RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

S. PILIPOVIĆ

B. STANKOVIĆ

Wiener tauberian theorems for ultradistributions

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p. 209-220

http://www.numdam.org/item?id=RSMUP_1994__92__209_0

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Wiener Tauberian Theorems for Ultradistributions.

S. Pilipović - B. Stanković (*)

SUMMARY - The purpose of this paper is the extension of Wiener Tauberian theorems for distributions ([6]) on ultradistribution spaces. Because of that, we give the versions of Beurling's and Wiener's theorems for bounded ultradistributions. The corollary of our main theorem is the following one. Let f be an ultradistribution such that f/c is a bounded ultradistribution, where c is a smooth function which behaves as $L(e^x)e^{\alpha x}$, $x \to \infty$, L is a slowly varying function at ∞ and $\alpha \in \mathbf{R}$. If for an ultradifferentiable function ϕ with the property $\mathcal{F}[\phi](\xi - i\alpha) \neq 0$, $\xi \in \mathbf{R}$,

$$\lim_{x\,\rightarrow\,\infty}\,\,\frac{(\,f\,\ast\,\phi)(x)}{L(e^{\,x})\,e^{\,\alpha x}}\,=\,a\,\int\phi(t)\,e^{\,-\alpha t}\,\,dt\,,\qquad a\in {I\!\!R}\,,$$

then for every ultradifferentiable function ϕ

$$\frac{(f*\psi)(x)}{L(e^x)\,e^{\,\alpha x}} \to a \int \psi(t)\,e^{\,-\alpha t}\,dt\,, \qquad x\to\infty\;.$$

1. Notation and notions.

With N and R are denoted the sets of natural and real numbers; $N_0 = N \cup \{0\}$. If f is a function on R, then f denotes the function defined by f(x) = f(-x), $x \in R$. \mathcal{C}^{∞} denotes the space of smooth functions on R and \mathcal{L}^1 is the space of Lebesgue integrable functions (classes) on R with the usual norm $\|\cdot\|_{\mathcal{L}^1}$. For an f from \mathcal{L}^1 the Fourier transform is denoted by $\mathcal{F}f$ or \widehat{f} . \mathcal{L}^1_{loc} and \mathcal{L}^{∞} are defined in a usual way.

We shall always denote by L a slowly varying function ([1]). Recall,

^(*) Indirizzo degli AA: Institute of Mathematics, University of Novi Sad, 21000 Novi Sad, Yugoslavia

L is measurable, positive and

$$\frac{L(xh)}{L(h)} \to 1, \quad h \to \infty, \quad x > 0.$$

For every $\delta > 0$ there is $C_{\delta} > 0$ such that

$$(1) \qquad \frac{1}{C_{\delta}} \min \left\{ \left(\frac{x}{y} \right)^{\delta}, \left(\frac{y}{x} \right)^{\delta} \right\} \leq \frac{L(x)}{L(y)} \leq C_{\delta} \max \left\{ \left(\frac{x}{y} \right)^{\delta}, \left(\frac{y}{x} \right)^{\delta} \right\},$$

$$x > 0, \quad y > 0.$$

For the notation and properties of the spaces $\mathcal{O}^{(M_{\alpha})}$, $\mathcal{O}^{\{M_{\alpha}\}}$ and their strong duals $\mathcal{O}'^{(M_{\alpha})}$ (the space of Beurling ultradistributions) and $\mathcal{O}'^{\{M_{\alpha}\}}$ (the space of Roumieau ultradistributions) we refer to [3]. We shall assume that the sequence M_{α} satisfies conditions (M.1), (M.2) and (M.3)' ([3]).

As in [5] we put

$$\mathcal{O}_{\mathcal{L}^1}^{(M_{\alpha})} = \operatorname{proj}_{h \to \infty} \, \mathcal{O}_{\mathcal{L}^1, h}^{M_{\alpha}} \,, \qquad \mathcal{O}_{\mathcal{L}^1}^{\{M_{\alpha}\}} = \operatorname{ind}_{h \to 0} \, \mathcal{O}_{\mathcal{L}^1, h}^{M_{\alpha}},$$

where $\mathcal{O}_{\mathcal{L}^{\tilde{1}},h}^{M_{\tilde{c}}}$, h > 0, is a Banach space of smooth functions φ on \boldsymbol{R} with the finite norm

$$\|\varphi\|_{\mathcal{L}^1, h} = \sup \left\{ \frac{h^{\alpha}}{M_{\alpha}} \|\dot{\varphi}^{(\alpha)}\|_{\mathcal{L}^1}; \alpha \in N_0 \right\}.$$

The common notation for (M_{α}) and $\{M_{\alpha}\}$ will be*. The space \mathcal{O}^* is dense in $\mathcal{O}_{\mathcal{E}^1}^*$ and the inclusion mapping is continuous. The strong dual of $\mathcal{O}_{\mathcal{E}^1}^*$ is denoted by \mathcal{B}'^* .

The spaces of tempered ultradistributions are defined as the strong duals of the following testing function spaces ([4])

$$S^{(M_{\alpha})} = \operatorname{proj}_{h \to \infty} S_h^{M_{\alpha}}, \qquad S^{\{M_{\alpha}\}} = \operatorname{ind}_{h \to 0} S_h^{M_{\alpha}},$$

where $S_h^{M_a}$, h > 0, is the Banach space of smooth functions φ on \mathbf{R} with the finite norm:

$$\gamma_h(\varphi) = \sup \left\{ \frac{h^{\alpha+\beta}}{M_{\alpha}M_{\beta}} \left\| (1+x^2)^{\alpha/2} \varphi^{(\beta)} \right\|_{\mathcal{L}^{\infty}}, \alpha, \beta \in N_0 \right\}.$$

The Fourier transformation is an isomorphism of S^* onto S^* and \mathcal{O}^* is dense in S^* . Clearly, S^* is dense in $\mathcal{O}_{\mathcal{L}^1}^*$ and the inclusion mapping is continuous.

Recall from [2] that a sequence of continuous and bounded functions

 f_n on R converges narrowly to a continuous bounded function f_0 if and only if f_n converges to f_0 uniformly on bounded sets in R and

$$||f_n||_{\mathfrak{L}^{\infty}} \to ||f_0||_{\mathfrak{L}^{\infty}}, \quad n \to \infty.$$

We shall always assume that $\alpha, \beta \in \mathbb{R}$ and $\alpha > \beta$. Put

$$c_0(x) = \begin{cases} L(e^x) e^{\alpha x}, & x \ge 0, \\ e^{\beta x}, & x < 0. \end{cases}$$

The following regularization of this function will be used.

(3)
$$c(x) = (c_0 * \omega)(x), \qquad x \in \mathbf{R},$$

where $\omega \in \mathcal{O}^*$, supp $\omega \in [-1, 1]$, $\omega \ge 0$ and $\int_{-1}^{\infty} \omega(t) dt = 1$.

We shall denote by η a function from 8^* with the properties

(4)
$$\eta(x) = 1$$
, $x > x_0 > 0$, $\eta(x) = 0$, $x < -x_0$.

2. Assertions.

THEOREM 1. Let $f \in \mathcal{B}' *$ and $K \in \mathcal{O}_{\mathcal{L}^1}^*$ such that $\mathcal{F}[K](\xi) \neq 0$, $\xi \in \mathbf{R}$. If

$$\lim_{x\to\infty} (f^*K)(x) = a \int_{R} K(t) dt, \quad a \in R,$$

then for every $\psi \in \mathcal{O}_{\mathcal{L}^1}^*$,

$$\lim_{x \to \infty} (f * \psi)(x) = a \int_{\mathbf{R}} \psi(t) dt.$$

THEOREM 2. Let $f \in \mathcal{O}'^*$ and $K \in C^{\infty}$. Assume:

- (i) $f/c \in \mathcal{B}'^*$.
- (ii) There exists $\delta > 0$ such that

$$\eta \overset{\vee}{K} e^{(\alpha + \delta)}, (1 - \eta) \overset{\vee}{K} e^{\beta} \in \mathcal{O}_{\mathcal{L}^1}^*.$$

(iii) $\mathcal{F}[K](\xi - i\alpha) \neq 0$, $\xi \in \mathbb{R}$.

(iv)
$$\lim_{x \to \infty} (f^* K)(x)/(L(e^x) e^{\alpha x}) = a \int_{\mathbf{R}} K(t) e^{-\alpha t} dt$$
, $a \in \mathbf{R}$.

Then for every $\psi \in C^{\infty}$ for which

there holds

$$\lim_{x \to \infty} \frac{(f * \psi)(x)}{L(e^x) e^{\alpha x}} = a \int \psi(t) e^{-\alpha t} dt.$$

REMARK. It is an open problem whether the assumption that the set $\{(f(\cdot + h))/c(h); h \in \mathbb{R}\}$ is bounded in \mathcal{O}' * implies that $f/c \in \mathcal{B}'$ *. Note that for distributions the corresponding assertion holds (see [7]).

COROLLARY 1. Let $f \in \mathcal{Q}'^*$ such that $f/c \in \mathcal{B}'^*$ and let $\phi \in \mathcal{Q}^*$ such that $\mathcal{F}[\phi](\xi - i\alpha) \neq 0$, $\xi \in \mathbb{R}$. If

$$\lim_{x\to\infty} \frac{(f*\phi)(x)}{L(e^x)e^{\alpha x}} = a \int \phi(t) e^{-\alpha t} dt, \qquad a \in \mathbf{R},$$

then for every $\psi \in \mathbb{O}^*$

$$\lim_{x\to\infty} \frac{(f*\psi)(x)}{L(e^x)e^{\alpha x}} = a \int \psi(t)e^{-\alpha t} dt.$$

3. Proofs.

PROOF OF THEOREM 1. First we need the following version of Beurling's theorem ([2]) for bounded ultradistributions.

«Let $f \in \mathcal{B}'^*$. A point ξ_0 belongs to supp \widehat{f} if and only if there is a sequence of functions $\{\varphi_n\}$ from \mathcal{S}^* such that

$$f_n(x) = (f * \varphi_n)(x), \qquad x \in \mathbf{R}, \qquad n \in \mathbf{N},$$

convergences narrowly to $f_0(x) = e^{ix\xi_0}, x \in \mathbb{R}, n \to \infty$.

The proof of this assertion is the same as for bounded distributions since all the properties of Schwartz's test functions which were used in [2, pp. 230-231], have been proved in [3] and [5] for ultradifferentiable functions. The same holds for the next assertion, based on the previous one, which is analogous to the Theorem on p. 232 in [2].

«Let $f \in \mathcal{B}'^*$ and $K \in \mathcal{O}_{\mathcal{E}^1}^*$. If $K^*f \equiv 0$ on R, then $\widehat{K}(\xi) = 0$ for $\xi \in \operatorname{supp} \widehat{f}$ ».

First, we shal prove that the set \mathcal{M} which consists of finite linear combinations of translations of $K \in \mathcal{O}_{\mathcal{E}^1}^*$ is dense in $\mathcal{O}_{\mathcal{E}^1}^*$. By the property of dual pairing, \mathcal{M} is dense in $\mathcal{O}_{\mathcal{E}^1}^*$ if and only if for every $S \in \mathcal{B}'^*$, $S * \check{K} = 0 \Leftrightarrow S = 0$. For, if \mathcal{M} is not dense, there exists an $S_0 \in \mathcal{B}^*$, $S_0 \neq 0$ such that $S_0 * \check{K} = 0$. Thus $\mathcal{F}[\check{K}](\xi) = 0$, $\xi \in \operatorname{supp} \mathcal{F}[S_0]$. Since we assume $\mathcal{F}[\check{K}](\xi) = \mathcal{F}[K](-\xi)$ is never zero, we conclude that \mathcal{M} is dense in $\mathcal{O}_{\mathcal{E}^1}^*$.

From that and previous statement we obtain the proof of the quoted Wiener theorem.

Note ([5]), $f \in \mathcal{B}'^*$ if and only if it is of the form

$$f = \sum_{\alpha=0}^{\infty} D^{\alpha} F_{\alpha}$$
, $F_{\alpha} \in \mathcal{L}^{\infty}$, $\alpha \in N_0$,

where D is derivative in \mathcal{B}'^* and F_{α} , $\alpha \in N_0$, are such that for some h > 0 (in the (M_{α}) -case), respectively, for every h > 0 (in the $\{M_{\alpha}\}$ -case)

(5)
$$\sum_{\alpha=0}^{\infty} \frac{M_{\alpha}}{h^{\alpha}} \|F_{\alpha}\|_{\mathcal{L}^{\alpha}} = K_{h} < \infty.$$

Let $\psi \in \mathcal{O}_{\mathcal{E}^1}^*$. Since \mathfrak{M} is dense in $\mathcal{O}_{\mathcal{E}^1}^*$, then: In the (M_p) case, for every $\varepsilon > 0$ and every h > 0, there is $H_h \in \mathfrak{M}$ such that

$$||H_h - \psi||_{\ell^1, h} < \varepsilon.$$

In the $\{M_p\}$ case we have that for every $\varepsilon>0$ there is h>0 and H such that (6) holds.

In the $\{M_p\}$ case, the assumption of the theorem and Lebesgue's theorem give that for $x > x_0(\varepsilon)$, where $x_0(\varepsilon)$ is large enough,

$$\left| (f * \psi)(x) - a \int_{R} \psi(\xi) dt \right| \le \left| ((\psi - H) * f)(x) - a \int_{R} (\psi(t) - H(t)) dt \right| +$$

$$+ \left| (H * f)(x) - a \int_{R} H(t) dt \right| \le$$

$$\le \left| \sum_{i=0}^{\infty} \int_{R} (\psi - H)^{(\alpha)}(t) F_{\alpha}(x - t) dt \right| + a \int_{R} |\psi(t) - H(t)| dt +$$

$$\left| \left((H * f)(x) - a \int_{R} H(t) dt \right) \right| \le$$

$$\le \sup_{\alpha} \frac{h^{\alpha}}{M_{\alpha}} \left\| (\psi - H)^{(\alpha)} \right\|_{\mathcal{L}^{1}} \sum_{\alpha = 0}^{\infty} \frac{M_{\alpha}}{h^{\alpha}} \left\| F_{\alpha} \right\|_{\mathcal{L}^{\infty}} + a\varepsilon +$$

$$+ \left| (H * f)(x) - a \int_{R} H(t) dt \right| \le \varepsilon K_{h} + a\varepsilon + \varepsilon .$$

The (M_p) - case can be proved similarly. The proof is completed.

PROOF OF THEOREM 2. We shall only prove the (M_{α}) -case since this proof can be simply transferred to the $\{M_{\alpha}\}$ -case.

The proof is organized as follows. In Part I we shall prove estimations (7), (7') and (8) which will be used in Part II for the proof that $\mathcal{F}(Ke^{-\alpha})(\xi)$, $\xi \in \mathbb{R}^n$, and the convolution f * K exist. In Part III we will prove the assertion of Theorem 2.

Part I. Note, from the assumption that $(1-\eta)\overset{\vee}{K}e^{\beta}$ and $\eta\overset{\vee}{K}e^{(\alpha+\delta)}$ belong to $\mathcal{O}_{\mathfrak{L}^1}^{(M_a)}$ and (M.2) it follows that for every r>0

(7)
$$\sup \left\{ \frac{r^m}{M_m} \left[\| e^{\beta x} ((1 - \eta(x) \overset{\vee}{K}(x))^{(m)} \|_{\mathcal{L}^1} + \right] \right.$$

$$+\|e^{(\alpha+\delta)x}(\eta(x)\overset{\vee}{K}(x))^{(m)}\|_{\mathcal{L}^1}], m \in N_0$$
 $< \infty$.

Since $e^{(\alpha + \delta)x} \le e^{\beta x}$, for x < 0, we also have that for every r > 0

$$(7') \sup \left\{ \frac{r^m}{M_m} \left\| e^{(\alpha + \delta)x} ((1 - \eta(x)) \overset{\vee}{K}(x))^{(m)} \right\|_{\mathcal{L}^1(-\infty, 0)}, \ m \in N \right\} < \infty.$$

We need the following estimate:

For every r > 0 there is C > 0 such that

$$(8) \quad \sup_{k \in \mathbb{N}_0} \left\{ \frac{r^k}{M_k} \left| \left(\frac{c(x+h)}{L(e^h) e^{\alpha h}} - e^{\alpha x} \right)^{(k)} \right| \right\} \leq \left\{ \begin{array}{ll} Ce^{\alpha x + \delta |x|}, & x+h > 0, \\ Ce^{\beta x}, & x+h < 0, \end{array} \right.$$

where we choose δ such that $0 < \delta < \alpha - \beta$.

Let r > 0, $k \in N_0$ and x + h > 1. By using (3) and (1) we have (with

suitable constants)

$$\begin{split} \frac{r^{k}}{M_{k}} \; \left| \left(\frac{c(x+h)}{L(e^{h}) \, e^{\, \alpha h}} - e^{\, \alpha x} \right)^{(k)} \; \right| \; & \leq \\ & \leq \; \frac{r^{k}}{M_{k}} \int_{-1}^{1} \frac{L(e^{\, x+h\, -\, t})}{L(e^{h})} \, e^{\, \alpha (x\, -\, t)} \, \left| \, \omega^{(k)}(t) \, \right| \, dt \, + \, \frac{|\, r\alpha\,|^{\, k}}{M_{k}} \, e^{\, \alpha x} \, \leq \\ & \leq C_{1} \, e^{\, \alpha x\, +\, \delta |\, x|} \, \left\| \, \omega \right\|_{[\, -1,\, 1],\, r} + C_{2} \, e^{\, \alpha x} \, \leq C e^{\, \alpha x\, +\, \delta |\, x|} \; . \end{split}$$

Similarly, for x + h < -1 we get that for given r > 0 there is C > 0 such that

$$\sup_{k \in N_0} \left\{ \frac{r^k}{M_k} \left| \left(\frac{c_0(x+h)}{L(e^h)e^{\alpha h}} - e^{\alpha x} \right)^{(k)} \right| \right\} < Ce^{\beta x} .$$

Let $u=x+h\in[-1,\,1],\,r>0$ and $k\in N_0$. From (1) we have that

$$\frac{1}{L(e^{u-x})} \leq Ce^{\delta|x|}, \quad x \in \mathbf{R},$$

where C > 0 and $\delta > 0$. Thus,

$$\begin{split} \frac{r^k}{M_k} \; \left| \left(\frac{c(x+h)}{L(e^h) \, e^{\, \alpha h}} - e^{\, \alpha x} \right)^{(k)} \, \right| \, & \leq \\ & \leq \|\omega\|_{[-1, \, 1], \, r} \, \sup_{t \, \in \, [-1, \, 1]} \left\{ c_0 \, (x+h-t) \right\} \, \frac{1}{L(e^{\, u \, - \, x}) \, e^{\, \alpha (u \, - \, x)}} \, + \\ & \quad + C_2 \, e^{\, \alpha x} \, \leqslant C_3 \, e^{\, \alpha x \, + \, \delta \, |\, x \, |} \, + C_2 \, e^{\, \alpha x} \, . \end{split}$$

These inequalities and the assumption $\delta \in (0, \alpha - \beta)$ imply (8).

Part II. Let $\psi \in \mathcal{E}^{(M_{\alpha})}$ be such that $\psi(x) = 1$ on $(-\infty, -1)$ and $\psi(x) = 0$ on $[0, \infty)$. We have

(9)
$$e^{\alpha x} \overset{\vee}{K}(x) = e^{\alpha x} \overset{\vee}{K}(x) (1 - \eta(x)) \psi(x) +$$

 $+ e^{\alpha x} \overset{\vee}{K}(x) (1 - \eta(x)) (1 - \psi(x)) + e^{\alpha x} \overset{\vee}{K}(x) \eta(x), \qquad x \in \mathbf{R}.$

Since the multiplication in $\mathcal{Q}_{\mathfrak{L}^{1}}^{(M_{\alpha})}$ is the inner operation, one can easily

prove that all the members on the right side of (9) are from $\mathcal{O}_{\mathfrak{L}^1}^{(M_{\mathfrak{L}})}$ and so the same holds for $e^{\alpha \cdot \overset{\vee}{K}}$. This implies that $\mathscr{F}(Ke^{-\alpha \cdot})(\xi) = \mathscr{F}(K)(\xi - i\alpha)$, $\xi \in \mathbf{R}^n$, exists.

Since

$$(f*K)(h) = \left\langle \frac{f(x+h)}{c(x+h)}, c(x+h)\overset{\vee}{K}(x) \right\rangle, \qquad h \in \mathbf{R}$$

the existence of the convolution f * K will be proved if we prove that for every $h \in \mathbb{R}$,

$$c(.+h)\overset{\vee}{K}\in\mathcal{O}_{\mathcal{L}^1}^{(M_\alpha)}$$
,

because by (i) $f(.+h)/c(.+h) \in \mathcal{B}^{\prime(M_{\alpha})}$.

For a fixed $h \in \mathbf{R}$ and a ψ as in (9) we have

(10)
$$c(x+h) \overset{\vee}{K}(x) = c(x+h) \overset{\vee}{K}(x) (1-\eta(x)) \psi(x) +$$
$$+ c(x+h) \overset{\vee}{K}(x) (1-\eta(x)) (1-\psi(x)) + c(x+h) \overset{\vee}{K}(x) \eta(x), \qquad x \in \mathbf{R}$$

By using (8), (7), (7') and that $e^{\alpha \cdot \overset{\circ}{K}} \in \mathcal{O}_{\mathbb{R}^1}^{(M_{\pi})}$ we shall prove that $c(.+h)\overset{\circ}{K} \in \mathcal{O}_{\mathbb{R}^1}^{(M_{\pi})}$. We shall only prove that $c(.+h)\overset{\circ}{K}(1-\eta)\psi$ is from $\mathcal{O}_{\mathbb{R}^1}^{(M_{\pi})}$ for every $h \in \mathbf{R}$, because the proof that $c(.+h)\overset{\circ}{K}\eta$ belongs to $\mathcal{O}_{\mathbb{R}^1}^{(M_{\pi})}$ is similar and then one can easily see that

$$c(.+h) \stackrel{\vee}{K} (1-\eta)(1-\psi) \in \mathcal{Q}^{(M_\alpha)} \; .$$

Since

$$\begin{split} c(x+h) \check{K}(x) (1-\eta(x)) \, \psi(x) = & \left[e^{\,\alpha h} \, L(e^{\,h}) \left(\frac{c(x+h)}{e^{\,\alpha h} \, L(e^{\,h})} - e^{\,\alpha x} \right) \check{K}(x) \right. + \\ & + e^{\,\alpha(x+h)} \, L(e^{\,h}) \, \check{K}(x) \right] (1-\eta(x)) \, \psi(x) \,, \qquad x \in \pmb{R} \;, \end{split}$$

we have to prove that

$$(1-\eta)\psi\left(\frac{c(.+h)}{e^{\alpha h}L(e^h)}-e^{\alpha .}\right)\overset{\vee}{K}\in\mathcal{O}_{\mathscr{L}^{1}}^{(M_{\alpha})}.$$

For every r > 0, $x \in \mathbb{R}$, $k \in \mathbb{N}_0$, by using (M.2) and (8) we have

$$\begin{split} \frac{r^{k}}{M_{k}} & \left\| \sum_{j=0}^{k} \binom{k}{j} (\breve{K}(x)(1-\eta(x)) \psi(x))^{(k-j)} \left(\frac{c(x+h)}{e^{\alpha h} L(e^{h})} - e^{\alpha x} \right)^{(j)} \right\|_{\mathcal{L}^{1}} \leq \\ & \leq \frac{AC}{2^{k}} \sum_{j=0}^{k} \binom{k}{j} \frac{(2rH)^{k-j}}{M_{k-j}} \left\{ \left\| (\breve{K}(x)(1-\eta(x)) \psi(x))^{(k-j)} e^{\beta x} \right\|_{\mathcal{L}^{1}} \right\} \leq \\ & \leq C_{1} \sup_{\alpha \in N_{0}} \left\{ \frac{(2rH)^{\alpha}}{M_{\alpha}} \left\| (\breve{K}(x)(1-\eta(x)) \psi(x))^{(\alpha)} e^{\beta x} \right\|_{\mathcal{L}^{1}} \right\}, \end{split}$$

where C and C_1 are suitable constants.

For the proof that the last supremum is bounded we have to use the following estimates

$$\begin{split} &\frac{(4rH)^{\alpha}}{M_{\alpha}} \; \frac{1}{2^{\alpha}} \; \sum_{j=0}^{\alpha} \binom{\alpha}{j} \big\| \overset{\vee}{K}(x) (1-\eta(x))^{(j)} \; e^{\beta x} \psi^{(\alpha-j)} \big\|_{\mathcal{E}^{1}} \leqslant \\ &\leqslant C_{2} \; \sup_{j \; \in \; N_{0}} \left\{ \frac{(4rH^{2})^{j}}{M_{j}} \; \big\| \overset{\vee}{K}(x) (1-\eta(x))^{(j)} \; e^{\beta x} \big\|_{\mathcal{E}^{1}} \right\} \cdot \\ & \quad \cdot \sup_{\substack{\alpha \; \in \; N_{0} \\ j \; \leqslant \; \alpha}} \left\{ \frac{(4rH^{2})^{k-j}}{M_{\alpha-j}} \, \big\| \psi^{(\alpha-j)} \big\|_{\mathcal{E}^{\alpha}(-1,\; 0)} \right\} \leqslant C_{3} \; , \end{split}$$

where C_2 and C_3 are suitable constants. Thus, we have proved that the convolution f * K exists.

Part III. We are going to prove that the assumptions of the theorem imply

(11)
$$\left(\frac{f}{c} * Ke^{-\alpha \cdot}\right)(h) = \left\langle \frac{f(x+h)}{c(x+h)}, \check{K}(x)e^{\alpha x} \right\rangle \to a \int_{\mathbf{R}} K(t)e^{-\alpha t} dt,$$

$$h \to \infty.$$

It is enough to prove that

$$\left\langle \frac{f(x+h)}{c(x+h)}, \left(\frac{c(x+h)}{e^{\alpha h}L(e^h)} - e^{\alpha x} \right) \check{K}(x) \right\rangle \to 0, \quad \text{as } h \to 0.$$

Since $\mathcal{B}'^* \ni f/c = \sum_{i=0}^{\infty} D^i F_i$ such that (5) holds, we have to prove that

$$S_h = \sum_{i=0}^{\infty} (-1)^i \int_{\mathbf{R}} F_i(x+h) \left(\left(\frac{c(x+h)}{L(e^h) e^{\alpha h}} - e^{\alpha x} \right) \check{K}(x) \right)^{(i)} dx \to 0,$$

$$h \to \infty.$$

We have

$$\begin{split} S_h &= \sum_{i=0}^N (-1)^i \int\limits_R F_i(x+h) \Biggl(\Biggl(\frac{c(x+h)}{L(e^h) \, e^{\,ah}} \, - e^{\,ax} \Biggr) \check{K}(x) \Biggr)^{(i)} \, dx \, + \\ &+ \sum_{i=N+1}^\infty (-1)^i \int\limits_R F_i(x+h) \Biggl(\Biggl(\frac{c(x+h)}{L(e^h) \, e^{\,ah}} \, - e^{\,ax} \Biggr) \check{K}(x) \Biggr)^{(i)} \, dx = S_{h,\,N} + S_{h,\,\infty} \; . \end{split}$$

Because the sum in $S_{h,N}$ is finite, the proof that $S_{h,N} \to 0$, $h \to \infty$, is the same as in the main assertion of [6]. By using (5) we obtain

$$\begin{split} S_{h, \ \omega} & \leq \sum_{i \ = \ N+1} \ \frac{1}{2^i} \, \frac{M_i \|F_i\|_{\mathcal{E}^{\, \omega}}}{r^i} \, \frac{(2r)^i}{M_i} \, \left\| \left[\left(\frac{c(x+h)}{L(e^h) \, e^{\, ah}} - e^{\, ax} \right) \overset{\vee}{K}(x) \right]^{(i)} \right\|_{\mathcal{E}^1} \leq \\ & \leq \frac{C}{2^{N+1}} \, \sum_{i \ = \ 0}^{\infty} \, \frac{(2r)^i}{M_i} \, \left\| \left[\left(\frac{c(x+h)}{L(e^h) \, e^{\, ah}} - e^{\, ax} \right) \overset{\vee}{K}(x) \right]^{(i)} \right\|_{\mathcal{E}^1}. \end{split}$$

So, if we prove that the last series is bounded with respect to h for $h \ge h_0$, the proof that $S_{h,\infty} \to 0$, $h \to \infty$, simply follows. Put

$$I_{m,h} = \left\| \left(\left(\frac{c(.+h)}{e^{\alpha h} L(e^h)} - e^{\alpha .} \right) \check{K} \right)^{(m)} \right\|_{\mathcal{L}^1}, \quad m \in \mathcal{N}_0, \quad h \geq h_0.$$

We are going to prove that for every r > 0, there is C > 0 such that

(12)
$$\sup_{m \in N_0} \left\{ \frac{r^m}{M_m} I_{m,h} \right\} < C, \qquad h > h_0.$$

This implies that the quoted series is bounded.

Let $x_0 > 0$ be as in (4). We have

$$I_{m, h} = \int_{-\infty}^{-x_0} \left| \left[\left(\frac{c(x+h)}{e^{\alpha h} L(e^h)} - e^{\alpha x} \right) (1 - \eta(x)) \overset{\lor}{K}(x) \right]^{(m)} \right| dx +$$

$$+ \int_{-x_0}^{x_0} \left| \left[\left(\frac{c(x+h)}{e^{\alpha h} L(e^h)} - e^{\alpha x} \right) \overset{\lor}{K}(x) \right]^{(m)} \right| dx +$$

$$+ \int_{x_0}^{\infty} \left| \left[\left(\frac{c(x+h)}{e^{\alpha h} L(e^h)} - e^{\alpha x} \right) \eta(x) \overset{\lor}{K}(x) \right]^{(m)} \right| dx = I_1 + I_2 + I_3.$$

By the Leibniz formula, (8), (7), (7') and (1) there are constants C_1 and C which do not depend on m and p (but depend on r) such that for $\delta \in (0, \alpha - \beta)$

$$\begin{split} I_{1} & \leq \sum_{p=0}^{m} {m \brack p} \Bigg[\int_{-\infty}^{-h} \left| \left(\frac{c(x+h)}{e^{ah}L(e^{h})} - e^{ax} \right)^{(p)} e^{-\beta x} \right| \cdot \\ & \cdot \left| e^{\beta x} \left((1-\eta(x)) \overset{\vee}{K}(x) \right)^{(m-p)} \right| dx + \\ & + \int_{-h}^{-x_{0}} \left| \left(\frac{c(x+h)}{e^{ah}L(e^{h})} - e^{ax} \right)^{(p)} e^{-(ax-\delta x)} \right| \left| e^{ax-\delta x} \left((1-\eta(x)) \overset{\vee}{K}(x) \right)^{(m-p)} \right| dx \Bigg] \leq \\ & \leq \sum_{p=0}^{m} {m \brack p} C \Bigg[\frac{M_{p}}{r^{p}} \frac{M_{m-p}}{r^{m-p}} \sup_{\substack{m, \ p \ p \leq m}} \left\{ \frac{r^{m-p}}{M_{m-p}} \left\| e^{\beta x} (1-\eta(x)) (\overset{\vee}{K}(x))^{(m-p)} \right\|_{\mathcal{L}^{1}} \right\} + \\ & + \frac{M_{p}}{r^{p}} \frac{M_{m-p}}{r^{m-p}} \sup_{\substack{m, \ p \ p \leq m}} \left\{ \frac{r^{m-p}}{M_{m-p}} \left\| e^{ax-\delta x} (1-\eta(x)) \overset{\vee}{K}(x) \right\|_{\mathcal{L}^{1}_{(-\infty,0)}} \right\} \Bigg] \leq \\ & \leq C_{1} \sum_{p=0}^{m} {m \brack p} \frac{M_{m}}{r^{m}} = C_{1} \frac{M_{m}}{(r/2)^{m}} \, . \end{split}$$

This gives that $\sup_{m \in N_0} \{(r/2)^m/(M_m)I_1\} < C_1$. In a similar way one can prove the corresponding estimates for I_2 and I_3 and the proof of (12) is completed.

Thus, we have proved (11). If $\psi \in \mathcal{E}^{(M_{\alpha})}$ satisfies the assumption given in (*) then $\psi e^{\alpha} \in \mathcal{O}_{\mathcal{L}^1}^{(M_{\alpha})}$ and

we have

$$\left(\frac{f}{c} * \psi e^{-\alpha}\right)(h) \to a \int_{\mathbb{R}} \psi(x) e^{-\alpha x} dx, \quad h \to \infty.$$

As above we can prove that $(f * \psi)(h)$, $h \in \mathbb{R}$, exists. For the proof that

$$\left\langle \frac{f(x+h)}{L(e^h)e^{\alpha h}}, \check{\psi}(x) \right\rangle \rightarrow a \int \psi(x)e^{-\alpha x} dx, \qquad h \rightarrow \infty,$$

we have to prove that

$$\left\langle \frac{f(x+h)}{c(x+h)}, \left(\frac{c(x+h)}{e^{\alpha h}L(e^h)} - e^{\alpha x} \right) \psi(x) \right\rangle \to 0, \quad h \to \infty$$

but this is already done (with K instead of ψ) and the proof of the Theorem is completed.

The proof of Corollary 1 simply follows from the given Theorem 2 since the ϕ in the Corollary satisfies conditions assumed for K and functions from \mathcal{O}^* satisfy condition (c) of Theorem 2.

This research was supported by Science Fund of Serbia, grant number 0401 A, trough Mathematical Institute, Beograd.

REFERENCES

- [1] N. H. BINGHAM C. M. GOLDIE J. L. TEUGELS, Regular Variation, Cambridge University Press (1989).
- [2] W. F. DONOGHUE, Distribution and Fourier Transforms, Academic Press, New York (1969).
- [3] H. KOMATSU, Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), pp. 23-105.
- [4] D. Kovačević S. Pilipović, Structural properties of the space of tempered ultradistributions, in Proc. Conf. Complex Analysis and Applications '91 with Symposium on Generalized Functions, Varna 1991, pp. 169-184.
- [5] S. PILIPOVIĆ, Characterizations of bounded sets in spaces of ultradistributions, Proc. Amer. Math. Soc., to appear.
- [6] S. PILIPOVIĆ B. STANKOVIĆ, Wiener Tauberian theorems for distributions, J. London Math. Soc., to appear.
- [7] L. Schwartz, Théorie des distributions, Hermann, Paris (1966).

Manoscritto pervenuto in redazione l'1 ottobre 1992 e, in forma definitiva, il 30 giugno 1993.