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REND. SEM. MAT. UN1v. PADOVA, Vol. 92 (1994)

Wiener Tauberian Theorems for Ultradistributions.

S. PiLipovi¢ - B. STANKOVIC (*)

SUMMARY - The purpose of this paper is the extension of Wiener Tauberian theo-
rems for distributions ([6]) on ultradistribution spaces. Because of that, we
give the versions of Beurling’s and Wiener’s theorems for bounded ultradis-
tributions. The corollary of our main theorem is the following one. Let fbe an
ultradistribution such that f/c is a bounded ultradistribution, where ¢ is a
smooth function which behaves as L(e*)e*, x — «, L is a slowly varying
function at « and « € R. If for an ultradifferentiable function ¢ with the prop-
erty Fl¢l(£—ia) #0, £eR,

(f = ¢)w) ot
Jim _—L(e”)e""" —aj¢(t)e dt, ceR,

then for every ultradifferentiable function ¢

(f = P@)

—al foe)
TG —afute dt, x—c.

1. Notation and notions.

With N and R are denoted the sets o\f natural and real numbers;
Ny = N U {0}. If fis a function on R, then f denotes the function defined
by f(x) = f{—x), x e R. C* denotes the space of smooth functions on R
and £! is the space of Lebesgue integrable funstions (classes) on R with
the usual norm | ||¢:. For an f from £ the Fourier transform is denoted
by Ff or f. £, and £ are defined in a usual way.

We shall always denote by L a slowly varying function ([1]). Recall,

(*) Indirizzo degli AA: Institute of Mathematics, University of Novi Sad,
21000 Novi Sad, Yugoslavia
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L is measurable, positive and

L(xh)

m—) , h—)°°, x>0.

For every ¢ > 0 there is C; > 0 such that

@ Ciamin[(%)a,(%)a] < % < C, max{(%)a(%)al,
x>0, y>0.

For the notation and properties of the spaces @™=), @™} and their
strong duals @' ™) (the space of Beurling ultradistributions) and
@' ™M=} (the space of Roumieau ultradistributions) we refer to[3]. We
shall assume that the sequence M, satisfies conditions (M.1), (M.2) and
(M.3)" ([3D).

As in[5] we put

M) — et M
@) = proj,_, » ®

o M.} — M,
eln? wél }_lndh,—>0 (Dflyhv

where 033‘3’; i h > 0, is a Banach space of smooth functions ¢ on R with
the finite norm

@

h «
Ieler = sup{ 27 I les « .

The common notation for (M,) and {M,} will be*. The space @* is
dense in @%: and the inclusion mapping is continuous. The strong dual
of %, is denoted by B'*.

The spaces of tempered ultradistributions are defined as the strong
duals of the following testing function spaces ([4])

S(Mu) = projh—> ®© 81}1'15( ’ S{Ma} = indh—>0 ShMa ’

where $M=, h > 0, is the Banach space of smooth functions ¢ on R with
the finite norm:

a

+8
71 (p) = sup A}; M (1 + %)% ¢ @ || e=, @, B € Np}.

The Fourier transformation is an isomorphism of $* onto $* and @* is
dense in S*. Clearly, $* is dense in @¥: and the inclusion mapping is
continuous.

Recall from[2] that a sequence of continuous and bounded functions
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fn on R converges narrowly to a continuous bounded function f; if and
only if f, converges to f; uniformly on bounded sets in B and

Ifnlles = llfolle=, n—o.
We shall always assume that a, Be R and « > 8. Put
L(e*)e*, x=0,

e, x<0.

2 co () = {

The following regularization of this function will be used.
3) c(x) =(cp + w)x), xeR,
where o € %, suppw c[~1, 1], @ > 0 and [ w(t)dé = 1.
We shall denote by » a function from ??" with the properties

4) nx)=1, x>x9>0, n(x)=0, x< —x.

2. Assertions.

THEOREM 1. Letfe B'* and K € @, such that FIK](&) =0, e R.
If

lim (f*K)(x) =aj Kt)dt, aceR,
R

then for every ¢ e @},

Jim (f x 9@ =0 [ ub)dt.
R
THEOREM 2. Let fe @' * and Ke C”. Assume:

() flce B'*.
(ii) There exists ¢ > 0 such that

v v
nKe®+9 (1 -n)Kef e k.

(iii) FIKI(E —iz) #0, E€R.
(iv) lim (f*K)x)/(L(e*)e™) = aJ Kit)e ™ dt, aeR.
E
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Then for every ¢ € C* for which

(%) et (1-p)def e D,
there holds
(frd@) i
Jim, =a[utyedt.

REMARK. It is an open problem whether the assumption that the
set {(f(- + h))/c(h); he R} is bounded in @'* implies that f/ce B'*.
Note that for distributions the corresponding assertion holds
(see[T]).

COROLLARY 1. Let fe @'* such that f/c e 3'* and let ¢ € ®* such
that FLI(E —ia) 0, e R. If

(f » @) _

Jim af¢yedt, acR,

then for every J e @*
(f = P& _

s Lie*)e™

af¢(t)e‘°‘t dt.

3. Proofs.

Proor oF THEOREM 1. First we need the following version of
Beurling’s theorem ([2]) for bounded ultradistributions.

«Let fe B *. A point &, belongs to suppf if and only if there is a se-
quence of functions {¢,} from $* such that

@) =(f * o)), reR, neN,
convergences narrowly to fo(x) =e®™°, x e R, n — ®»,

The proof of this assertion is the same as for bounded distributions
since all the properties of Schwartz’s test functions which were used
in[2, pp. 230-231], have been proved in[3] and[5] for ultradifferen-
tiable functions. The same holds for the next assertion, based on the
previous one, which is analogous to the Theorem on p. 232 in[2].
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«Let fe ®* and Ke®*%. If K*f=0 on R, then K(¢)=0 for
Eesuppfr.

First, we shal prove that the set I which consists of finite linear
combinations of translations of K € @} is dense in ®@%:. By the property
of dléal pairing, N is dense in @%: if and only if for every S e 3'*,
S«xK=0«S=0. For, if grz is not dvense, there exists an
Sp e 8*, S, # 0 such ghat Sy * K =0. Thus F[K]() =0, &e supp FLS,].
Since we assume F[K](&) = FIK](—&) is never zero, we conclude that
I is dense in F..

From that and previous statement we obtain the proof of the quoted

Wiener theorem.
Note ([5]), fe ®'* if and only if it is of the form

fzgouapa, F,e£”®, aeN,,

where D is derivative in 8'* and F,, « € N, are such that for some
h >0 (in the (M,)-case), respectively, for every h > 0 (in the {M, }-
case)

o0

M,

®) 2 2|, e =K< .

a=0 h

Let ¢ € @%:. Since I is dense in @}, then: In the (M),) case, for
every ¢ > 0 and every h > 0, there is H; € I such that

(6) |Hp = ller,n<e.

In the {M,, } case we have that for every ¢ > 0 there is # > 0 and H such
that (6) holds.

In the {M,} case, the assumption of the theorem and Lebesgue’s
theorem give that for ax > x,(c), where x,(¢) is large enough,

<|W-m+ H@)-a j (W(t) — Hp))dt | +

R

‘ (f+ (@) —a J $(&)de
R

+ <

Hs @) -a J Ht)dt

R

<

2 [4-mowre-na
R

+aI |¢(t) — H(t)| dt +
R
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+|H* @) -a f Hydt | <
R
a il Ma
<sup 2 (- Do 2 ZE|F, || oe + e+
a Ma a=0 h

+ <eK,+ac+e.

(H » )@) ~ a [ H(t)dt
The (M,) - case can be proved similarly. The proof is completed.

Proor oF THEOREM 2. We shall only prove the (M, )-case since
this proof can be simply transfered to the {M, }-case.

The proof is organized as follows. In Part I we shall prove estima-
tions (7), (7') and (8) which will be used in Part II for the proof that
F(Ke ~*')(&), £ e R", and the convolution f + K exist. In Part III we will
prove the assertion of Theorem 2.

Part I. Note, from the assumption that (1 — )7)1% e’ and r;I% e+
belong to a)g‘fu) and (M.2) it follows that for every »> 0

() sup rr [lle” (1 - r)(fv)l%(x))("” [l +
M,

+]le™ = (n(z) I%(x))(m) |et], m e NO] < o,
Since e* % < ¢# for x <0, we also have that for every » >0

T supl;‘l—m le=*=((1 - n(w))é(x))(m)".el(—w,on mEN} < o,

m

We need the following estimate:
For every r > 0 there is C > 0 such that

cwth) L \©
L(e" e

Ce”, z+h<0,

k Ce®=*ol=l, +h>0,
(€)] sup{L ]s{ ¢ v
keNy | Mk

where we choose ¢ such that 0 <8 < a — 8.
Let r>0,keN, and x + & > 1. By using (3) and (1) we have (with
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suitable constants)

clx+h) - *®)
L(e")e™

,’.k

M

k
e~V |w®(t)| dt + __l?’al e” <

1 x+h—-t
ok J L(e )
L(e") M,

< —
M,
-1

< Cl e“x‘%lxl ”w"[—l,l],r + C2 e” < Ce”‘Lale .

Similarly, for x + & < —1 we get that for given » > 0 there is C > 0

such that
k cx+h (k)
sup { o |[&EXD) e
keNy | My L(e™)e

Let u=x+he[—-1,1],r>0 and keN,. From (1) we have
that

]<Ce/”.

1

———— <(Ce’®l, xeR,
L(e* %) €

where C > 0 and ¢ > 0. Thus,
c(x + h) ="
— —e¢
L(e*)e®

< lolk-1,13,» sup {eo(x +h—)}
te[-1,1]

’I‘k

M,

<

1
L(eu—a:)ea(u-x)

+Cye* < Cye”*01%l + Cre™ .

These inequalities and the assumption ¢ e (0, « — 8) imply (8).

Part I1. Let ¢ € §¥=) be such that ¢(x) =1 on (— ©, —1) and () =
=0 on [0, ©). We have

©) e=K(x) = e=K(@)1 — n@) (@) +

+e= K(x)(1 — n(@)(1 — Y)) + e K@) nx), zecR.

Since the multiplication in @Y=’ is the inner operation, one can easily
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prove that all the members on the right side of (9) are from =) and so

the same holds for e* K This implies that F(Ke "% )(¢) = :}’(K)(E — ia),
te R", exists.
Since

flx+h)

m, c(x+h)K(w)>, heR,

(f+K)(h) = <

the existence of the convolution f + K will be proved if we prove that
for every heR,

c(. +h)1¥'ea>f€1‘fa>,

because by (i) f(. +h)/c(. +h) e B'M=),
For a fixed hcR and a ¢ as in (9) we have

10) (@ + h) K@) = c(x + k) K@)(1 — n(@)) ¢(x) +

+o(@ + h) K@) — n@)A — ¢(x)) + e + k) K@x)n(x), zeR.

By us1ng 8), (7, (7') and that e* Ke(D‘M ) we shall prove that
c(. +h)Ke CD(M ). We shall only prove that (. +h)K(1 -y is
from @~ for every h € R, because the proof that c(. + h)Kn belongs to
M= is similar and then one can easily see that

(. +h)K(1 — n)(1 — ¢) e DM .
Since

clex + h)

o(x + b) K@)(1 — n(@) Ya) = [e‘““’h)( e L(e")

- e”)l%(x) +

+ea(x+h)L(eh)Kv(x)](1 —-n@®)¢®), xeR,

we have to prove that

c(. +h)

(1- n)yb(—e—a—h—L—(—e—h—; - e“')Ke (D-(EAI{"‘) .



Wiener Tauberian theorems for ultradistributions 217

For every r > 0, x e R, k € Ny, by using (M.2) and (8) we have

k

k) wpf @l NP
1_ B
> (J_)(K(x)( (@) $()) ( ey

s
M,

1\
j=0 -

o 2rH)*
S_41270.2(]9)(7‘ )

. M,_,

% {IE @)1 = n(@) g@)® P e} <

< () sup
ae Ny

M

a

2rHY* | v
[( rH) [(K(2)(1 = n()) ¢ () ef’”llfl],

where C and C; are suitable constants.

For the proof that the last supremum is bounded we have to use the
following estimates

4rH)* z . .
WY 13 () 1K@ — )P ey <
Ma 2* =0 7]
4rH?%) ;
<G, supl( rH) K@) — 7)) 6””||.,e1]'
jeNy J
(4rH?2)e—J i
sup | ey .. <,
a_eleo[ Mzz—j ”Sb ”.f (-1,0) 3
JSa

where C, and C; are suitable constants. Thus, we have proved that the
convolution fx K exists.

Part I11. We are going to prove that the assumptions of the theorem
imply

(11) (% * Ke""‘)(h) = < aj K(t)e * dt,

R

f@+h) vy .
m,K(x)e >—-—)

h— o,

It is enough to prove that

<f(x+h) ( c@+h)

c@+h)’\ e L(e") e“’”)K(x)>_>0, as h—0.
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Since ®'*>3f/c = X D'F; such that (5) holds, we have to prove
that i=0

-] . h v (’L)
Sh=i20(—1)'jFi(x+h)((—c@—-l-—l -e“’”)K(ac)) de—0,
R

L(eh)eah
h— o,
We have
N ; cx+h) Ny @
S, = izo(—l)lj Fi(x + h)((W —-e )K(x)) dx +

v \o
o> (—l)iJFi(x+h)((c(—xt—h—)——e“‘”)K(w)) dx =S, y+5S o -
+1
R

i=N L(e*) e

Because the sum in S, y is finite, the proof that S, y — 0, h— =, is
the same as in the main assertion of[6]. By using (5) we obtain

1 Mi||F; e (2r) c(x + k) P (G}
Sh’ i=;+l 2 r Mi L(eh)eah € (x) ol
c < (@ry cw+h)  \x (i)
oN +1 igo M; [( L(e")e™ e™ | K(x) e

So, if we prove that the last series is bounded with respect to % for
h = hy, the proof that S, . —0, h— x, simply follows. Put

c(. +h) y |
—e*|K
' (( euhL(eh) e ) )

We are going to prove that for every » > 0, there is C > 0 such
that

Im,h— s mENo, k?ho.

el

rm
(12) :ERO[MM m, h] < 09 h > h’O .

This implies that the quoted series is bounded.
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Let x5 > 0 be as in (4). We have

1T et + ) - v ™
Lo =_J ' [(m —e€ )(1 - n(x)) K(x) dx +
I c(x + h) =\ ¥ (m) s
ahL(eh)
C(w +h) v (m) .
'l e L(e") )n(x)K(x) de=L+I+1s.

By the Leibniz formula, (8), (7), (7') and (1) there are constants C,
and C which do not depend on m and p (but depend on 7) such that for

3e (0, a —pB)

—h
& (x + h) ®
I, < m J L2TH) )| g

—

e ((1 — n(a)) K(@)™ P | da +

et ®) y
N J (_c(ii’i)_ _eax)p o G- |ew—&((1—n(x))K(x))"”"’)Idw]<
-h

eahL(eh)

M M__ m - v
(m) C[——’" rm ! Sup{ ™7 Je=1 —n(x))(K(w))‘"‘"”ll.,el] +

p p Tp m-p m, p Mm_p
psm
Mp m-—p rm-P ax — o A4
o z‘?lg[M,,,_p"e <1-v<w>>K<w>"f:-a,.,)} <
psm

m
<C =m0 =
‘Eo(ﬁ) T (/2

This gives that sup {Gr/2y" (M, )1} < Cy.

In a similar Way "one can prove the corresponding estimates for I,
and I3 and the proof of (12) is completed.

Thus, we have proved (11).
If ¢ € 8™ satisfies the assumption given in (+) then ge* € @~ and
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we have
(Ef*¢e‘“')(h)—>afgb(ac)e““‘”dx, h— o .
E
As above we can prove that (f = ¢)(h), he R, exists.
For the proof that
<ﬂx+m

L(eh)eah

’S\L(x)>_’af¢(x)6_udw, h— o,

we have to prove that

ﬂx+h)(dw+h)_

cx+h)’\ e L(et) ¢ )(’b(x) =0, ke
but this is already done (with K instead of ) and the proof of the Theo-
rem is completed.

The proof of Corollary 1 simply follows from the given Theorem 2
since the ¢ in the Corollary satisfies conditions assumed for K and func-
tions from ®* satisfy condition (c) of Theorem 2.

This research was supported by Science Fund of Serbia, grant num-
ber 0401 A, trough Mathematical Institute, Beograd.

REFERENCES

[11 N. H. BINGHAM - C. M. GOLDIE - J. L. TEUGELS, Regular Variation, Cam-
bridge University Press (1989).

[2] W. F. DONOGHUE, Distribution and Fourier Transforms, Academic Press,
New York (1969).

[3] H. KoMaTsu, Ultradistributions, I: Structure theorems and a characteriza-
tion, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), pp. 23-105.

[4] D. KovACEVIC - S. PILIPOVIC, Structural properties of the space of tempered
ultradistributions, in Proc. Conf. Complex Analysis and Applications 91
with Symposium on Generalized Functions, Varrna 1991, pp. 169-184.

[5] S. PiLipoviC, Characterizations of bounded sets in spaces of ultradistribu-
tions, Proc. Amer. Math. Soc., to appear.

[6] S. PiLipoviC - B. STANKOVIC, Wiener Tauberian theorems for distributions,
J. London Math. Soc., to appear.

[7] L. SCHWARTZ, Théorie des distributions, Hermann, Paris (1966).

Manoscritto pervenuto in redazione I'l ottobre 1992
e, in forma definitiva, il 30 giugno 1993.



