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Some Elementary Remarks about n-Local Fields.

VICTOR ALEXANDRU - NICOLAE POPESCU (*)

Local fields (i.e. complete fields relative to a discrete rank one valu-
ation) play a key role in the theory of algebraic functions of one variable
and elsewhere. Local fields have been studied from many points of
view (see [4], [5], [6], [12], [13], [14], [15]). n-local fields (see the defini-
tion below) are a natural generalization of local fields. These fields ap-
pear in the theory of algebraic functions of several variables and in al-
gebraic geometry. In the last years many problems on n-local fields, as,
for example, class-field theory, have developed (see [8], [9]).

The aim of this paper is to make out some elementary results about
n-local fields. In the first section general notations and definitions are
given. In the second section we remark that the n-local field of bounded
Laurent power series in many variables over a perfect field (see the
definition below), can be defined in the same way as the field of Witt’s
vectors, starting from a field of repeated formal power series in several
variables over a perfect field. In this case the Witt’s operations are ap-
plied only to coefficients in the same way as in the classical case. How-
ever, we give all the steps of that construction.
Let be a field and k(X, Y) the field of rational functions of two

variables over k.
In the third section we give a description of the maximal completion

of the field k(X, Y) relative to a rank two and discrete valuation, trivial
on k.

Finally in the last section is proved that if K is a n-local field such
that its residue field has the property that for every natural number m
has a finite set of separable extension of degree m, then K has, for
every natural number m, a finite number of tamely ramified extensions
of degree m.

(*) Indirizzo degli AA.: Institute of Mathematics of the Romanian Academy,
P.O. Box 1-764, RO-70700 Bucharest, Romania.
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1. Definition.

We refer the reader to [3], [7], [11] and [12] for usual definitions. By
valued field we mean a pair (K, v) where K is a field and v a valuation
on K. As usual, we denote with Ov the valuation rings of v, Mv its maxi-
mal ideal, Gv the value group of v and kv the residue field of v. If x E Ov ,
x* denotes the natural image of x into kv . We shall say that (K, v) is a
local field if v is discrete of rank one and K is complete with respect
to v.

Let (K, v) be a valued field where v is discrete and of rank n.
Let 0 be the valuation ring of v and let (0) = Mn C c ... c Mo be

all the prime ideals of 0. For every i  n, denote Oi the ring of fractions
of 0 with respect to the prime ideal Mi . In particular Oo = 0 and
On = K. Denote vi , i = 0, ... , n - 1, the valuation on K associated to the
valuation ring Oi . One has vo = v and for every i, vi is a valuation of
rank n - i on K. Denote vi , i = 0, 1, ... , n - 1 the valuation on the field

associated with the valuation ring It is

easy to see that V-i is of rank one. Particularly one has Kn = K and
v1-1 = vn-1.

We shall say that (K, v) is n-local if is local for all

i=0, 1,...,n-1.
Let k be a field and n a natural number. Denote k((t1)) ... ((tn)) the

field o,f repeated power series in n indeterminates t1, ... , tn over k. (For
example one has: k(( t1 )) (( t2 )) = (k(( tl ))) (( t2 )), etc.). This field is in a natu-
ral way endowed with a rank n and discrete valuation v. Moreover

(k(( t 1 )) ... v) is n-local.
Another example of n-local field is obtained as follows. Let (K, v) be

a local field. Let us denote Kff t 11 the set of all formal Laurent series

over K which verify the following two conditions (see [8]):

i) the is lower bounded,

ii) v( a _ n ) -~ ~ if 

Define in the following valuation wi :

It is easy to see that (K{{ t }}, WI) is a local field whose residue field is
just k((t)) where k is the residue field of (K, v).

We shall say that (K{{ t }}, wl ) is the local field of bounded Laurent
series over (K,v). Moreover we can define on K{{t}} a rank two valua-
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tion ul as follows: Let and let nl be the last integer number

such that v(an) = w, (a). Now we shall define ul (a) = (WI (a), nl). The
residue field of (K{{t}}, ul) is just k. In fact ul is the composite valua-
tion of wl, with the order valuation on k((t)). (See [11, pag. 43]).

Furthermore we can define the local field (K{{tl}}{{tz}}, w2) as the
local field of bounded Laurent series over (K{{tl}}, wl) and by recur-
rence we can define the local field (K{{ tl }} ... {{ tn }}, wn) whose residue
field is just k«t1» ... «tn». The field K{{tl}},...,{{tn}} is naturally en-
dowed with a rank n + 1 valuation Un and (K{{ tl }} ... un) is a
n + 1 local field. Usually we shall say that K{{ t1 11, ... , 11 tn }} is the field
of bounded Laurent series in n variables over (K, v).

2. Alternative definition of ... {{ tn ~}.

Let k be a perfect field of characteristic p &#x3E; 0 and let (T(k), v) be the
Witt’s local field associated to k (see [4], [14]). We remind that T(k) is
the quotient field of the ring of Witt’s vectors and v the natural valua-
tion. The aim of this section is to show that T(k){{tl}} ... 11 tun 11 can be
constructed in the same way as the field T(k) starting with the field
kn = k« t1» ... ((tn)). In other words if k is a perfect field of characteristic
p &#x3E; 0, we shall build a rank one and discrete valuation ring of zero char-
acteristic whose residue field is just kn.

1) Let Ao = be the polinomial ring in a set Xi of indeter-
minates over Q, the field of rational numbers. Denote Sn =
= Ao «Y1» ... ((Yn)). For any natural number i, define inductively the
mapping

as follow: The mapping . (p~): Ao-Ao is just the raising at the

p(power, i.e. 
2 

for all a E Ao and for one has: if

Now let us define Bn to be the set of all sequences with entries in
The set Bn is a ring with

operations defined component wise. Define the mapping g.,,: Bn
by:
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where

If we denote

then as one easily sees:

Also it is obvious that: ao = and generally:

and so the mapping p,, is a bijection.
If then one defines:

where ? and O are the addition and multiplication (defined component
wise) in Bn . It is clear that relative to the above defined operations, Bn
is a commutative ring with identity (1, 0, 0, ... ).

Furthermore, denote:

It is clear that A~ is a subring of An .
If

are two elements of A~, then we write:

if and only if aij = bik for all k. We remark that in A’ the con-
gruence relation is defined in an obvious way: two polynomials with in-
tegral coefficients are congruent modulo pe if and only if the coeffi-
cients of similar terms are congruent modulo p e .

The following remarks are easy to prove and are left to the reader
(see [4], pag. 157).
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REMARK 2.1. Let ai , Then the system of

congruences:

is equivalent to:

where = ao, pi + + ... + pi ai and similar b~i~ .
Let us denote Bn the subset of Bn consisting of all elements a =

= ( « 1, « 1, a2, ... ) such that am E An for all 0.

REMARK 2.2. Let If means one of the elements
a + {3, a - {3, defined as above, then for all m ~ 0, (a is a poly-
nomial with integral coefficients and without free terms in

«o~ ~o~ ..., am, ~m~ 1

2) Now let k be a perfect field of characteristic p &#x3E; 0. Let us
define

with 
If

are elements of W(kn), let us define:

where (a + ~)m , are defined as above

REMARK 2.3. endowed with these operations is an integral
domain.

The mapping (1) can be defined for every a E W(kn) and one
has:
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(If E then ~pi is defined by raising the coefficient of E to the power
pB Since k is perfect i can be also negative) and so for every element
« E W(kn) there exists an element a,p -i E such that (a,p -i)~pi~ _ a.
So the ideal of generated by p is the same to the set of all vectors
or = ... ) such that « o = 0. But now it is clear that the residue
ring is canonically isomorphic to kn .

Now we shall define a functions:

as follows if « _ ( « o , « 1, ... , « m , ... ), then vn ( « ) _ ~ if a = 0 and
= r, where r is the greatest natural number such that a = 0 for

all i  r. Particularly = v( ~ ~ 1 ) = 1. Now we can prove:

REMARK 2.4. W(kn) is a complete rank one and discrete valuation
ring whose residue field is kn .

For every « E kn denote

If a E kn then

Therefore, if a = (eco, « 1, ... , am, ... ) is an element of W(kn) then it
has the p-adic representation:

Let T(kn) be the quotient field of W(Kn) and denote also the
natural extension of Vn to T(Kn). The (rank one and discrete) valuation
vn together with the natural valuation u of kn = k((t1)) ... define on

T(kn) a rank n + 1 and discrete valuation Un, defined as follows: If
« E T(Kn), then Un (a) _ (vn(a), u(a/pVnCa»*) (here ê* means the image
of E E W(kn) in the residue field). It is easy to see that (T(kn), un ) is a
(n + I)-complete field. We shall say that (T(kn), vn) is the field of Teich-
muler-Witt vectors.

THEOREM 2.5. Let k be a perfect field of characteristic p &#x3E; 0 and
let (T(k), v) be the field of Witt’s vectors associated to k. Then for every
natural number n ~ 1, there exists a natural isomorphism of local fields
rpn between (T(kn), vn) and (T(k)~~tl~~ ... ~~tn~~, wn).

PROOF. For the sake of simplicity we shall define only 9 the gen-
eral definition of rp n will be left to the reader.
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we can assign to a the element

definition of 

3. Some rank two completions.

Let (K, v) be a valued field where v is a rank one and discrete valua-
tion. Let (K(X), u) be an extension of v to K(X) (X indeterminate over
K) such that u is of rank two. In this section we are dealing with the de-
scription of the maximal completion of (K(X), u) (see [12], Ch. II for
the notion of maximal completion).

1) Now we shall make some considerations about the valuation u
(see [10]).

Let Ou be the valuation ring of u and let (0) c M1 c M2 be all the
prime ideals of Ou . Let Ow be the quotient ring of Ou relative to the
complement of Ml and let w be the valuation of the K(X) associated to
Ow . Denote also by v’ the valuation of the field = Ow /Ml associated
to the valuation ring Ou /Ml . Since one has Gw = Z = Gv- we can assume
that G~ = Gw x Gv,, ordered lexicographically. Moreover the valuation
u can be defined (up to equivalence) as follows. Let t be an element of
K(X) such that u(t) = (1, 0). Then w(t) = 1. If x E K(X) then u(x) _
= (ac, b) where a = w(x) and b = v’((xt -a)*), (y* being the image in kw
of y E Ow).

With the above notations, two cases are possible (see [10]):
Ow n K = K (then u is called of the first kind) and Ow f1 K = Ov (we
shall that u is of second kind). We shall describe the maximally comple-
tion of u in both cases, separately.

2) Let us assume that u is of first kind. Then w is trivial on K and
so it is defined by an irreductible polynomial of K[X] or is the valuation
at the infinity. Since in the case when w is the valuation at the infinity
the things are quite similarly to the case f = X, we can consider only
the case when w is defined by an irreductible polynomial f. In this case
kw = K( a ) where a is a suitable root of f. Then v’ is an extension of v to
K(~). According to [10], u can be defined as follows: if F E K[X], let us
write: F = Fo + ... + where deg Fi  deg f, 0 ~ i :::; r. Then
one has
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Let (K2 , iv-’) be the completion of K(X) relative to w. It is well
known that K2 is canonically isomorphic to the field of formal power
series in one variable t’ over the field K(«). By this isomorphism we
identify the polynomial F = Fo + deg F  deg f to
Fo (a) + F1 (a) t’ + ... + Fr(«) t "".

Let (Ki , v’) be the completion of (K(«), v’) and let K2 = K1 ((t)). De-
fine on K2 a valuation f as follows: if a = 2: an t n E K2 , then f(a) =

n&#x3E;-oo

- (n, v(an)) where n is the last integer such that 0. It is clear that

(K2 , iv’ ) is contained naturally as a subfield in (K2 , f). Moreover u is a
rank two discrete valuation whose residue field is just If w is the
rank one valuation on K2 , associated to ic then Ow = K1 lltll and its
residue field is just (K1, Finally it is clear that (K2, ii) is a maxi-
mally completion of (K(X), u).

3) Let us assume that Ow fl K = Ov and M1 = Mv (i.e. u is of
second kind). Clearly one has 0~ fl K = Ov , M2 n K = Mv and Ov, _
= Ou /Ml . Since Ov, = l~v it follows that it exists a valuation on
which is trivial on This means that is a transcendental exten-
sion and so w is a r.t. extension (see [11]) of v to K(X). Then according
to [1, Theorem 2.1], w is defined by a minimal pair (a, s) where a is al-
gebraic and separable over K and v has a unique extension, denoted v1,
to K(a) (see [2, Theorem 3.8]). Let f be the minimal polynomial of a
over K, y = w(f) and e the smallest natural number such that ey E Gvl .
Let h E K[X] be such that deg h  deg f and that w(h(X)) = v, (h(a)) =
= ey, and r = f e/h. According to [1, Theorem 2.1] one has: w(r) = 0 and
r* is transcendental over kv . Moreover kw = kVl (r*).

Now since v’ is trivial over Kvl it follows that it is defined by an irre-
ducible polynomial G(r*) or is the valuation at the infinity. Let g be a
lifting in K[X] of G(r*) (see [10]). Then by [10] the valuation u is
defined as follows. Let and let ... 

deg Fi  deg g, 0 ~ i ~ s be the g-expansion of F. Then one has:

Before to the maximal completion of (K(X), u) we shall make some
comments. Let n = deg G(r * ) (relative to the variable r*). Since

«g/hn)*) = G(r * ) and is transcendental over then according to [2,
Proposition 1.1] there exists a root b of g such that v(b - a) ~ 6. It is
easy to see that for any F E K[X], deg G  deg f, one has:

(F(b)IF(a))* = 1, and that (f(b)e /h(b»* = c is a root of G(r*), i.e.
G(c) = 0. Moreover if v2 denotes a suitable extension of v to K(b) (it may
be proved that v2 is in fact the unique extension of v to K(b)) then

= kVl (c).
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Let (K(b), f2) be the completion of (K(b), v2) and let (kV2«t», O’) be
the completion of (kv, (r*), v’) (in this last completion the element G(r*)
goes onto t). Let (K(b){{t}}, u) be the valued field where as usual

(K(b){{t}}, wl) is the local field of bounded Laurent series over

(K(b), V2) . and where u is the rank two valuation defined by
Here no is the smallest integer number

such that the inf on the first component is reached. The reader is ref-
ered to [12, Ch. II], to prove that (K(b){{t}}, f) is the maximally com-
pletion of (K(X), u), above defined.

4) Let be a field. We can apply the above observations to the
field K = k(X), X an indeterminate. Then v will be a valuation on K
trivial over and u a rank two extension of v to K(Y) = k(X, Y). We
leave to the reader the task to describe the maximally completion of
(k(X, Y), u) in both cases when u is of first or second kind.

4. Finiteness of the number of extensions of given degree.

In what follows the expression «a finite number of extensions of de-
gree n with a given property T, of a field K» means: there exists a finite
set 2 of extension of degree n, with the property T, of the field K such
that every extension of K, with the property 1P is K-isomorphic to an
element of 2.

1) LEMMA 4.1. Let (K, v) be a local field. Assume that the residue
field kv is such that for any natural number m it has only a finite num-
ber of separable extensions of degree m. Then for every natural num-
ber n the field K has a finite number of extension of degree n which are
tamely ramified (see [4], pag. 248).

PROOF. Let n be a fixed natural number and let L /K be a tamely
ramified extension of degree - n. Let p and 7r be respectively fixed uni-
formisants in K and L. Denote also v the unique extension of v to L and
let Lv the residue field of (L, v). Let K1 be the maximal unramified ex-
tension of K included in L. Then L = K1 (~), where E is an unity of K1
and e = e(K/L) (see [15], pag. 89) is the ramification indes of L/K. By
hypothese one has:

Let us consider all separable extensions lv of k, when L runs over
the set ~ of all tamely ramified extensions of K of degree - n. By
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hypothesis and by obvious condition [1,: it follows that there
exists a finite separable extension 1 of k, such that k, c 1, c 1 = for

all 1,. Let N be an unramified extension of k, N = K(a), v(a) = 0, a* = b
and whose residue field is just 1. Let 1 E 2. Since Lv g 1 then Lur, the un-
ramified part of L is contained in N. One has: L = L ur s an unity
of Lur , e ~ n and (e, q) = 1.

We want to find a finite extension of N which contains ~; for all
units E of N, and e ~ n, (e, q) = 1. For unit c on N one has e* cz 1 and by
hypothesis there exists a finite extension E of 1 which contains all the
radicals when - runs all unites of N and e all natural numbers
smaller than n and relatively prime to q. Let Z = L(b’) and let ,S = N(c’)
be the unique unramified extension of N whose residue field is just.E.
It is clear that for every unit - E N and every e, e  n and (e, q) = 1, in S
there exists the element Let f be the smallest common multiple of
all numbers e ~ n and (e, q) = 1. It is. clear that S(§$) = T contains all
extensions L in the set 2 above considered and since T /K is a separable
extension, then it has only a finite number of subfields which are exten-
sions of K. Particularly the set 2 has only a finite number of elements,
as claimed.

Let (k, v) be an n-local field. We shall say that a finite extension
(L, w) of (K, v) is tamely ramified if [ Gw : GJ the order of the quotient
group is relatively prime to the characteristic of k, and the
residue field Lw is a separable extension of Look at the notation in
the first section. Then for every t, 0 ~ t ~ n - 1, is a tamely
ramified extension of local fields. One has the following result.

THEOREM 4.2. Let (K, v) be a n-local field. Assume that for every
natural number m the residue field kv has a finite number of separable
extensions of degree m. Then for every natural number m’, K has a
finitely many extensions of degree m’ which are tamely ramified.

PROOF. The proof follows by induction after n. The case n = 1 was
treated in Lemma 4.1. Let us assume that n &#x3E; 1 and the result is true
for every n’  n. Look at the notation in the first section. Denote K’
the residue field of (K, and v’ the valuation on K’ defined by the
valuation ring It is clear that (K’, v’ ) is a n - 1 local field
whose residue field is just kv . Hence by inductive hypothesis (K’, v’)
has for every m’ a finite number of tamely ramified extensions of de-
gree at most m’ .

Let 2 be the set of all tamely ramified extensions of (K, v) of degree
at most m’. Let L" be the composite over K’ of all extension L’, when
(L, w) runs 2 (as above L’ is the residue field of (L, w) relative to 
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According to the inductive hypothesis L"/K’ is a finite (separable) ex-
tension. Let F be the composite of all unramified extensions L of K
such that (L, w) E 2 (we are saying that (L, w) is unramified if

(L, Wn-1) is an unramified extension of (K, vn _ 1 )).
Furthermore, let L ~ 1 ~ , wnl ~ 1 ) be the unramified extension of

(K, Vn-1) whose residue field is just L". It is clear that Let

(7~,~)eJE, then is a totally ramified extension of

(L~1~, wnl~1 ). Hence on has: L = L~1~ (~), where II is an uniformising
element of (K, a unity of and (e, p) = 1 ( p = char k).

If F is unit of L" and e is a natural number relative prime to p, then

by a slight computation one see that is a tamely extension of
(L", w"), where w" is the unique extension of v’ to L". Hence, according
to the inductive hypothesis, the composite of all extensions of L" of the
form where (e, p) = 1, e :::; m’, E a unit of L, is a (finite) tamely
ramified extension of (L", w"). Then one has L"’ = L"( y) and let 
be an extension of (L wn(’-) 1 ) such that y (the residue of y relative to
the unique extension of to is j ust y and that

[L~1~ ( y) : L~1~~ _ [L"(y) : L"]. According to Hensel’ Lemma, it follows
that for every - E L ~ 1~ and every natural e, e ~ m’ and relatively prime
to p, one has: But then we can deduce that for every

(L, w) E 2 one has: K c L c L (1) (y, ~f7r) Since ( y)/K is a finite sepa-
rable extension, then j6 is a finite set, as claimed.

COROLLARY 4.3. Let (K, v) be a n-local field. Assume that its
residue field kv is of zero characteristic and for every natural number m
has only a finite number of extensions of degree m. Then for every
natural number n’, K has a finite number of extensions of degree n’.

Let (K, v) be a n-local field. We utilise the notations of § 1. Assume
that the residue field kv is finite and the local field (K1, vo) is of charac-
teristic 0. Then (K, vl ) is n - 1 local field whose residue field is just K1.
Since K1 is a finite extension of a p-adic field it has for every number n
only a finite number of extensions of degree m. Therefore by Corol-
lary 4.3, for every natural number n’, K has only a finite number of ex-
tensions of degree n’, hence one has the following result:

COROLLARY 4.4. Let (K, v) be n local field. Assume that its
residue field kv is finite and the local field (Kl , vo) (see § 1) is of charac-
teristic zero. Then for every natural number n’, K has a finite number
of extensions of degree n’.
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