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Isomorphic Chevalley Groups over Integral Domains.

YU CHEN(*)

Introduction.

Let G be a Chevalley-Demazure group scheme. Chevalley and De-
mazure have showed in [5] and [6] that, as a representable covariant
functor from the category of commutative rings with unity to the cate-
gory of groups, G is uniquely determined by the semisimple complex
Lie group G(C). More precisely, they demonstrated that a Chevalley-
Demazure group scheme G’ is isomorphic to G if and only if, as semi-
simple Lie groups, G’(C) and are isomorphic to each other. The
purpose of this paper is to generalize their result for simple Chevalley-
Demazure group schemes, as well as for absolutely almost simple alge-
braic groups, by replacing the complex field C by an integral
domain.

Suppose G and G’ are simple Chevalley-Demazure group schemes.
In general for a commutative integral domain R, the existence of an iso-
morphism between the groups G(R) and G’ (R), which are Chevalley
groups over R, does not necessarily imply an isomorphism between G
and G’. A counter example is that there exists an isomorphism bet-
ween the special linear group and the projective linear group
PGL3 (k), where 1~ is a perfect field of characteristic 3, while SL3 is not
isomorphic to PGL3 as Chevalley-Demazure group schemes. However,
we find that when R contains an infinite field and when both G and G’
are either simply connected or adjoint the existence of an isomorphism
between G(R) and G’ (R) does imply an isomorphism between the
group schemes G and G’ except in one special case (see Theorem 1.3).
We also show in this paper that, if R and R ’ are integral domains con-
taining infinite fields, then G(R) being isomorphic to G’ (R’ ) implies
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that G and G’ belong to the same isogeny class except in one special ca-
se (see Theorem 1.2). For proving these results, we apply mainly the
Borel-Tits theorem (see [3, § 8.1]) on abstract homomorphisms of simple
algebraic groups and our result is in fact a consequence of their
work [3].

1. Main results.

1.1. For a field 1~, we fix an extension K of k, which is algebraically
closed and plays a role of universal domain, i.e. all extensions of k dealt
with in this paper are contained in K. The fields appearing in this paper
are always infinite. Let G be a simple Chevalley-Demazure group sche-
me, then the group G(K) is an absolutely almost simple algebraic group
over K and splits over the prime field of K. In general we also denote
by G an almost simple algebraic group over K for convenience without
any confusion.

1.2. THEOREM. Let G and G’ be simple Chevalley-Demazure
group schemes. If there exist integral domains R and R ’ , which con-
tain infinite fields, such that G(R) is isomorphic to G’ (R’ ), then G and
G ’ have isomorphic root systems except when the characteristic of R is
equaL to 2 and G is of type Bn or Cn . In this exceptional case, the root
system of G ’ is either isomorphic or dual (i. e. Cn or to that of
G.

1.3. THEOREM. Let G and G’ be absolutely almost simple alge-
braic groups defined over k. If both G and G ’ are either simply’ connec-
ted or adjoint, then G and G’ are isomorphic to each other as algebraic
groups if and only if there exists a k-subalgebra R of K such that G(R)
is isomorphic to G’ (R), except when the characteristic of K is equal to 2
and G is of type Bn or Cn . In this exceptional case, G(R) being isomor-
phic to G ’ (R ) implies that either G is isomorphic to G ’ or G ’ is of the
dual type of G.

2. Proof of the theorems.

2.1. Let G be an absolutely almost simple algebraic group over K
and let T be a maximal torus of G. Denote by X* (T) the character
group Hom(T, K *) of T, where K * is the multiplication group of K. The
root system of G related to T is denoted by ø. Suppose G’ is another ab-
solutely almost simple algebraic group over K. If there is an isogeny /3
from G to G’, then the image T ’ of T under /3 is a maximal torus of G ’ .
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We denote by X * ( T ’ ) and 0’ the character group of T ’ and the root
system of G’ related to T’ respectively. It is easily seen that (3 induces a
monomorphism /3*: X * ( T ) ~ X * ( T ’ ) defined by

It follows from [4] that there exist a bijection p: ø ~ ø’ and a map

where p = 1 if the characteristic of K is zero and otherwise p is equal to
the characteristic of K, such that

Recall that an isogeny (3 is called special if 1 E (cf.[3, § 3]), we have
the following lemma.

2.2. LEMMA. Suppose G and G’ are absolutely almost simple al-
gebraic groups over K. If there exists a special isogeny between G and
G ’, then either G and G ’ have isomorphic root systems, or the characte-
ristic of K is equaL to 2 and G is of type Bn or Cn while G ’ is of the dual
type of Cn or Bn .

PROOF. See [3, § 3] and [4].

2.3. Let G be an absolutely almost simple algebraic group defined
over k. We denote by E(k) the subgroup of G generated by all k-ratio-
nal points in unipotent radicals of parabolic subgroups of G defined
over 1~. Let 1~’ be another field and K’ be a universal domain of 1~’. Sup-
pose G’ is an almost simple algebraic group over K’. We have the follo-
wing corollary of the Borel-Tis theorem [3, § 8.1].

COROLLARY. If there exists a homomor~phism from E(k) to G ’ with
Zariski dense image, then G and G ’ have isomorphic root systems
except when the characteristic of K is 2 and G is of type Bn or Cn. In this
exceptional case, the root systems of G and G’ are either isomorphic or
dual to each other.

PROOF. Let a: E(k) -~ G’ be a homomorphism with Zariski dense
image. Consider the following k-universal covering of G

where GSc is a simply connected algebraic group defined over and is of
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the same type as G. We have by [3, § 6.3]

Hence the composition of homomorphisms aE: - G ’ is also a ho-

momorphism with Zariski dense image. Therefore, it follows from the
Borel-Tits theorem [3, § 8.1], there exist a homomorphism p from k into
K’ and a special isogeny ~3 from 9GSC, the group obtained by changing
the base field of G " through p [3, § 1.7], onto G ’ such that the following
diagram is commutative

where is the canonical homomorphism induced by p. Note that rp G SC,
G ~~ and G have isomorphic root systems and that, since the isogeny /3 is
special, 9 G" and G’ have isomorphic root systems except in one parti-
cular case as in Lemma 2.2. This implies immediately our lemma.

2.4. COROLLARY. With notations as in Corollary 2.3, we have

dim G = dim G ’ .

PROOF. This comes directly from Corollary 2.3.

2.5. PROOF OF THEOREM 1.2. We may assume that

where and k’ are subfields of R and R’ respectively. Consider G(R) as
R-rational points of the almost simple algebraic group G and G’ (R’ ) as
R’-rational points of G’. Suppose a: G(R) -~ G’ (R’ ) is an isomor-

phism. Let be the Zariski closure of a(E(k)) in G’. We show in
the following that

which means that the restriction of « to E(k) is a homomorphism with
Zariski dense image. Hence our theorem comes directly from this and
Corollary 2.3. 

____

We claim first that is a connected subgroup. In fact, deno-
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ting by a(E(k)) ~ the connected component of which contains the

identity element, we have a composition of homomorphisms

where 6 is the natural homomorphism. Since a(E(k)) is a fini-
te group, it follows that

This implies that, since does not contain any proper normal sub-

group of finite index [3, § 6.7],

Thus we have

Taking the Zariski closures of above three groups simultaneously, we
obtain immediately

We show secondly that

we denote by [a(E(k)), the commutative subgroup of a(E(k))
and by the Zariski closure of the commutator sub-

group of «(E(k)). Since E(k) is equal to its commutator sub-

group [3, 6.4], by [2, Ch. I, § 2.1] we have

In particular, «(E(k)) is not a solvable group. Let 91 be the solvable ra-
dical of a(E(k)). Then the quotient group «(E(k)) 1m is a non-trivial se-
misimple algebraic group. Hence there exist non-trivial simple alge-
braic groups, say G1, G2 , ... , Gr , of adjoint type and an isogeny
(see [4])

Let 77 be the natural homomorphism from I to its quotient group

/R and let ‘ be the canonical projection of
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onto the j-th factor for 1 ~ j ~ r. Note that and 6 send Zariski dense
sets onto Zariski dense sets, so does the morphism pj 7re. In particular,
we have for 1 ~ j ~ r

which means that pj7r8a is a homomorphism from E(k) to Gj with Zari-
ski dense image. It follows from Corollary 2.4 that

Note that we also have from (2.5.3)

Thus we obtain, since a(E(k)) is a closed subgroup of G’,

Taking G’ (k’ ), G’ in places of E(k), G and a respectively, and
vice-versa, and following a similar argument as above, we obtain on the
other hand

This, together with (2.5.4), implies (2.5.2).
Finally, since is a connected subgroup of G’, the identity

(2.5.2) gives rise to (2.5.1) immediately.

2.6. PROOF OF THEOREM 1.3. By the classification theorem (cf. [4])
of almost simple algebraic groups, it is sufficient to show that G and G’
have isomorphic root systems since both groups are either simply con-
nected or adjoint, with an exceptional case as in our theorem. The exi-
stence of an isomorphism between the root systems of G and G ’, how-
ever, comes by following a similar proof as that of Theorem 1.2 and by
using Lemma 2.3.
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