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The Best Constant

in Weighted Poincaré and Friedrichs Inequalities.

SALVATORE LEONARDI (*)

SUMMARY - Our aim is to find suitable sufficient conditions under which the best
constant in weighted Poinear6 and Friedrichs inequalities are achieved.

0. Introduction.

In this paper we deal with the weighted Poincar6 and Friedrichs in-
equalities. Our aim is to find suitable sufficient conditions under which
the best constant in these inequalities are achieved. We work in

weighted Sobolev spaces. The main tool in our proof is the variational
characterization of these best constants combined with compact imbed-
dings between weighted spaces. We work with general weight func-
tions which may have degeneracies or singularities both at the bound-
ary points or interior points of the domain. Let us point out that the in-
tegral inequalities of the type mentioned have been studied by many
authors. Let us mention e.g. the works of Edmunds, Evans [3], Ed-
munds, Opic [4], Evans, Harris [5], Hurri [7], Kufner [8], Opic [11],
Opic Kufner [12] and others. For a bounded domain we use natural
imbedding theorems between weighted spaces which were used in or-
der to prove the existence results for degenerate elliptic problems (see
e.g. Leonardi [9], Drabek, Nicolosi[2], Guglielmino, Nicolosi[6]).

For unbounded domains we use sufficient conditions for a compact
imbedding used for more special weights in the book Opic, Kufner [12]
and in the paper Edmunds, Opic [4].

(*) Dipartimento di Matematica, Citta Universitaria, Viale A. Doria 6, 95125
Catania, Italy.
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1. Notation.

Let Q be a domain in Denote by W(Q) the set of all weight func-
tions in Q, i.e. the set of all measurable functions on Q which are positi-
ve and finite almost everywhere in S~. Let  +00. For w E 
denote by LP(Q; w) the weighted Lebesgue space of all real-valued
functions u on 0 with the norm

Then w) with the norm (1.1) is a uniformly convex Banach space.
For w, v E denote by w, v) the weighted Sobolev space
which consists of all real valued measurable functions u on for which
the distributional derivatives (i = 1, 2, ... , N) exist on S~ and for
which the norm

is finite. It is known (see Leonardi [9]) that v) is a uniform-
ly convex Banach space, provided

and, moreover

if and only if

Hence, under the assumption (1.4) we can define the space
v) as the closure of the set Co (Q) with respect to the norm

(1.2). The space v) with the norm (1.2) is also a Banach

space.
We shall write the imbedding of a B anach space

X into Y is continuous or compact, respectively.

2. Natural imbeddings.

Let us assume p &#x3E; 1 and Applying the
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H61der inequality, we obtain that the imbedding

holds, provided

As a consequence we obtain the imbedding

provided

Let us assume that Q is a bounded domain. The following assertion is a
direct consequence of the Sobolev imbedding theorem.

LEMMA 2.1. (i) Let N( g * + 1)  pig* and 0 has locally Lipschitz
boundary (see e.g. Adams [1]).

Then

(ii) Let N( g * + 1) = pg* and 0 has a cone property (see e.g.
Miranda [ 10] ).

Then

with arbitrary 1 ~ r  + 00 .

and 0 has a cane properly.
Then

with and

with arbitrary 1 ~ q  q.

LEMMA 2.2. Let 0 be a bounded domain with locally Lipschitz
boundary and let us assume (1.3), (1.4), (2.3),
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Moreover, in the case N( g * + 1) &#x3E; pg * , assume that

with

Then the imbedding

holds.

If we assume

with f * &#x3E; f * , instead of (2.5), the imbedding (2.6) is compact:

It follows from the H61der inequality and (2.5) that

The imbedding (2.6) now follows from (2.8) and Lemma 2.1. The as-
sumption (2.7) implies

with some 4 satisfying p  q  q. The compact imbedding (2.6’) now
follows from (2.9) and Lemma 2.1.

REMARK 2.1. Under the assumptions of Lemmas 2.1 and 2.2 we
have

and

Applying Lemma 2.2 we obtain the following assertion.

PROPOSITION 2.3. Let 0 be a bounded domain with a Locally Lips-
chitz boundary and assume (1.3), (1.4), (2.3), (2.5) and (2.7).

Then there exists a constant F1 &#x3E; 0 such that the weighted



199

Friedrichs inequality

holds for any u E W6,P(Q, w, v).

Let u E Co (Q). Then it follows from (2.10) that there are constants
C1, C2 &#x3E; 0 independent of ~c such that

It follows from the Friedrichs inequality in the nonweighted space
that there is a constant c3 &#x3E; 0 independent of u such that

The assumption (2.3) and H61der inequality yield

with c4 &#x3E; 0 independent of u. Now, the assertion (2.11) follows from
(2.12)-(2.14) and from the fact that is dense in v).
This completes the proof.

In what follows we will study the question when the best (i.e. the
least) constant P, &#x3E; 0 in (2.11) is achieved, and also when the best (the
least) constant PI in the weighted Poincar6 inequality

for any u E v), is achieved.
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Let us assume and let (un) C (0; w, v) be the se-

quence such that in L P (0, w). Then we have, applying the
H61der inequality,

Similarly, we obtain

It follows from (2.16), (2.17) that

THEOREM 2.4. Let 0 be a bounded domain with locally Lipschitz
boundary and assume 1
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exists such that

Let us denote

Obviously 7~0. Let (un ) c w, v) be a minimizing sequence for
I, more precisely let lip, ~, w = 1 and

where an - 0 It follows from (2.20) that w, v ~
~ const. and hence the reflexivity w, v ) yields that (un) con-
verges weakly in w, v) to some element u E w, v) at
least for some subsequence. The compact imbedding (2.6) implies the
strong convergence

Now, the definition of 1, (2.18), (2.21) and the weak convergence in
yield
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It follows from (2.22) and from the fact that I the ine-

quality

Setting PI = 1 /I the equality (2.19) follows, which completes the proof
of the theorem.

Similarly for the weighted Friedrichs inequality we obtain the fol-
lowing assertion.

THEOREM 2.5. Assume the same as in Theorem 2.4. Then there
exists u E v), 0, such that

Set

Using the same method as in the proof of the preceding theorem we
get £ E W6,P(Q; w, v) satisfying (2.23) with Fi = 1 /I.

REMARK 2.6. It follows from the proof of Theorem 2.4 that Un con-
verges weakly to u in and 
The uniform convexity of v) then implies the strong con-
vergence of in W’, P (0; w, v). Hence is obtained as the strong
limit of some minimizing sequence. Similarly for u from Theorem 2.5.

EXAMPLE 2.7. Consider the square
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and the weight functions defined by

Let us note that both weight functions may have degeneracies or singu-
larities not only on the boundary of S~ (more precisely on 1’ 1 =

- ~ ( x1, x2 ); Xl = 1, x2 E ] - 1, 1 [ ~ ) but also in the interior of 0 (more pre-
cisely on 1,2 = x2 ); X2 = 0, xl e ] - 0, l[l)-

An easy calculation yields that

implies w, v E (Q), and

implies w, v E L  * (Q) with

Moreover, if

(2.27)

then

and hence there exists 1* &#x3E; ( pg * - 1 )/2g * such that w 
It follows from (2.24), (2.25), (2.27) that the assumptions of

Proposition 2.3 are satisfied provided

Since ( for g * satisfying (2.26) the conditions (2.28)
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guarantee also the validity of the assumptions of Theorems (2.4)
and (2.5).

3. The case of arbitrary domain.

In the previous section we dealt with the bounded domain 0 c II~N
and the main tool in order to prove our results were natural imbeddings
between weighted and nonweigthed Sobolev spaces.

In this section we will deal with possibly unbounded domain in I~N
and we will prove the existence of the best constant in weighted
Poinear6 (or Friedrichs) inequality without making use of imbedding
theorems from Section 2.

We use the compact imbedding w) as in
Opic, Kufner [12]) but rather more general weight functions can be con-
sidered in our paper.

Let us denote the set of all X which there exists a se-

quence (xn ) c ~2 such that x,, -~ x and at least one of the following cases
occurs .

By the definition of the weight functions w, v are bounded from
below and from above by positive constants on each compact set

-

We denote by c the set of all weight functions w and v
with the following property

where is a bounded domain whose boundary is locally Lipschitz
and

for each k E N.

REMARK 3.1. Note that meas S~ w, v =_ 0 in many practical applica-
tions. This situation occurs e.g. when consists of isolated seg-
ments or points (see Example 3.1).
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In what follows we shall restrict ourselves to such weight functions
w and v for which

Put = and define

It follows from (3.2) that

for any and hence the limit

exists and it is A E [ 0, 1 ].

LEMMA 3.1. Let us assume that A = 0. Then the following com-
pact imbedding holds:

Let e1 &#x3E; 0 be arbitrary. Then A = 0 jelds the existence of such
ke¡ e N that for any k a 1

i.e.

Hence

Now, let (uk ) be a bounded sequence in

for every k E N. For a given &#x3E; 0 choose . There
J 

-- - 

- J

exists ko E N such that (3.4) holds for any k = ko and for every
u E W1~ p (S~; ~,u, v). The imbedding
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implies the existence of a subsequence (Ukj) c (uk ) which is a Cauchy
one in w). 

’

Consequently there exists io E N such that

which together with (3.4) (where we put k = ko and
yields

Thus (Uh.) is a Cauchy sequence in LP(Q; w).

THEOREM 3.3. Let w, v E E L ~ (Q), v E L10c (Q), 
and (3.3) holds. Then the assertion of Theorem 2.4. re-

mains true.

The proof of this assertion follows the lines of the proof of Theorem
2.4. However, instead of the compact imbedding (2.10’) we use the as-
sertion of Lemma 3.1.

Analogously we have the following

THEOREM 3.4. Assume the same as in Theorem 3.3. Then the as-
sertion of Theorem 2.5 remains true.

EXAMPLE 3.1. Let S~ be the complement of unit ball centred at the
origin in R~, i.e.

Consider the weight functions de f i ne d by

where « is appropriate real number to be specified later. It follows from
the Example 20.6 in Opic, Kufner[12] that the compact imbedding

holds if and only if
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and

Let us consider, novv, q &#x3E; p and that (3.7) holds. Then (3.6) is ful-
filled for any a satisfying

If a  -1 then and the H61der inequality yields

Hence it follows from (3.5), (3.8) and (3.9) that the compact
imbedding

holds provided

Thus (3.10) is the only assumption which guarantees that hypothe-
ses of Theorems 3.3 and 3.4 are verified.
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