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Symmetry and Minimality Properties
for Generalized Ruled Submanifolds.

RENZO MAZZOCCO - GIULIANO ROMANI (*)

ABSTRACT - We prove the following theorem. Let M be a standard space form. If
R is a submanifold of M foliated by totally geodesic submanifolds of M, such
that the geodesic reflection of M with respect to each leaf of R locally maps R
into itself, leaf by leaf (R symmetric generalized ruled submanifold), then R
is a minimal submanifold of M.

1. Introduction.

Let M = M(c) be a standard space of constant curvature c. We de-
fine generalized ruled submanifold of M a submanifold R of M foliated
by totally geodesic submanifolds of M. Each leaf of the foliation is
called ruling of 1~. Moreover we say that is a symmetric generalized
ruled submanifold of M if R is locally mapped into itself, ruling by rul-
ing, by the geodesic reflection of M with respect to each ruling.

Any multihelicoid in a standard space M of constant curvature is ob-
viously a generalized ruled submanifold of M (see n. 2).

In Proposition 2.5 we even prove that any multihelicoid, associated
to a nicely curved generalized 2-symmetric submanifold, is a symmet-
ric generalized ruled submanifold in the sense above specified.

At n. 3, Theorem 3.16, we prove that any symmetric generalized
ruled submanifold R of M is a minimal submanifold of M.

In this work we use the same symbols as in [M-R]. In particular, if
- k

M is a submanifold of M, we denote by Nx M the k-th normal space of M
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nuovo», Università degli Studi «La Sapienza», Piazzale Aldo Moro 5, I 00185
Roma, Italy.
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at x and by a: T x M x Nx M - N x 1 M the k-th fundamental form of M
at x.

(1.1) REMARKS. (ac) If the codimension of the ruling of a general-
ized ruled submanifold R of M is equal to 1, then R is just a ruled
submanifold of M in the sense of Barbosa, Dajczer and Jorge (see
[B-D-J]).

(b) Lett be a generalized ruled submanifold of M. Let, for each
x E R, the leaf Fx be the only totally geodesic submanifold of M passing
through x, contained in R and of dimension p = dim Fx . We recall that a
geodesic reflection of M with respect to a totally geodesic submanifold
of M is an isometry (see [C-V]). Then a sufficient condition for R to be a
symmetric generalized ruled submanifold of M is that R is locally
mapped into itself by the geodesic reflection with respect to each ruling
of R.

2. Symmetry property of multihelicoids.

Let M be a nicely curved submanifold of a standard space M = M(c),
of constant curvature c, satisfying the following condition

We recall that any nicely curved 2-symmetric submanifold satisfies
such a condition (see [CD-M-R]).

In [M-R] we have defined multihelicoid associated to M any sub-
manifold of M which is a tubular neighbourhood of M in the set

being

R is foliated by the totally geodesic submanifolds of M

So R is just a generalized ruled submanifold of M with ruling 7~ pass-
ing through x E M.
_ 

We also recall that any multihelicoid R is a minimal submanifold of
M. But the aim of this section is to prove that any multihelicoid I~, asso-
ciated to a nicely curved 2-symmetric submanifold M of M, is even a
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symmetric generalized ruled submanifold of M, in the sense specified at
n. 1.

More precisely we want to prove the following proposition.

(2.5) PROPOSITION. Let M be a nicely curved 2-symmetric subman-
ifold of M. If R is a multihelicoid associated to M, then for each x E M,
the geodesic reflection Sx of M with respect to the ruling Fx is such
that

PROOF. In [CD-M-R] it is proved that M is mapped into itself by ,Sx
k k

and dsz (NyM) = NsxCy)M, for each k.
So, for (2.3), we have

Moreover, as we recalled in Remark 1.1 (b), the geodesic reflection
,Sx is an isometry of M. Then if zy = expy vy E Fy , vy E Vy , it will be, for
(2.7),

and hence formula (2.6).

3. Minimality of symmetric generalized ruled submanifolds.

Lett be a Riemannian manifold. If W is a subbundle of the tangent
w

bundle TR, we denote by V the connection induced on the vector sub-
bundle W by the Levi-Civita connection V on 1~, i.e. we put

The following lemma holds.

(3.2) LEMMA. For each xo E R and for each Yxo E Wxo locally there
is one and only one curve y of R, passing through xo with tangent vector
Yxo such that, if Y is the generic tangent vector of y, it results Y E r(W)
and

We’ll call such a curve y a geodesic of the distribution W. Obviously, if



W is an integrable distribution of R, then y is a geodesic of an integral
submanifold of the distribution.

PROOF. If dim R = r and dim W = p, it results dim W 1 = r - p.
Now we choose a local coordinates system XI, ... , Xr. We can de-

scribe the distribution W making equal to zero r - p independent
1-forms. So we have the system

where the coefficients a i are functions of the coordinates.
Analogously we can describe the orthogonal distribution W 1 by the

system

where the coefficients b h are functions of the coordinates.
Because of the orthogonality of W and if we put

Now let x i = Xi(t), i = 1, ... , r, be the equations of a generic curve y of
R. If we want that its tangent vector X = must be in

W, it is necessary to put

w

Moreover if we want that VXX = 0, that is

where are the Christoffel symbols of the connection V, it is necess-
ary to put



5

If we differentiate with respect to t in (3.7), we have the system

where a i = 
System (3.7), (3.8) implies System (3.9), (3.8).
Reciprocally if x = x’(t), i = 1, ... , r, is a solution of System (3.9),

(3.8), which verifies the initial condition

Equality (3.9) insures us that System (3.7) is satisfied by such a sol-
ution. In fact Equality (3.9) can be written as

Therefore = ci, But, for (3.10), it is ci = 0, and hence Sys-
tem (3.7) is satisfied.

Then System (3.7), (3.8) is equivalent, for solutions which verify
Condition (3.10), to System (3.9), (3.8).

But the matrix of the coefficients of the second derivatives in Sys-
tem (3.9), (3.8) is the matrix A and, for (3.6), it is 0.B B

Then it is possible to esplicit System (3.9), (3.8) in the form

Now System (3.12) has one and only one solution with initial conditions
i = 1, ..., r and 3.10.

So Lemma 3.2 is proved.

From now on we only consider symmetric generalized ruled sub-
manifolds of a standard space M = M(c) of constant curvature c. If R is
such a submanifold of R, we denote by U the vector subbundle of TR
whose fiber, at x E R, is Ux = being Fx the ruling of R through
the point x.

The orthogonal subbundle U 1 is also called the distribution orthog-
onal to the foliation of R.

(3.13) LEMMA. Each geodesic y of the distribution U 1 orthogonal
to the foliation of a symmetric generalized ruled submanifold R of M is
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locally mapped into itself by the geodesic reflection of M with respect to
each ruling of R which intersects y.

PROOF. If y E y, let Fy be the ruling passing through y and let ,Sy be
the geodesic reflection of M with respect to Fy . We know that ,Sy is an
isometry of M. Then dsy , mapping the subbundle U into itself, it will
also map the subbundle U into itself. Moreover it will be, for
YE r(U1 ),

Therefore it is

On the other hand we have.

But we have already observed that dsy maps U and U 1 into them-

selves, so it will be

Then we have, in particular,

Now let y’ be the curve image of y by ,Sy .
Then, if is the generic vector tangent to the curve y,

is a vector tangent to y’ which must be a vector of
U1.

So, for (3.15), we have

i.e. also y’ is a geodesic of .

On the other hand Sy fixes y and dSy changes Yy in - Yy . Then Y’
must pass through y with tangent vector - Yy . So for the uniqueness of
the geodesics of U.l, it follows that y’ = Y.

Now we come to our main result.
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(3.16) THEOREM. If R is a symmetric generalized ruled sub-

manifold of M, then R is a minimal submanifoLd of M.

PROOF. Let x be a point of R. Moreover let Xx , ... , Xx be an or-
thonormal basis of the tangent space Ux at x of the ruling Fx of R pass-
ing through x and let Yx + 1, ... , Yx be an orthonormal basis of Ux ,
where r = dim R.

Then the mean curvature vector of R at x, will be given by

where by V we denote the Levi-Civita connection on M and by 
the orthogonal projection of Tx M onto ( Tx R ) 1. 

_

But, being the ruling Fx a totally geodesic submanifold of M,
it is

So it results

Therefore we have simply

Now we consider, for j = p + 1, ..., r, the unique geodesic yj of U i-
passing through x with tangent vector Yx (Lemma 3.2). We recall that
we have TxyjcUx.l and 

Then it also results 

In fact it is

For Lemma 3.13, yj is a curve of R c M locally mapped into itself by
the geodesic reflection of M with respect to each ruling Fy passing
through a point y E 

_

Then yi is a 2-symmetric submanifold of M and hence (see [CD-M-
R]) we have that Ny yi c Uy, for each 

In particular it is Nx yJ c Ux .
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From (3.19) it results

Observing that

we conclude that

From this equality and from (3.15) we have finally Hx (R) = 0; i.e. R
is a minimal submanifold of M as desired.
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