overline{\text{Gen}}(P_R)$ is the smallest closed subcategory of Mod-*R* containing Gen (P_R) .

0.3. Let \mathcal{G}_R be a closed subcategory of Mod-R, P_R a generator of \mathcal{G}_R , $A = \operatorname{End}(P_R)$. In the search for subcategories of Mod-A which are equivalent to \mathcal{G}_R , the functors:

$$H = \operatorname{Hom}_{R}(P_{R}, -): \operatorname{Mod} R \to \operatorname{Mod} A,$$
$$T = - \otimes_{A} P: \operatorname{Mod} A \to \operatorname{Mod} R,$$

(*) Indirizzo degli AA.: Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Belzoni 7, I-35100 Padova.

play a crucial role. Indeed we have the following representation theorem:

Let A and R be two rings, \mathcal{O}_A a subcategory of Mod-A such that $A_A \in \mathcal{O}_A$, \mathcal{G}_R a closed subcategory of Mod-R. Assume that an equivalence (F, G) between \mathcal{O}_A and \mathcal{G}_R is given:

$$\mathcal{O}_A \stackrel{F}{\underset{G}{\rightleftharpoons}} \mathcal{G}_R$$

Then there exists a bimodule $_{A}P_{R}$ such that

- 1) $P_R \in \mathcal{G}_R$, $A \cong \text{End}(P_R)$ canonically.
- 2) The functors F and G are naturally equivalent to the functors $T|_{\mathfrak{Q}_A}$ and $H|_{\mathfrak{S}_R}$ respectively.
- 3) $\mathcal{G}_R = \operatorname{Gen}(P_R) = \overline{\operatorname{Gen}}(P_R), \ \mathcal{O}_A = \operatorname{Im}(H).$

On the other hand a remarkable result of Zimmermann-Huisgen[ZH] and Fuller[F] states that, if $P_R \in \text{Mod-}R$ and $A = \text{End}(P_R)$, the following conditions are equivalent:

- (a) $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}}(P_R).$
- (b) The functor $H: \text{Gen}(P_R) \to \text{Mod-}A$ is full and faithful and $_AP$ is flat.

Therefore H induces an equivalence between $\text{Gen}(P_R)$ and Im(H). We say that a module P_R of Mod-R is a W-module if $\text{Gen}(P_R)$ is a closed subcategory of Mod-R or, equivalently, if $\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$.

0.4. Let P_R be a W-module, $A = \text{End}(P_R)$. The main purpose of this paper is to find a satisfactory description of Im(H). Instead of using the Popescu-Gabriel Theorem (cf. [St] Theorem 4.1. Chap. X) we prefer to proceed in a more concrete manner using always the role of the functors H and T that lead to an interesting torsion theory on Mod-A.

 \mathbf{Set}

$$\operatorname{Ker}(T) = \left\{ L \in \operatorname{Mod} A: \ L \otimes_A P = 0 \right\}.$$

Since ${}_{A}P$ is flat, Ker(T) is a localizing subcategory of Mod-A, i.e. Ker(T) is the torsion class of a hereditary torsion theory in Mod-A. The corresponding torsion-free class is obtained in the following manner: let Q_R be a fixed, but arbitrary, injective cogenerator of Mod-R, $K_A = \text{Hom}_R(P_R, Q_R), \, \mathcal{O}(K_A)$ the subcategory of Mod-A cogenerated by K_A . Then $\mathcal{O}(K_A)$ is the requested torsion-free class and K_A is injective in Mod-A.

The Gabriel filter Γ —consisting of right ideals of A—associated to the torsion theory (Ker $(T), \mathcal{O}(K_A)$) is given by

$$\Gamma = \left\{ I \leq A_A \colon \frac{A}{I} \in \operatorname{Ker}\left(T\right) \right\}.$$

Equivalently

$$\Gamma = \{ I \leq A_A \colon IP = P \}.$$

For every $L \in Mod$ -A denote by L_{Γ} the module of quotients of L with respect to Γ . Set

$$Mod - (A, \Gamma) = \{L \in Mod - A: L = L_{\Gamma}\}$$

The main result on the torsion theory $(\text{Ker}(T), \mathcal{O}(K_A))$ is the following: for every $L \in \text{Mod}-A$

$$L_{\Gamma} = HT(L).$$

Then it is easy to show that $Im(H) = Mod - (A, \Gamma)$.

0.5. Various properties of W-modules are investigated, in particular their connection with Fuller's Theorem on Equivalences.

The work ends with an example concerning the closed subcategory of Mod-R consisting of semisimple modules.

0.6. REMARK. The class Ker(T) was also investigated by [WW].

1. Representable equivalences.

1.1. Through this paper we use the following standing notations. Let A, R be two rings and $_{A}P_{R}$ a bimodule (left on A and right on R). Consider the adjoint functors:

$$T = - \bigotimes_A P: \operatorname{Mod} A \to \operatorname{Mod} R,$$
$$H = \operatorname{Hom}_R(P_R, -): \operatorname{Mod} R \to \operatorname{Mod} A.$$

For every $L \in Mod-A$ and $M \in Mod-R$ there exist the natural morphisms:

$$\sigma_L \colon L \to HT(L) = \operatorname{Hom}_R(P_R, L \otimes_A P)$$
$$\sigma_L(l) \colon p \mapsto l \otimes p \quad (p \in P, l \in L)$$

and

$$\rho_m: TH(M) = \operatorname{Hom}_R(P_R, M) \otimes_A P \to M,$$

$$\rho_M(f \otimes p) = f(p) \quad (f \in \operatorname{Hom}_A(P, M), p \in P)$$

In the sequel the functors T and H will be suitably restricted and corestricted.

1.2. Let A, R be two rings, \mathcal{O}_A and \mathcal{G}_R subcategories of Mod-A and Mod-R respectively. Assume that a category equivalence (F, G) between \mathcal{O}_A and \mathcal{G}_R is given:

$$\mathcal{O}_A \stackrel{F}{\underset{G}{\rightleftharpoons}} \mathcal{G}_R, \quad G \circ F \approx \mathbf{1}_{\mathcal{O}_A}, \quad F \circ G \approx \mathbf{1}_{\mathcal{G}_R}.$$

In this situation we always assume that $A_A \in \mathcal{O}_A$.

Set $P_R = F(A)$. Then we have the bimodule ${}_AP_R$, with $A = \text{End}(P_R)$ canonically.

1.3. LEMMA. in the situation (1.2) the functor G is naturally equivalent to the functor $\operatorname{Hom}_{R}(P_{R}, -)|_{\mathcal{G}_{R}}$.

PROOF. Let $M \in \mathcal{G}_R$ and consider the following natural isomorphisms:

 $G(M) \cong \operatorname{Hom}_{A}(A, G(M)) \cong \operatorname{Hom}_{R}(F(A), FG(M)) \cong \operatorname{Hom}_{R}(P_{R}, M).$

Thus $G \approx H|_{S_R}$.

1.4. DEFINITION. We say that the equivalence (F, G) is representable by the bimodule ${}_{A}P_{R}(P_{R}=F(A))$ if $F \approx T|_{\varpi_{A}}$ and $G \approx H|_{\Re}$. In this case we say that the bimodule ${}_{A}P_{R}$ represents the equivalence (F, G).

1.5. Let $P_R \in \text{Mod-}R$ and let $\text{Gen}(P_R)$ be the subcategory of Mod-R generated by P_R . Recall that a module $M \in \text{Mod-}R$ is in $\text{Gen}(P_R)$ if there exists an exact sequence $P_R^{(X)} \to M \to 0$ where X is a suitable set. Gen (P_R) is closed under taking epimorphic images and arbitrary direct sums. Denote by $\overline{\text{Gen}}(P_R)$ the smallest closed subcategory of Mod-R containing $\text{Gen}(P_R)$. Gen $(P_R) = \overline{\text{Gen}}(P_R)$ if and only if $\text{Gen}(P_R)$ is closed under taking submodules. Let $_AP_R$ be a bimodule and let Q_R be a fixed, but arbitrary, cogenerator of Mod-R. Set $K_A = \text{Hom}_R(P, Q)$ and denote by $\mathcal{O}(K_A)$ the subcategory of Mod-A cogenerated by K_A .

1.6. LEMMA. Let $_{A}P_{R}$ be a bimodule. Then $\operatorname{Im}(T) \subseteq \operatorname{Gen}(P_{R})$ and $\operatorname{Im}(H) \subseteq \mathcal{O}(K_{A})$.

PROOF. See [MO₂] Prop. 2.2.

For every $M \in Mod-R$ set $t_P(M) = \sum \{ \operatorname{Im}(f): f \in \operatorname{Hom}_R(P, M) \}$. Then $t_p(M) \in \operatorname{Gen}(P_R)$ and $\operatorname{Hom}_R(P_R, M) \cong \operatorname{Hom}_R(P_R, t_p(M))$ in a natural way.

1.7. LEMMA. Let $_{A}P_{R}$ be a bimodule. Then

a) $\operatorname{Im}(H) = H(\operatorname{Gen}(P_R));$

- b) $M \in \text{Gen}(P_R)$ if and only if ρ_M is surjective;
- c) $L \in \mathcal{O}(K_A)$ if and only if σ_L is injective.

PROOF. See [MO₂] page 207.

1.8. PROPOSITION. The equivalence (F, G) is representable by the bimodule ${}_{A}P_{R}$ $(P_{R} = F(A))$ if and only if for every $L \in \mathcal{O}_{A}$ and for every $M \in \mathcal{G}_{R}$ the canonical morphisms σ_{L} and ρ_{M} are both isomorphisms.

2. W-modules.

2.1. Let \mathcal{G}_R be a closed subcategory of Mod-*R*. Then \mathcal{G}_R has a generator P_R and

(1)
$$\mathcal{G}_R = \operatorname{Gen}(P_R) = \operatorname{Gen}(P_R).$$

Indeed let \wp the filter of all right ideals I of R such that $R/I \in \mathcal{G}_R$. Then $P_R = \bigoplus_{I \in \wp} R/I$ is a generator of \mathcal{G}_R and it is easy to check that (1) holds.

2.2. DEFINITION. Let $P_R \in \text{Mod-}R$, $A = \text{End}(P_R)$. Consider the functors $H = \text{Hom}_R(P_R, -)$ and $T = -\bigotimes_A P$. We say that P_R is a W_0 -module if

(*) the functor $H: \text{Gen}(P_R) \to \text{Mod-}A$ subordinates an equivalence between $\text{Gen}(P_R)$ and Im(H)

(whose inverse is given by $T|_{Im(H)}$).

2.3. REPRESENTATION THEOREM. Let \mathcal{O}_A and \mathcal{G}_R be subcategories of Mod-A and Mod-R respectively. Assume that $A_A \in \mathcal{O}_A$ and that \mathcal{G}_R is closed under taking arbitrary direct sums and homomorphic images.

Suppose that a category equivalence (F, G) between \mathcal{O}_A and \mathcal{G}_R is given:

$$\mathcal{O}_A \stackrel{F}{\underset{G}{\rightleftharpoons}} \mathcal{G}_R$$
.

Then (F, G) is representable by the bimodule ${}_{A}P_{R}$ $(P_{R} = F(A), A = \text{End}(P_{R}))$ and $\mathcal{G}_{R} = \text{Gen}(P_{R}), \mathcal{O}_{A} = \text{Im}(H)$. Therefore P_{R} is a W_{0} -module.

PROOF. By Lemma (1.2), $G \approx H|_{\mathfrak{S}_R}$. Since $\operatorname{Gen}(P_R) \subseteq \mathfrak{S}_R$ and by Lemma (1.6), the functor $T|_{\mathfrak{Q}_A}$ is a left adjoint of the functor G. Since (F, G) is an equivalence F is a left adjoint of G. Therefore $F \approx T|_{\mathfrak{Q}_A}$. Thus by Lemma (1.6) $\mathfrak{S}_R = \operatorname{Gen}(P_R)$. Finally, by Lemma (1.7), $\mathfrak{Q}_A = = \operatorname{Im}(H)$.

2.4. Under the assumptions of Theorem (2.3) suppose that \mathcal{G}_R is a closed subcategory of Mod-R. Then P_R is a W_0 -module such that $\mathcal{G}_R = \text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$.

2.5. Let $P_R \in \text{Mod-}R$ and assume that $\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$. Then the condition(*) of 2.2. holds by the following important

2.6. THEOREM. Let $P_R \in Mod-R$, $A = End(P_R)$. The following conditions are equivalent:

- (a) For every positive integer n, P_R generates all submodules of P_R^n .
- (b) $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}}(P_R).$
- (c) $_{A}P$ is flat and the functor H: Gen $(P_{R}) \rightarrow Mod-A$ is full an faithful.

Moreover if the above conditions are fulfilled, then

- 1) H subordinates an equivalence between $Gen(P_R)$ and Im(H).
- 2) The canonical image of R into $\operatorname{End}(_{A}P)$ is dense if $\operatorname{End}(_{A}P)$ is endowed with its finite topology.

PROOF. The equivalences $(a) \Leftrightarrow (b) \Leftrightarrow (c)$ are due to Zimmermann-Huisgen (cf. [ZH], Lemma 2.2). The statement (2) is due to Fuller ([F], Lemma 1.3).

2.7. DEFINITION. Let $P_R \in Mod-R$. We say that P_R is a W-module

if $\operatorname{Gen}(P_R)$ is a closed subcategory of Mod-*R* or equivalently $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}}(P_R)$.

3. Some properties of W-modules.

3.1. PROPOSITION. Let P_R be a W-module, $A = \text{End}(P_R)$, $B = \text{End}(_AP)$. Then the bimodule $_AP_B$ is faithfully balanced and Gen (P_B) is naturally equivalent to Gen (P_R) .

PROOF. By Proposition (4.12) of [AF], ${}_{A}P_{B}$ is faithfully balanced. Endow R with the P-topology τ . τ is a right linear topology on R and has as a basis of neighbourhoods of 0 the right ideals of the form $\operatorname{Ann}_{R}(F)$ where F is a finite subset of P. Let \mathcal{F}_{τ} be the filter of all right ideals of R which are open in (R, τ) . Set $\mathcal{I}_{\tau} = \{M \in \operatorname{Mod} - R: \forall x \in M, \operatorname{Ann}_{R}(x) \in \mathcal{F}_{\tau}\}$. Then $\mathcal{I}_{\tau} = \operatorname{Gen}(P_{R})$. Indeed it is obvious that $\operatorname{Gen}(P_{R}) \subseteq \mathcal{I}_{\tau}$. On the other hand let $M \in \mathcal{I}_{\tau}$ and $x \in M$. Then $\operatorname{Ann}_{R}(x) \geq \operatorname{Ann}_{R}(p_{1}, \ldots, p_{n})$ where $\{p_{1}, \ldots, p_{n}\}$ is a finite subset of P. We have

$$\frac{R}{\bigcap_{i=1}^{n} \operatorname{Ann}_{R}(p_{i})} \hookrightarrow \bigoplus_{i=1}^{n} \frac{R}{\operatorname{Ann}_{R}(p_{i})} \cong \bigoplus_{i=1}^{n} p_{i}R \in \operatorname{Gen}(P_{R})$$

Since $\operatorname{Gen}(P_R) = \overline{\operatorname{Gen}}(P_R)$ it is $R/\bigcap_{i=1}^{n} \operatorname{Ann}_R(p_i) \in \operatorname{Gen}(P_R)$. It follows that $n \ xR \in \operatorname{Gen}(P_R)$ since xR is an homomorphic image of $R/\bigcap_{i=1}^{n} \operatorname{Ann}_R(p_i)$. By Theorem 2.2, B is the Hausdorff completion of (R, τ) , since τ is the relative topology on $R/\operatorname{Ann}_R(P)$ of the finite topology of $\operatorname{End}(_AP)$. Let $\hat{\tau}$ the topology of B. It is clear that $\hat{\tau}$ is the P-topology of B. For every $I \in \mathcal{F}_{\tau}$ let \overline{I} be the closure of $I/\operatorname{Ann}_R(P)$ in B. Then $\overline{\mathcal{F}_{\tau}} = \{\overline{I}: I \in \mathcal{F}_{\tau}\}$ is a basis of neighbourhoods of 0 in $(B, \hat{\tau})$ and $R/I \cong B/\overline{I}$ both in Mod-R and in Mod-B. Therefore $\operatorname{Gen}(P_R) = = \operatorname{Gen}(P_B)$.

3.2. REMARK. Let P_R be a W-module, $A = \text{End}(P_R)$, $H = -\bigoplus_A P$. Then, in general, $\text{Im}(H) \neq \mathcal{O}(K_A)$ (cf. Lemma 1.6), as the following example shows.

EXAMPLE. Let P_R a generator of Mod-R, $A = \text{End}(P_R)$. Clearly P_R is a W-module. Assume that $\text{Im}(H) = \mathcal{O}(K_A)$. Then by Proposition 3.2 of [MO₂], Im (H) = Mod-A. (This is a generalization of Fuller's Theorem on Equivalences [F]). It follows that the functors T and H give an

equivalence between Mod-A and Mod-R. By a well known result of Morita [M], P_R is a progenerator of Mod-R. If P_R is a generator non progenerator in Mod-R then $\text{Im}(H) \neq \mathcal{O}(K_A)$

3.3. The Remark 3.2 shows that the theory of W-modules is not trivial even if P_R is a generator of Mod-R so that Gen $(P_R) = Mod-R$. (See [WW]).

3.4. We conclude this section giving another generalization of Fuller's Theorem on Equivalences. Namely, if P_R is a W-module and if Im(H) is closed under taking homomorphic images, then Im(H) = Mod-A. For this purpose we need some preliminar results.

3.5. Let $P_R \in \text{Mod-}R$, $A = \text{End}(P_R)$, $M \in \text{Gen}(P_R)$. Consider an epimorphism $h: P_R^{(X)} \to M \to 0$ where X is a suitable set. Clearly $h = (h_x)_{x \in X}$ where $h_x \in \text{Hom}_R(P_R, M)$. Therefore there exists a natural injection

$$i: \sum_{x \in X} h_x A \to \operatorname{Hom}_R(P_R, M).$$

An Azumaya's Lemma (cf. [A], Lemma 1) guarantees that, if ρ_M is injective, then the canonical morphism

$$T(i): \left(\sum_{x \in X} h_x A\right) \otimes_A P \to \operatorname{Hom}_R(P_R, M) \otimes_A P$$

is surjective.

3.6. LEMMA. Let P_R be a W-module, $A = \text{End}(P_R)$ and assume that Im(H) is closed under taking homomorphic images. Let $M \in \text{Gen}(P_R)$ and let $h = (h_x)_{x \in X}$ an epimorphism of $P_R^{(X)}$ onto M. Then

$$\sum_{x \in X} h_x A = \operatorname{Hom}_R(P, M).$$

PROOF. We have in Mod-A the exact sequence

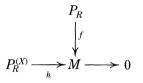
$$0 \to \sum_{x \in X} h_x A \xrightarrow{i} \operatorname{Hom}_R(P, M) \to V \to 0.$$

By assumption $V \in \text{Im}(H)$. Applying the exact functor $- \bigotimes_A P$ we get the exact sequence:

$$0 \to \left(\sum_{x \in X} h_x A\right) \otimes_A P \xrightarrow{T(i)} \operatorname{Hom}_R(P, M) \otimes_A P \to V \otimes_A P \to 0.$$

Since P_R is a W-module, ρ_M is an isomorphism (cf. Theorem 2.3 and Proposition 1.8). Therefore, by Azumaya's Lemma, T(i) is surjective so that $V \otimes_A P = 0$. It follows V = 0 since the bimodule ${}_AP_R$ represents a category equivalence between Im(H) and Gen(P_R).

3.7. DEFINITION. Recall that a module $P_R \in \text{Mod-}R$ is Σ -quasi-projective if for every diagram with exact row



there exists $\alpha \in \operatorname{Hom}_R(P_R, P_R^{(X)})$ such that $f = h \circ \alpha$.

3.8. DEFINITION. Let $P_R \in Mod-R$, $A = End(P_R)$. Recall that P_R is self-small if for every set $X \neq \emptyset$ we have

$$\operatorname{Hom}_{R}(P_{R}, P_{R}^{(X)}) \cong \operatorname{Hom}_{R}(P_{R}, P_{R})^{(X)} = A^{(X)}$$

canonically.

3.9. PROPOSITION. Let $P_R \in \text{Mod-}R$, $A = \text{End}(P_R)$. The following conditions are equivalent:

(a) For every $M \in \text{Gen}(P_R)$ and for every epimorphism $h = (h_x)_{x \in X}$: $P_R^{(X)} \to M \to 0$ we have:

$$\sum_{x \in X} h_x A = \operatorname{Hom}_R(P, M)$$

(b) P_R is Σ -quasi-projective and self-small.

PROOF. $(a) \Rightarrow (b)$. Consider the diagram (1) of 3.7. By assumption we have $f = \sum_{x \in X} h_x a_x$, with $a_x \in A$ and almost all a_x 's vanish. Consider the morphism $g: P \to P_R^{(X)}$ given by $g = (a_x)_{x \in X}$. Then $f = h \circ g$. Therefore P_R is Σ -quasi-projective. Let us show that P_R is self-small. Let $i_x: P_R \to P_R^{(X)}$ the x-th inclusion and consider the diagram with exact row

$$0 \longrightarrow P_{R}^{(X)} \xrightarrow[i = (i_{x})_{x \in X}]{} P_{R}^{(X)} \xrightarrow{P_{R}} 0$$

We have $f = \sum_{x \in X} i_x a_x$ with $a_x \in A$ and almost all a_x 's vanish. Let $g = (a_x)_{x \in X}$. Then $g \in A^{(X)}$ and $f = i \circ g$, hence $\operatorname{Hom}_R(P_R, P_R^{(X)}) \cong A^{(X)}$.

 $(b) \Rightarrow (a).$ Let $f \in \operatorname{Hom}_{R}(P, M)$ and let $h: P_{R}^{(X)} \to M \to 0$ be an epimorphism. Then there exists a morphism $g: P_{R} \to P_{R}^{(X)}$ such that $f = h \circ g$. On the other hand $g = (a_{x})_{x \in X}$ with $a_{x} \in A$ and almost all a_{x} 's vanish, hence $f \in \sum_{x \in Y} h_{x}A$.

3.10. THEOREM. Let P_R be a W-module, $A = \text{End}(P_R)$ and assume that Im(H) is closed under taking homomorphic images. Then Im(H) = Mod-A.

PROOF. We have $T(A^{(X)}) = A^{(X)} \otimes_A P \cong P_R^{(X)}$ in a natural way. By Lemma 3.6 and Proposition 3.9 P_R is self-small, hence $H(P_R^{(X)}) =$ $= \operatorname{Hom}_R(P_R, P_R^{(X)}) \cong A^{(X)}$. Thus $A^{(X)} \in \operatorname{Im}(H)$. Let $L \in \operatorname{Mod} A$. There exists an exact sequence $A^{(X)} \to L \to 0$, so that $L \in \operatorname{Im}(H)$.

4. The torsion theory $(\text{Im}(T), \mathcal{O}(K_A))$.

From now on we assume the reader familiar with some elementary facts on torsion theories. See [St] or [N].

4.1. In all this section P_R is a W-module with $A = \text{End}(P_R)$. Set, as usual, $T = -\bigotimes_A P$ and $H = \text{Hom}_R(P_R, -)$. The bimodule ${}_AP_R$ represents an equivalence between Im(H) and $\text{Gen}(P_R) = \overline{\text{Gen}}(P_R)$.

4.2. Consider the following subcategory of Mod-A

 $\operatorname{Ker}(T) = \left\{ L \in \operatorname{Mod} A: \ L \otimes_A P = 0 \right\}.$

Clearly $\operatorname{Im}(H) \cap \operatorname{Ker}(T) = 0$.

4.3. LEMMA. Ker(T) is a localizing subcategory of Mod-A, i.e. Ker(T) is the torsion class for a hereditary torsion theory on Mod-A.

PROOF. It is obvious that Ker (T) is closed under taking homomorphic images, direct sums and extensions. On the other hand, since $_AP$ is flat, Ker(T) is closed under taking submodules.

The Gabriel filter Γ canonically associated to the localizing subcate-

gory Ker(T) is given by setting

$$\Gamma = \left\{ I \leq A_A \colon \frac{A}{I} \in \operatorname{Ker} \left(T \right) \right\}.$$

Clearly

$$\Gamma = \{ I \leq A_A \colon IP = P \}.$$

Let $L \in Mod$ -A. The torsion submodule $t_{\Gamma}(L)$ of L is defined by setting

$$t_{\Gamma}(L) = \{x \in L: \operatorname{Ann}_{A}(x) \in \Gamma\}.$$

Then the category of torsion-free modules is

$$\mathcal{F}_{\Gamma} = \left\{ L \in \text{Mod-}A: t_{\Gamma}(L) = 0 \right\}.$$

For every $L \in Mod-A$, $L/t_{\Gamma}(L)$ is torsion free. If no confusion arises, we write t(L) instead of $t_{\Gamma(L)}$

Let Q_R be a fixed, but arbitrary, injective cogenerator of Mod-R, $K_A = \text{Hom}_R(P_R, Q_R)$, $\mathcal{O}(K_A)$ the subcategory of Mod-A, cogenerated by K_A . Since $_AP$ is flat, K_A is injective in Mod-A.

4.4. LEMMA.

$$Ker(T) = \{ L \in Mod-A: Hom_A(L, K_A) = 0 \}.$$

PROOF. For every $L \in Mod-A$ we have the canonical isomorphisms:

 $\operatorname{Hom}_A(L, K_A) = \operatorname{Hom}_A(L, \operatorname{Hom}_R(P, Q)) \cong \operatorname{Hom}_R(L \otimes_A P, Q_R).$

Since Q_R is a cogenerator in Mod-R we have

$$\operatorname{Hom}_{A}(L, K_{A}) = 0 \Leftrightarrow L \otimes_{A} P = 0 \Leftrightarrow L \in \operatorname{Ker}(T).$$

4.5. PROPOSITION.

$$\mathcal{F}_{\Gamma} = \mathcal{O}(K_A).$$

PROOF. Let $L \in \mathcal{F}_{\Gamma}$. Then $t_{\Gamma}(L) = 0$. Let $l \in L$, $l \neq 0$. Then $lA \notin \text{Ker}(T)$ hence, by Lemma 4.4, $\text{Hom}_A(lA, K_A) \neq 0$. Let $f: lA \to K_A$ a non zero morphism. Since K_A is injective in Mod-A, f extends to a morphism $\overline{f}: L \to K_A$ and $\overline{f}(l) \neq 0$. It follows $L \in \mathcal{O}(K_A)$.

Conversely let $L \in \mathcal{O}(K_A)$ and let $L' \leq L$ such that $L' \in \text{Ker}(T)$. By

Lemma 4.4 we have $\operatorname{Hom}_A(L', K_A) = 0$. On the other hand there exists an exact sequence $0 \to L \to K_A^X$ where X is a suitable set. Then L' = 0, so that $L \in \mathcal{F}_{\Gamma}$.

4.6. COROLLARY. (a) The torsion theory $(\text{Ker}(T), \mathcal{O}(K_A))$ is cogenerated by the injective module K_A .

(b) Since $\operatorname{Im}(H) \subseteq \mathcal{O}(K_A)$, the modules in $\operatorname{Im}(H)$ are torsion-free.

4.7. PROPOSITION. For every $L \in \text{Mod-}A$ consider the canonical morphism $\sigma_L: L \to \text{Hom}_R(P_R, L \otimes_A P)$. Then:

$$t_{\Gamma}(L) = \operatorname{Ker}(\sigma_L).$$

PROOF. We have:

$$\operatorname{Ker}(\sigma_L) = \{l \in L: \ l \otimes p = 0, \ \forall p \in P\} = \{l \in L: \ lA \otimes_A P = 0\} = \{l \in L: \ lA \in \operatorname{Ker}(T)\} = t_{\Gamma}(L).$$

4.8. Let $L \in Mod-A$, $I, J \in \Gamma$, $I \ge J$. Consider the natural morphism

$$\operatorname{Hom}_{A}(I, L) \to \operatorname{Hom}_{A}(J, L)$$

given by restrictions. For every $L \in Mod-A$ set:

$$L_{\Gamma} = \lim_{\overrightarrow{I \in \Gamma}} \operatorname{Hom}_{A}\left(I, \ \frac{L}{t_{\Gamma}(L)}\right)$$

and, since A is torsion-free

$$A_{\Gamma} = \lim_{\overrightarrow{I \in \Gamma}} \operatorname{Hom}_{A}(I, A).$$

It is well known that L_{Γ} is a right A-module, A_{Γ} is a ring and moreover L_{Γ} is a right A_{Γ} -module.

 A_{Γ} is called the *ring of quotients* of A and L_{Γ} the module of quotients of L with respect to the Gabriel filter Γ . For every $L \in Mod-A$, L_{Γ} is also called the *localization* of L at Γ .

For every $L \in Mod$ -A there exists a canonical morphism $\varphi_L \colon L \to L_{\Gamma}$

Representable equivalences for closed categories of modules

251

such that

$$\operatorname{Ker}(\varphi_L) = t_{\Gamma}(L), \ \frac{L_{\Gamma}}{\varphi_L(L)} \in \operatorname{Ker}(T), \qquad \varphi_L(L) \in \mathcal{O}(K_A)$$

 $\varphi_A: A \to A_{\Gamma}$ is a ring morphism.

4.9. LEMMA. Let $I \in \Gamma$. Then $\operatorname{Hom}_A(A/I, A) = 0$ and $\operatorname{Ext}^1_A(A/I, A) = 0$.

PROOF. See [WW] Proposition 1.2.

4.10. COROLLARY. The canonical morphism $\varphi_A \colon A \to A_{\Gamma}$ is a ring isomorphism.

PROOF. By Corollary 4.6 A is torsion-free. Let $I \in \Gamma$ and let $\alpha_I: I \to A$ be the canonical inclusion. By Lemma 4.9 the exact sequence

$$0 \to I \xrightarrow{\alpha_I} A \to A/I \to 0$$

gives rise to the exact sequence:

$$0 = \operatorname{Hom}_{A}(A/I, A) \to \operatorname{Hom}_{A}(A, A) \xrightarrow{\alpha^{\gamma} I} \operatorname{Hom}_{A}(I, A) \to \operatorname{Ext}_{A}^{1}(A/I, A) = 0.$$

Therefore α_I^* : Hom_A $(A, A) \to$ Hom_A(I, A) is an isomorphism i.e. any morphism $I \to A$ extends uniquely to an element of A. Then, if $I, J \in \Gamma$ and $I \ge J$, the restriction map Hom_A $(I, A) \to$ Hom_A(J, A) is an isomorphism.

4.11. DEFINITIONS. Recall that a module $L \in Mod-A$ is Γ -injective if for every $I \in \Gamma$ the restriction morphism

(1) $\operatorname{Hom}_A(A, L) \to \operatorname{Hom}_A(I, L)$

is surjective.

L is Γ -injective if and only if $\operatorname{Ext}_A^1(N, L) = 0$ for every $N \in \operatorname{Ker}(T)$.

A module $L \in Mod$ -A is called Γ -closed if for every $I \in \Gamma$ the above morphism (1) is an isomorphism.

The following results are classical in torsion theories.

4.12. THEOREM. Let $L \in Mod-A$. The following conditions are equivalent:

(a) L is Γ -closed;

(b) $L \in \mathcal{O}(K_A)$ and L is Γ -injective;

- (c) for every morphism $\alpha: U \to V$ in Mod-A such that $\operatorname{Ker}(\alpha) \in \operatorname{Ker}(T)$ and $\operatorname{Coker}(\alpha) \in \operatorname{Ker}(T)$, the transposed morphism $\operatorname{Hom}_{A}(V, L) \to \operatorname{Hom}_{A}(U, L)$ is an isomorphism;
- (d) the canonical morphism $\varphi_L \colon L \to L_\Gamma$ is an isomorphism.

4.13. COROLLARY. For every $L \in Mod-A$, L_{Γ} is Γ -closed.

5. A characterization of Im (H).

5.1. In all this section we work in situation 4.1.

Denote by Mod- (A, Γ) the subcategory of Mod-A whose objects are all the Γ -closed modules in Mod-A. By Theorem 4.12 we can write

$$Mod-(A, \Gamma) = \{L \in Mod-A: L = L_{\Gamma}\}.$$

Our main result is the following theorem which, together with Theorem 2.6, gives easily the Popescu-Gabriel Theorem in our setting.

5.2. THEOREM. Let $P_R \in \text{Mod-}R$ be a W-module, $A = \text{End}(P_R)$, $H = \text{Hom}_R(P_R, -)$, $T = - \bigotimes_A P$. Then for every $L \in \text{Mod-}A$ we have

$$L_{\Gamma} = HT(L)$$
.

PROOF. For every $L \in Mod$ -A, we have

(1)
$$T(L_{\Gamma}) = T(L).$$

Indeed, consider the exact sequence

$$0 \to t_{\Gamma}(L) \to L \xrightarrow{\varphi_L} L_{\Gamma} \to L_{\Gamma}/\varphi_L(L) \to 0.$$

Tensoring by $_{A}P$ and since $t_{\Gamma}(L)$ and $L_{\Gamma}/\varphi_{L}(L)$ are in Ker(T), we get (1).

We now prove that, for every $L \in Mod-A$, $L_{\Gamma} \in Im(H)$ from which it will follow

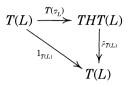
$$L_{\Gamma} \cong HT(L)$$

by Theorem 2.3.

Indeed assume $L = L_{\Gamma}$. Since $L \in \mathcal{O}(K_A)$ (cf. Theorem 4.12), σ_L is injective. Consider the exact sequence

(2)
$$0 \to L \xrightarrow{\sigma_L} HT(L) \to \operatorname{Coker}(\sigma_L) \to 0$$
.

Since T and H are adjoint functors there exists the commutative diagram



Since $T(L) \in \text{Gen}(P_R)$, $\rho_{T(L)}$ is an isomorphism hence $T(\sigma_L)$ is an isomorphism too. Applying T in (2) we get the exact sequence

$$0 \to T(L) \xrightarrow{T(\sigma_L)} THT(L) \to T(\operatorname{Coker}(\sigma_L)) = 0$$

It follows $\operatorname{Coker}(\sigma_L) \in \operatorname{Ker}(T)$. Since L is Γ -injective, the exact sequence (2) splits hence:

$$HT(L) \cong L \oplus \operatorname{Coker}(\sigma_L);$$

therefore $\operatorname{Coker}(\sigma_L) = 0$ because $\operatorname{HT}(L)$ is torsion-free. Thus σ_L is an isomorphism and $L \in \operatorname{Im}(H)$.

5.3. COROLLARY. Under the assumptions of Theorem 5.2

 $\operatorname{Im}(H) = \operatorname{Mod} - (A, \Gamma).$

PROOF. Let $L \in \text{Im}(H)$. Then $L \cong HT(L)$, hence $L = L_{\Gamma}$. If $L = L_{\Gamma}$ then L = HT(L), hence $L \in \text{Im}(H)$.

6. The trace ideal of $_AP$ in A.

6.1. Let P_R be a W-module, $A = \text{End}(P_R)$. Define the trace ideal τ of $_AP$ in A by setting

$$\tau = \sum \left\{ \operatorname{Im}(f): f \in \operatorname{Hom}_{A}(P, A) \right\};$$

 τ is a two-sided ideal of A.

6.2 LEMMA ([WW], Proposition 1.5 and Theorem 1.6). Let P_R be a W-module, $A = \operatorname{End}(P_R)$. Then $\tau \in \bigcap_{I \in \Gamma} I$.

If moreover P_R is a generator of Mod-R, then:

- a) $\tau P = P$ so that $I \in \Gamma$ if and only if $I \supseteq \tau$;
- b) $\tau^2 = \tau;$

- c) the left annihilator of τ is 0;
- d) τ is finitely generated as a two-sided ideal;
- e) τ is essential as a right ideal.

6.3 COROLLARY. Let P_R be a generator of Mod-R, $A = \text{End}(P_R)$. Then for every $L \in \text{Mod-}A$

$$L_{\Gamma} = \operatorname{Hom}\left(\tau, \ \frac{L}{t_{\Gamma}(L)}\right).$$

7. An example: closed spectral subcategories of Mod-R.

7.1. Let \mathcal{G}_R be a closed subcategory of Mod-R, P_R a generator of \mathcal{G}_R , $A = \operatorname{End}(P_R)$. Set, as usual, $T = -\bigotimes_A P$, $H = \operatorname{Hom}_R(P_R, -)$. Let Γ be the Gabriel filter associated to the hereditary torsion theory (Ker(T), $\mathcal{O}(K_A)$). Then \mathcal{G}_R is naturally equivalent to the subcategory Im $(H) = \operatorname{Mod} - (A, \Gamma)$ of Mod-A.

Recall that the subcategory $Mod - (A, \Gamma)$ is closed under taking injective envelopes and direct products in Mod-A.

7.2. We are interested in finding conditions in order that every module $L \in Mod - (A, \Gamma)$ is injective in Mod- (A, Γ) or, equivalently, in Mod-A.

7.3 LEMMA. The sequence in Mod- (A, Γ)

(1)
$$0 \to L \xrightarrow{J} M \xrightarrow{g} N \to 0$$

is exact in Mod- (A, Γ) if and only if

- 1) f is injective;
- 2) Im(f) = Ker(g);
- 3) $N/\operatorname{Im}(g) \in \operatorname{Ker}(T)$.

PROOF. Assume that (1) is exact in Mod- (A, Γ) . Then we have the exact sequence

(2)
$$0 \to T(L) \xrightarrow{T(f)} T(M) \xrightarrow{T(g)} T(N) \to 0 \quad \text{in } \mathcal{G}_R.$$

Since \mathcal{G}_R is closed, (2) is exact in Mod-R. Therefore the sequence

$$0 \to HT(L) \xrightarrow{HT(f)} HT(M) \xrightarrow{HT(g)} HT(N)$$

is exact in Mod-A; thus f is injective and Im(f) = Ker(g).

Assume that $N/\text{Im}(g) \notin \text{Ker}(T)$. Then we have the exact sequence in Mod-A:

$$0 \to L \xrightarrow{f} M \xrightarrow{g} N \to N/\mathrm{Im}\,(g) \to 0 \,.$$

Applying T we get $T(N/\text{Im}(g)) \neq 0$, in contrast with (2).

Conversely, if conditions 1), 2) and 3) hold for the sequence (1), then the sequence (2) is exact in \mathcal{G}_R and (1) is exact in Mod-(A, Γ).

7.4. Assume that every module in Mod- (A, Γ) is injective. Let

$$0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$$

be an exact sequence in Mod- (A, Γ) . Since L is injective, we have

 $M = L \oplus L'$ in Mod-A,

where $L' \cong \operatorname{Im}(g) \leq N$. Let us show that

 $L' \cong N$ cononically.

Observe that $L' \in \text{Mod} - (A, \Gamma)$. In fact L' is torsion free and, being injective, it is Γ -injective. We have $N \cong L' \oplus L''$, with $L'' \cong N/\text{Im}(g)$. Since $L' \in \mathcal{O}(K_A)$ and $L'' \in \text{Ker}(T)$ we get $N \cong L'$.

7.5 PROPOSITION. Assume that every module in Mod-(A, Γ) is injective. The sequence

$$0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$$

with L, M, $N \in Mod - (A, \Gamma)$ is exact in Mod-A if and only if it is exact in Mod-A.

In this case (1) splits.

7.6 LEMMA. Let $M \in \mathcal{G}_R = \text{Gen}(P_R)$, $N \in \text{Mod-}R$ and let $f: M \to N$ be a morphism. Then $\text{Im}(f) \leq t_P(N)$.

PROOF. Assume that $M = P_R^{(X)}$, where $X \neq \emptyset$ is a set. Let $h: P^{(X)} \rightarrow N$ be a morphism. Then $h = (h_x)_{x \in X}$, with $h_x \in \operatorname{Hom}_R(P, N)$. Let $p \in P^{(X)}$. Then $p = (p_x)_{x \in X}$, with $p_x \in P$ and $p_x = 0$ for almost all $x \in X$.

We have

$$h(p) = \sum_{x \in X} h_x(p_x) \in t_p(N).$$

Let $M \in \text{Gen}(P_R)$, $f \in \text{Hom}_R(M, N)$. There exists a diagram

 $P^{(X)} \xrightarrow{h} M \xrightarrow{f} N$

with h a surjective morphism. It is $f \circ h \in \operatorname{Hom}_{R}(P^{(X)}, N)$, hence $\operatorname{Im}(f \circ h) \leq t_{P}(N)$ and $\operatorname{Im}(f \circ h) = \operatorname{Im}(f)$.

7.7 PROPOSITION. Let \mathcal{G}_R be a closed subcategory of Mod-R, P_R a generator of \mathcal{G}_R , $A = \text{End}(P_R)$. The following conditions are equivalent:

- (a) every module in Mod- (A, Γ) is injective;
- (b) \mathcal{G}_R is a spectral category.

In this case every module in \mathcal{G}_R is semisimple.

PROOF. $(a) \Rightarrow (b)$ By Proposition 7.5 every short exact sequence in \mathcal{G}_R splits. Therefore such a sequence splits in Mod-*R*. Then every module in \mathcal{G}_R is semisimple so that \mathcal{G}_R is spectral.

 $(b) \Rightarrow (a)$ Let $L \in Mod - (A, \Gamma) = Im(H)$. Then L = H(M), with $M \in \mathcal{G}_R$. Since Q_R is a cogenerator in Mod-R, there exists an exact sequence in Mod-R

 $0 \rightarrow M \rightarrow Q^X$

where X is a suitable set. By Lemma 7.6, $\operatorname{Im}(f) \leq t_P(Q_R^X) \in Gen(P_R) = \mathcal{G}_R$. Since \mathcal{G}_R is spectral, M is a direct summand of $t_P(Q_R^X)$. Therefore L = H(M) is a direct summand of $H(t_P(Q_R^X))$. On the other hand, $H(t_P(Q_R^X)) \cong H(Q_R^X) = K_A^X$ which is injective.

7.8 PROPOSITION Let \mathcal{G}_R be a closed spectral subcategory of Mod-R, P_R a generator of \mathcal{G}_R and $A = \operatorname{End}(P_R)$. Then:

- a) for every $L \in Mod-A$ the following conditions are equivalent:
 - (i) $L \in Mod (A, \Gamma)$;
 - (ii) L is a direct summand of a module of the form A^X, where X is a non empty set;
- b) the ring A is von Neumann regular and right self-injective.

PROOF. a) $(i) \Rightarrow (ii)$ Let X be a non empty set. We show that $H(P_R^{(X)})$ is a direct summand of A^X . In fact:

$$H(P_R^{(X)}) \leq H(P_R^X) \cong H(t_P(P_R^X)) \cong A^X \in \operatorname{Mod} - (A, \Gamma).$$

Since $H(P_R^{(X)})$ is injective, $H(P_R^{(X)})$ is a direct summand of A^X . Let $L \in Mod - (A, \Gamma)$ be an injective module. Then L = H(M), for some $M \in \mathcal{G}_R$. Then H(M) is a direct summand of a module of the form $H(P_R^{(X)})$, hence L is a direct summand of A^X .

(ii) \Rightarrow (i) If L is a direct summand of A^X , L is torsion free and it is Γ -injective, being injective. Therefore $L \in \text{Mod} - (A, \Gamma)$.

b) Since P_R is semisimple, A is von Neumann regular (cf. [St], Chap. I, Prop. 12.4). Clearly A is right self-injective.

7.9. Let \mathcal{G}_R be a closed spectral subcategory of Mod-R, P_R a generator of \mathcal{G}_R and $A = \operatorname{End}(P_R)$. In this case the filter Γ has a nice description using the trace ideal of $_AP$ in $_AA$.

7.10. Fix a simple module $S \in Mod-R$ and denote by $\Sigma(S)$ the spectral subcategory of Mod-R consisting of all semisimple modules which are a direct sum of copies of S.

Fix a positive cardinal number α . Then

$$P_R = S^{(\alpha)}$$

is a projective generator and an injective cogenerator of $\Sigma(S)$. Let $D = \operatorname{End}(S_R)$, $A = \operatorname{End}(P_R)$. Then D is a division ring and A is the ring of all $\alpha \times \alpha$ matrices, with entries in D, whose columns have only a finite number of non zero elements. It follows that $A \cong \operatorname{End}(D^{(\alpha)})$, where $D^{(\alpha)}$ is considered as a right vector space over the division ring D.

Let Γ be the usual Gabriel filter on A. Let τ be the trace ideal of $_AP$ in $_AA$:

$$\tau = \sum \{ \operatorname{Im}(g) \colon g \in \operatorname{Hom}_A(_AP, A) \}.$$

a) $_{A}P$ is a semisimple module in A-Mod.

PROOF. Since P_R is an injective cogenerator of $\Sigma(S)$, then P_R is strongly quasi-injective in the sense of [MO₁]. Applying Proposition 6.10 of [MO₁] we have

$$\operatorname{Soc}(_{A}P) = \operatorname{Soc}(P_{R}) = P$$

and thus $_{A}P$ is semisimple.

Let L_{ω} be the minimal two-sided non zero ideal of A. As it is well known, L_{ω} consists of all the endomorphism of $D^{(\alpha)}$ whose image is finite dimensional. L_{ω} has the following properties:

- i) $L_{\omega} = \operatorname{Soc}(A) = \operatorname{Soc}(A_A);$
- ii) the right ideals of A containing L_{ω} are exactly the essential right ideals of A.

Therefore we have, by i),

$$\tau = \sum \{ \operatorname{Im}(g) : g \in \operatorname{Hom}_A(_AP, L_{\omega}) \}.$$

Thus $\tau \leq L_{\omega}$.

b) The trace ideal $\tau = L_{\omega}$.

PROOF. Let us show that $\tau \neq 0$; it will follow that $\tau = L_{\omega}$, since τ is two-sided and L_{ω} is the minimal two-sided non zero ideal of A.

Let J be a maximal right ideal of R such that $R/J \cong S_R$. The exact sequence

$$0 \to J \to R \to R/J \to 0$$

gives rise, by applying $\operatorname{Hom}_{R}(-, P_{R})$, to the exact sequence

$$0 \rightarrow \operatorname{Hom}_{R}(R/J, P_{R}) = \operatorname{Ann}_{P}(J) \rightarrow {}_{A}P.$$

Thus

$$\operatorname{Ann}_{P}(J) \cong \operatorname{Hom}_{R}(S, P_{R}) \cong D^{(\alpha)} \hookrightarrow_{A} P,$$

since S_R is finitely generated. Therefore ${}_AP$ contains a direct summand of the form $\operatorname{Ann}_P(J) \cong \operatorname{Hom}_R(S, P_R) \cong D^{(\alpha)}$ and it is well known that $\operatorname{Hom}_A(D^{(\alpha)}, A) \neq 0$.

c) Let f be an endomorphism of P_R such that Im(f) is finitely generated. Then $f \in L_{\omega}$.

PROOF. In fact f may be represented by an $\alpha \times \alpha$ matrix having only a finite number of non zero rows. Then this matrix represents an endomorphism of $D^{(\alpha)}$ whose image is finite dimensional. Therefore $f \in L_{\omega}$.

d)
$$L_{\omega}P = P$$
; hence $L_{\omega} \in \Gamma$ and thus
 $\Gamma = \{I \leq A_A : I \geq \tau\}.$

PROOF. Let $x \in P_R$, $x \neq 0$, and let f be the projection of P_R onto the

submodule F generated by x, such that f(x) = x. Since F is finitely generated, $f \in L_{\omega}$. Thus $L_{\omega}P = P$.

The last statement follows from Lemma 6.2.

We now consider closed spectral subcategories of Mod-R in the general case.

7.11 PROPOSITION. Let \mathcal{G}_R be a closed spectral subcategory of Mod-R, P_R a generator of \mathcal{G}_R and $A = \operatorname{End}(P_R)$. Let Γ be the usual Gabriel filter on A and τ be the trace of $_AP$ in $_AA$. Then:

a) Soc
$$(A_A) =$$
Soc $(_AA) = \tau \neq 0$;

b)
$$\tau \in \Gamma$$
 and $\Gamma = \{I \leq A_A \colon I \geq \tau\}.$

Consequently Γ consists of all essential right ideals of A.

PROOF. Let $(S_{\delta})_{\delta \in \Delta}$ be a system of representatives of all non isomorphic simple modules in \mathcal{G}_R . Set $D_{\delta} = \operatorname{End}_R(S_{\delta})$. We have

$$P_R = \bigoplus_{\delta \in \Delta} S_{\delta}^{(\alpha_{\delta})} ,$$

where the α_{δ} 's are non zero cardinal numbers. P_R is a projective generator and an injective cogenerator of \mathcal{G}_R . Next we have:

$$A = \operatorname{Hom}_{R}(P_{R}, P_{R}) \cong \operatorname{Hom}_{R}\left(\bigoplus_{\delta \in \Delta} S_{\delta}^{(\alpha_{\delta})}, \bigoplus_{\delta \in \Delta} S_{\delta}^{(\alpha_{\delta})}\right) \cong$$
$$\cong \prod_{\delta \in \Delta} \operatorname{Hom}_{R}(S_{\delta}^{(\alpha_{\delta})}, S_{\delta}^{(\alpha_{\delta})}) \cong \prod_{\delta \in \Delta} A_{\delta},$$

where $A_{\delta} = \operatorname{End}_{R}(S_{\delta}^{(\alpha_{\delta})}).$

Let τ be the trace ideal of $_AP$ in A; note that $\bigoplus_{\delta \in \Delta} A_{\delta}$ is essential in $A = \prod_{\delta \in \Delta} A_{\delta}$. Therefore:

$$\operatorname{Soc} (A_A) = \operatorname{Soc} \left(\bigoplus_{\delta \in \Delta} A_{\delta} \right) = \bigoplus_{\delta \in \Delta} \operatorname{Soc} (A_{\delta}) = \bigoplus_{\delta \in \Delta} L_{\omega}(\delta),$$

where $L_{\omega}(\delta)$ is the smallest two-sided ideal of the ring A_{δ} . Hence

$$\operatorname{Soc}(A_A) = \operatorname{Soc}(_AA).$$

Then

$$\tau = \sum \left\{ \operatorname{Im} \left(g \right) : g \in \operatorname{Hom}_A \left(AP, \bigoplus_{\delta \in \Delta} L_{\omega}(\delta) \right) \right\}.$$

Hence

$$\tau = \bigoplus_{\delta \in \Delta} L_{\omega}(\delta) = \operatorname{Soc}(A_A).$$

As we know, $\tau \subseteq \bigcap \{I: I \in \Gamma\}$. Let us show that $\tau \in \Gamma$. In fact

$$\left(\bigoplus_{\delta'\in \Delta} L_{\omega}(\delta')\right) \left(\bigoplus_{\delta\in \Delta} S_{\delta}^{(\alpha_{\delta})}\right) = \bigoplus_{\delta\in \Delta} L_{\omega}(\delta) S_{\delta}^{(\alpha_{\delta})} = \bigoplus_{\delta\in \Delta} S_{\delta}^{(\alpha_{\delta})} .$$

7.12 REMARK. We think that a number of more interesting examples may be constructed from the recent paper of Albu and Wisbauer [AW].

REFERENCES

- [A] G. AZUMAYA, Some aspects of Fuller's theorem, in Module Theory, Lecture Notes in Mathematics, 700, Springer, New York, Heidelberg, Berlin (1979), pp. 34-45.
- [AF] F. W. ANDERSON K. R. FULLER, Rings and Categories of Modules, Springer-Verlag, New York, Heidelberg, Berlin (1974).
- [AW] T. ALBU R. WISBAUER, Generators in Grothendieck categories with right perfect endomorphism rings, Osaka J. Math, 28, (1991), pp. 295-304.
- [F] K. R. FULLER, Density and equivalence, J. Alg., 29, (1974), pp. 528-550.
- [M] K. MORITA, Duality for modules and its applications to the theory of rings with minnimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 6, (1959), pp. 83-143.
- [MO₁] C. MENINI A. ORSATTI, Good dualities and strongly quasi-injective modules, Ann. Mat. Pura Appl., 127, (1981), pp. 182-230.
- [MO₂] C. MENINI A. ORSATTI, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova, 82, (1989), pp. 203-231.
- [N] C. NASTASESCU, *Teorie della torsione*, Quaderni dei Gruppi di Ricerca Matematica del CNR, Univ. di Ferrara (1974).
- [St] B. STENSTRÖM, Ring of Quotients, Springer, Berlin, Heidelberg, New York (1975).
- [WW] C. L. WALKER E. A.WALKER, Quotient categories of modules, in Conference on Categ. Alg., Springer, Berlin, Heidelberg, New York (1966), pp. 404-420.
- [ZH] B. ZIMMERMANN-HUISGEN, Endomorphism rings of self-generators, Pacific J. Math, 61, (1975), pp. 587-602.

Manoscritto pervenuto in redazione l'11 febbraio 1993 e, in forma revisionata, il 23 settembre 1993.