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Wiener tauberian theorems for ultradistributions
Rendiconti del Seminario Matematico della Università di Padova,
tome 92 (1994), p. 209-220
<http://www.numdam.org/item?id=RSMUP_1994__92__209_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1994__92__209_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Wiener Tauberian Theorems for Ultradistributions.

S. PILIPOVI0107 - B. STANKOVI0107 (*)

SUMMARY - The purpose of this paper is the extension of Wiener Tauberian theo-
rems for distributions ([6]) on ultradistribution spaces. Because of that, we
give the versions of Beurling’s and Wiener’s theorems for bounded ultradis-
tributions. The corollary of our main theorem is the following one. Let f be an
ultradistribution such that flc is a bounded ultradistribution, where c is a
smooth function which behaves as L( eX) e (XX , slowly varying
function at 00 and a E R . If for an ultradifferentiable function ~ with the prop-
erty ~( ~]( ~ - ia) ~ 0, ~ E R,

then for every ultradifferentiable function ~

1. Notation and notions.

With N and R are denoted the sets of natural and real numbers;
No = N U 10 1. If f is a function on R, then f denotes the function defined

E R. Coo denotes the space of smooth functions on R
and is the space of Lebesgue integrable funstions (classes) on R with
the usual For an f from 21 the Fourier transform is denoted
by fff or f. are defined in a usual way.

We shall always denote by L a slowly varying function ([11). Recall,

(*) Indirizzo degli AA: Institute of Mathematics, University of Novi Sad,
21000 Novi Sad, Yugoslavia
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L is measurable, positive and

For every e &#x3E; 0 there is Ce &#x3E; 0 such that

For the notation and properties of the spaces ~~Ma ~ , I and their

strong duals ~’ ~Ma~ (the space of Beurling ultradistributions) and
(D’fm-1 } (the space of Roumieau ultradistributions) we refer to [3]. We
shall assume that the sequence Ma satisfies conditions (M.1), (M.2) and
(M.3)’ ([3]).

As in [5] we put

where &#x3E; 0, is a Banach space of smooth functions p on R with
the finite norm

The common notation for (M (7.) will be *. The space 6D* is
dense in and the inclusion mapping is continuous. The strong dual
of 1 is denoted 

The spaces of tempered ultradistributions are defined as the strong
duals of the following testing function spaces ([4))

where h &#x3E; 0, is the Banach space of smooth functions p on R with
the finite norm:

The Fourier transformation is an isomorphism of S* onto s* and 6D* is
dense in S * . Clearly, S* is dense in 1 and the inclusion mapping is
continuous.

Recall from [2] that a sequence of continuous and bounded functions
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fn on R converges narrowly to a continuous bounded function fo if and
only if fn converges to fo uniformly on bounded sets in R and

We shall always assume that a, (3 E R and « &#x3E; (3. Put

The following regularization of this function will be used.

where oi E (D*, supp w c [ -1, 1 ], a) ; 0 and
lC

We shall denote by 72 a function from 8* with the properties

2. Assertions.

THEOREM 1. Let f E ~3’ * and K E such that

If

then for every

THEOREM 2. Let oJ and K E C °° . 

(ii) There exists e &#x3E; 0 such that
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Then for every ¢ e C °° for which

there holds

REMARK. It is an open problem whether the assumption that the
+ h))/c(h); is bounded in ~’ * implies that f/c E B’* .

Note that for distributions the corresponding assertion holds
(see [7]).

COROLLARY 1. Let f E ~’ * such that f/c E 8’* and let § E 6D* such
that ~](~ - 0, ~ E R. If

then for every ~ E 0~*

3. Proofs.

PROOF OF THEOREM 1. First we need the following version of

Beurling’s theorem ([2]) for bounded ultradistributions.

A point ~o belongs to supp f if and only if there is a se-
quence of from 8* such that

convergences narrowly to, .,

The proof of this assertion is the same as for bounded distributions
since all the properties of Schwartz’s test functions which were used
in [2, pp. 230-231], have been proved in [3] and [5] for ultradifferen-
tiable functions. The same holds for the next assertion, based on the
previous one, which is analogous to the Theorem on p. 232 in [2].
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«Let fe 1B’ * and If K * f = 0 on R, then K(I) = 0 for

E E supp f&#x3E;.

First, we shal prove that the set 3K which consists of finite linear
combinations of translations of K e is dense in By the property
of dual pairing, JK is dense in if and only if for every S E 83’* ,
~*~=0~&#x3E;S==0. For, if 3K is not dense, there exists an

v v

,So E 83*, So ~ 0 such that So * K = 0. Thus 1X[K](I) = 0, ç e supp 
v

Since we assume 1X[K](I) = 1X[K]( - I) is never zero, we conclude that
3K is dense in 

From that and previous statement we obtain the proof of the quoted
Wiener theorem.

Note ([5]), f E 1B’* if and only if it is of the form

where D is derivative in 1B’* and Fa , a E:- No, are such that for some
h &#x3E; 0 (in the (Ma)-case), respectively, for every h &#x3E; 0 (in the 
case)

Let § e Since 3K is dense in then: In the (Mp ) case, for
every e &#x3E; 0 and every h &#x3E; 0, there is Hh E 3K such that

In the {Mp } case we have that for every E &#x3E; 0 there is h &#x3E; 0 and H such
that (6) holds.

In the {Mp} case, the assumption of the theorem and Lebesgue’s
theorem give that for x &#x3E; xo ( ~ ), where ro (s) is large enough,
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The (Mp) - case can be proved similarly. The proof is completed.

PROOF OF THEOREM 2. We shall only prove the (M~)-case since
this proof can be simply transfered to the 

The proof is organized as follows. In Part I we shall prove estima-
tions (7), (7’) and (8) which will be used in Part II for the proof that

)(ç), ~ E Rn , and the convolution f * K exist. In Part III we will
prove the assertion of Theorem 2.

Part I. Note, from the assumption that (1 - and 

belong to ~~Ma ~ and (M.2) it follows that for every r &#x3E; 0

Since we also have that for every r &#x3E; 0

We need the following estimate:
For every r &#x3E; 0 there is C &#x3E; 0 such that

where we choose a such that 0  ~  a - ~3.
Let r &#x3E; 0, k E No and x + h &#x3E; 1. By using (3) and (1) we have (with
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suitable constants)

Similarly, for x + h  -1 we get that for given r &#x3E; 0 there is C &#x3E; 0
such that

Let From (1) we have
that

where C &#x3E; 0 and 8 &#x3E; 0. Thus,

These inequalities and the assumption 6 E (0, a - (3) imply (8).

Part II. Let § e be such that §(r) = 1 on ( - 00, -1) and §(r) =
= 0 on [0, -). We have

Since the multiplication in 6D(m-) is the inner operation, one can easily
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prove that all the members on the right side of (9) are from 6D(’ ) and so
the same holds for This implies that I

ç E Rn, exists.
Since

the existence of the convolution f * K will be proved if we prove that
for every h E R ,

because by
For a fixed heR and a ~ as in (9) we have

By using (8), (7), (7’) and that we shall prove that

We shall only prove that is

from for every h E R, because the proof that c( . belongs to
is similar and then one can easily see that

Since

we have to prove that
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For every by using (M.2) and (8) we have

where C and C1 are suitable constants.
For the proof that the last supremum is bounded we have to use the

following estimates

where C2 and C3 are suitable constants. Thus, we have proved that the
convolution f ~ K exists.

Part III. We are going to prove that the assumptions of the theorem
imply

It is enough to prove that
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Since such that (5) holds, we have to prove
that

We have

Because the sum in Sh, N is finite, the proof that Sh, N -~ 0, h --~ ~ , is
the same as in the main assertion of [6]. By using (5) we obtain

So, if we prove that the last series is bounded with respect to h for
h ; ho , the proof that Sh, 00 - 0, h -~ ~ , simply follows. Put

We are going to prove that for every r &#x3E; 0, there is C &#x3E; 0 such
that

This implies that the quoted series is bounded.
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Let xo &#x3E; 0 be as in (4). We have

By the Leibniz formula, (8), (7), (7’) and (1) there are constants C1
and C which do not depend on m and p (but depend on r) such that for
d E (0, a - B)

This gives that

In a similar way one can prove the corresponding estimates for I2
and I3 and the proof of (12) is completed.

Thus, we have proved (11).
If ~ E 8(m-) satisfies the assumption given in (* ) then ~e IX. E G)lm-) and
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we have

As above we can prove that (,f ~ ~)(h), h E R, exists.
For the proof that

we have to prove that

but this is already done (with K instead of Y) and the proof of the Theo-
rem is completed.

The proof of Corollary 1 simply follows from the given Theorem 2
since the ~ in the Corollary satisfies conditions assumed for K and func-
tions from 6D* satisfy condition (c) of Theorem 2.

This research was supported by Science Fund of Serbia, grant num-
ber 0401 A, trough Mathematical Institute, Beograd.
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