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A Minimum Entropy Problem
for Stationary Reversible Stochastic Spin Systems

on the Infinite Lattice.

PAOLO DAI PRA

1. Introduction.

In this paper we formulate and solve a variational principle that be-
longs to a wide and very much studied class of problems that, through-
out this work, will be called minimum entropy problems for stochastic
processes. We start by giving a basic example of a problem in such
class.

Suppose we are given a stochastic process X = [0, 1]} tak-
ing values in a measurable space E. The path space 6) = is pro-
vided with the natural a-field generated by cylinder sets. The process
X induces on 6D a probability measure that we denote by P. In the rest
of the paper we often identify E-valued stochastic processes and proba-
bility measures on W. The collection of probability measures on 6) is de-
noted by 

Now let Q be another element of M(6D). The relative entropy of Q
with respect to P is defined to be

where h(Q P) is assumed to be + 00 if P or L 1 ( Q ). Notice
that, by Jensen’s inequality, 0 and h(Q I P) = 0 if and only if
Q = P. Now let A be a subset of X(6D), that will be called the con-
straint set. A minimum entropy problem consists in minimizing 
under the constraint set Q E A and, if possible, in finding a Q E A that
realizes the minimum.

(*) Indirizzo dell’A: Universita di Padova, Dipartimento di Matematica, Via
Belzoni 7, 35100 Padova, Italy and Rutgers University, Departement of Mathe-
matics, New Brunswick, NJ 08903, U.S.A.
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A minimum entropy problem is therefore identified once a stochas-
tic process and a constraint set are given. The type of constraint set
which is most often studied in the literature is the one that gives rise to
the so called Schroedinger problem ([1, 5, 7, 8,10,11], and it consists in
fixing the initial and final marginal of Q. To be more precise, let us de-
note by t E [ 0, 1 ], the projection of Q at time t, i.e. for G E E
measurable

Moreover let g, v be two probability measures on E. In the

Schroedinger problem the constraint set is of the form

Roughly speaking, to solve the Schroedinger problem means to con-
struct a stochastic «bridge» from [A to v which is «as close as possible» to
the given process P. The «closeness» we are talking about in this state-
ment is well explained by the large deviation interpretation of an en-
tropy problem [5], that we now briefly sketch.

Consider the product space 0 and suppose we provide it with
the product measure P In other words we are given a collec-
tion X(i) = E [0, 1]}, i E N, of independent copies of X. For
n E N and oi E SZ we define the empirical measure L~ ~ E 3K(m) by

where is the Dirac measure concentrated at w(i) E By the Er-
godic Theorem

for P-almost every oi, where the limit is taken with respect to some
suitable topology on (for instance the one induced by duality by
the bounded measurable functions on (D). Now let C c X(6D) be such
that P ~ C. A refinement of (3) is given by the following large deviation
principle, which holds under some regularity assumptions on C:

In particular, for Q E X(6D) and NQ a «small» set containing Q (small
with respect to the variations of h(’IP» one has, roughly,
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The asymptotic estimate (4) yields the following interpretation of the
solution of an entropy problem with constraint A: the solution Q of the
problem is, among the elements of A, the evolution which is the most
likely to be «observed», in the sense that, in the limit maxi-
mizes the probability that Ln, (JJ is close to Q.

The entropy problems we have described so far make sense for an
arbitrary process X. The picture is somewhat different when we know
a prior that the process X = IX(t): t e.R}, now defined on the whole
real line, is stationary, i.e. the probability measure P it induces on the
path space 6D = E R is invariant under the maps ( 0t : t where, for
x E D,

The stationarity of the process suggests a different way of computing
its statistics. If we are given an arbitrary process, its statistics can be
computed by producing several independent copies of the process and
then by evaluating the empirical averages defined in (2). For ergodic
stationary processes this is not necessary: by letting the process run for
a long enough time, all the statistics can be determined. That is to say
that, by defining

we have

for P-a.e. X E (JJ. Under some assumptions on P, the exponential rate of
convergence in (6) is controlled by a suitably defined entropy function,

i.e., for A c JTL( (JJ),

We do not specify here the conditions on P that are usually assumed,
both because they are not relevant for the specific model we are going
to consider, and because (7) is believed to be true in much greater gen-
erality. The function is defined as follows. Let ~- be the a-field
in W generated by (rt : t ~ 0}, and denote by Q~ (resp. P (ù) the regular
conditional probability distribution (r.c.p.d.) of Q (resp. P) with re-
spect to ~- . Moreover we let ff1 to be the a-field generated by (rt : 0 ~
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~ t ~ 1}. Then we define

stationary, and and

As we did for (4), the large deviation estimate (7) gives rise to an-
other class of entropy problems, where the entropy function is now H
instead of h. Thus, given a constraint A we want to minimize

for Q varying in A. A minimizer Q * will be, among the ele-
ments of A, the one which is more likely to be close to in the limit
n ~ ~ . The type of constraint we will be interested in is a very natural
one for stationary processes, and consists in fixing the one-time distri-
bution. In other words, for g a probability measure on E, we let

The minimum function = inf has a further interesting
QeA

interpretation. Let us define the empirical measure

where 3K(E) is the set of probability measures on E. Then it can be de-
rived by (7) that, for D c 3K(E) sufficiently regular,

In other words is the rate function that controls the large devia-
tions of the empirical measure Ln, x.

The purpose of this paper is to solve a minimum entropy problem
for a class of stationary Markov processes which is of relevance in Sta-
tistical Mechanics. As for the examples we have discussed before, the
entropy function we will introduce comes from a large deviation prob-
lem, that will be stated in Section 3. The main feature of our model is
the infinite dimensionality of the state space; for this reason when we
define the empirical averages, we do not only average over the time but
also over the different components of the process. This will lead to the
definition of an entropy function that controls the large devia-
tions of space-time empirical averages. We then ask for the minimum of
H(Q I P) under the constraint Vt e R. Under some assumptions
on the probability measure li we will be able to find the minimizer, by
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showing that it is Markovian and giving its Markov generator ex-
plicitely.

In Section 2 we introduce our model, and in Section 3 we summarize
the known large deviations results. The related minimum entropy
problem is stated and solved in Sections 4 and 5.

2. Stochastic spin systems.

In this section we introduce the class of stochastic processes we will
be dealing with in this paper. We let X = { -1, + 1 ~ to be the set of
spin values. The Markov processes we are going to define take value on
xz d, i.e. for any site i of the d-dimensional lattice Zd there is an associ-
ated spin value. The updating mechanism is specified by assigning a
nonnegative function c(i, a), defined for i E XZd. The probability
of changing the sign to the spin at the site i during a time interval of
length dt, conditioned to the knowledge of the whole configuration at
time t, is given by

Moreover spins at different sites are updated independently. In partic-
ular the probability of changing the spin at two different sites in the
same interval [t, t + /M] is The ): i are usu-

ally called flip rates.
The informal definition we have just given can be made rigorous as

follows. First of all we provide X2 with the product of the discrete
topology on X. The corresponding space of real continuous functions is
denoted by it becomes a Banach space with the usual sup-norm.
We say that a function f: R is local if its dependence on a E XZd is
only where A is some finite subset of Zd. We de-
note by D the set of local functions. we can define the following
operator:

where

It is proved in [6] that, under the assumption
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the closure in generates a Markov semigroup. Moreover
the corresponding Markov process is a Feller process (i.e. the elements
Ut, t &#x3E; 0 of the semigroup map bounded measurable functions into con-
tinuous functions). Notice that condition (8) essentially says that c( i, o-)
does not depend too much on the spin of sites that are far from i. We no-
tice that (8) is satisfied when the flip rates are translation invariant
(i.e. c(i, a) = c( o, where = di- + j )) and local (i.e. c( o, a) de-
pends only i E where A is a finite subset of Zd). Only these
type of models will be considered in the rest of the paper.

3. Large deviations.

In this section some of the large deviations results obtained in [2,3]
are summarized. We assume c : ~ -1, 1 ~~Zd -~ I~ + is a local and strictly
positive function. As we have seen in Section 2 the operator

is the generator of a Feller semigroup. We denote 

~e{2013l,l}~} the corresponding family of conditional probability
measures. In particular, for c = 1, we write Po, ~ in place of Notice

that Po ç is simply the product measure 11 Po, ~~i&#x3E;, Po, ~(i) being the’ ’ ’

Markov family of a Poisson-spin process with intensity one. For obvi-
ous reasons the process generated by L ~ with c = 1 is called non-inter-
acting spin system. It is well known that the trajectories of such proc-
esses are, with probability one, elements of ~2 = D(R, ~ -1, 1 ~Zd ), the
set of right continuous with left limit functions from R to { -1, 1 ~Zd,
where the topology on { -1, is the product of the discrete topolo-
gy. We also provide O with the Skorohod topology (see [4]) and the cor-
responding Borel o-field, where the measures we will be considering
are defined. On S~ we define the family of space-time shift maps
fOt, n: defined by

DEFINITION 3.1. A probability measure Q said to be sta-

tionary if it is invariant for all the maps n-

We denote by the set of stationary measures, provided with
the weak topology. The Borel sets for this topology provide 0 with a
structure of measurable space.
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Given oi E 12 we define its n-periodic version as

where

For T C R x Zd we let FT to be the o-field of subsets of S2 generated by
the i) where Sometimes we
will use, for notation i ) In the following defini-
tion we denote by the set of bounded measurable functions
Q - R.

DEFINITION 3.2. Let oi E Q and ~ E The n th empirical pro-
cess Rn, w is the element of whose expectations are defined as
foLLows:

Notice that, in order to make Rn, Ct) stationary, it is essential to use
the n th-periodic version of m in (9). We also remark that the map

is lfio, n] x v -measurable. In the rest of the paper the a-field n] x vn
will be simply denoted by ~n.

Some more notations are now needed. We introduce on Zd the lexi-
cographic total order, and denote by  the corresponding order rela-
tion. Consider the set

For Q E (S2 ) we let Q~ to denote the regular conditional probability
distribution (r.c.p.d.) of Q with respect to T- . In the following defini-
tion denotes the Radon-Nikodym derivative of the in-
dicated measures restricted to the 7-field ~1.

DEFINITION. Let Q E (Q). The relative entropy of Q with respect
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to the Markov farrcily is defined by

where H(Q) = + 00 if the Radon-Nikodym derivative in ( 10 ) is not de-
fined or its logarithm is not in L 1 ( Q ).

In what follows, for m E Q, i E Zd , t E R, we let

Notice that w t (i) = ( The main result of [2] is the following
Large Deviation Principle.

THEOREM 1. Let A be a Borel measurable subset of ~s (0), and de-
note with A dand A its interior and its closure respectively. Then, for
every ~ E Xz’

where

In a large deviation principle it is particularly relevant to determine
the zeroes of the rate function T~(’). The following is the main result
contained in [3]. We need to use the a-field ffP = t ~ 0} and,
for a given Q e we let Qjj denote its r.c.p.d. with respect to ffP.

THEOREM 2. For have ~(Q)~0 and
= 0 if and only = Q-a,s.. In other words = 0

if and only if Q is a stationary Markovian measure generated
by L ~

The following proposition, also proved in [3], establishes some prop-
erties of the rate function H ~ ( ~ ) that will be used later in this

paper.
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THEOREM 3. The rate function 31(8 (Q) ~ R+ is lower semi-
continuous and has compact level sets, i. e. for every l &#x3E; 0 the set

~ ~ E 31(8 (Q): 11 is compact in the weak topology. Moreover

4. The I function and its basic properties.

Now we are ready to state the minimum entropy problem we want
to solve. Let g be an element of 3K~ (XZd ), i.e. a probability measure on
XZd which is invariant under the shift maps 0j , I E Zd. Our goal is to
minimize the function HC(Q) under the constraint for every
t E R. In this section we give the basic properties and the large devia-
tion interpretation of the minimum function inf IH’(Q): =

= [Al. In the next section, under some assumption on the model and on ~,
we will be able to actually compute and a minhnizer Q* (i.e.
ny O* = u anf Hc(Q*)

The large deviation theory we have summarized in the previous sec-
tion allows to determine the asymptotic behavior of quantities of the
form -

for any bounded measurable, Rm-valued function F on the path space S~,
and any Borel set A c Rm, m &#x3E; 0. A function F of the type described
above is often called an observable.
A class of observable that play a significant role are those for which

there exists a function f: such that

In other words F depends only on the value of the trajectory N at a
given time. Notice that, for any bounded measurable f: S~ we can
define

where F is defined by (12). It is easy to check that, for n E N, oi E ,~,
can be identified with a measure on XZd which is invariant under

the shift maps (0j : i.e. L  e Therefore, after having
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provided with the weak topology one can define a family of
measures f r,,,: n E N, ç E XZd I on 3K~ (XZd ) by

and ask about the large deviation properties of The first fact we
state is an immediate consequence of the contraction principle
(see [9]).

THEOREM 4. For any ~ E X , r,, , obeys the foLlowing large devia-
tion principle: for every A C ~s (XZd)

where the rate function I~(~) is defined by

being the marginal of Q at any time t.

In (15) the function is defined as an infimum, but it is actually
a minimum, as shown in the following proposition.

PROPOSITION 4.1. Let p. be such that  00. Then
there such that ~c( ~ ) _ p. and H c (Q) = 

PROOF. By definition, there exists a sequence Qn E 3K~(Q) such
that ~(~n ) _ g and HC - Ic (,u). Since HC has compact level sets the
sequence Qn has a limit point Q, and clearly 7r(Q) = IA. By the lower
semicontinuity of HC the equality HC(Q) = easily follows. m

We conclude this section by giving the main property of 

THEOREM 5. For any p. E (Xd), ~ 0 = 0 if and
only if it is an invariant measure for the semigroup generated
by L c.

PROOF. It is an obvious consequence of Proposition 4.1 and Theo-
rem 3.
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5. The case of reversible systems.

In this section we attack the problem of minimizing H~ under the
constraint ~(~) _ ~u, where g E In order for our argument to
work we impose a quite restrictive assumption on the generator L c.
Moreover we will be able to find only for g belonging to a dense
subset of 3K~ (XZ ). The formula we get suggests a natural conjecture
on what should be for a general g E but we have not
been able to prove it.

For t4 E we denote by the conditional probability
with respect to the a-field generated by the spins i.

These conditional probabilities are often called the local specifications
of the measure g. It is well known that the local specifications do not
necessarily determine g uniquely; when uniqueness fails we say that a
phase transition occurs.

DEFINITION 5.1. The operator Lc is said to be reversible with re-
spect to the probability measure IA E mLs (XZd) if, for every i E Z,
a E XZd

By translation invariance, equality (16) for i = 0 implies all the oth-
ers. Since c( ~ ) is strictly positive and local it follows easily from (16)
that is also strictly positive and local. We therefore introduce
the defined by

It is proved by using standard argument ([6]) that, if li E S then

where

are such that Jv + i = Jv for every v c Z, i E Z, Jv = 0 if the
diameter of V is large enough, and is a normalization factor inde-

pendent of ~( o ). The is called an interaction., and g is said
to be a Gibbs measure for that interaction. Notice that the fact that

Jv = 0 for diam(kJ large enough is equivalent to the locality of

,u(~( o) ( ~). This is usually expressed by saying that the interaction has
finite racnge.
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It follows from the argument above that if Leis reversible with re-
spect to then g is Gibbsian for a finite range interaction. Sometimes
we say that g is a reversible measure for the system, or that the system
is reversible with respect to The fundamental property of reversible
measures is given in the following proposition, whose proof can be
found in [6].

PROPOSITION 5.2. If Leis reversible with respect to then ~u is in-
variant for the semigroup e - tL c. Moreover v E :1[8 (xzd) is also invariant
if and only if, for every a E Xzd,

In the remaining part of this section we want to solve the following
problem: given v e §, find the minimum of H (Q) under the constraint
7r(Q) = v. In other words we want to compute for g E S.

In what follows we assume that L ~ is reversible for g e §. For a
given v E S we define

Clearly c Y is strictly positive and local.

PROPOSITION 5.3. The operactor LeY is reversible with respect to V.

PROOF. It is just an elementary computation:

It follows from Propositions 5.2 and 5.3 that there is a Markovian
measure Q which is an element of its Markov family of condi-
tional distributions and 7r(Q") = v.

Now let us fix c~’ E 12 and n E N. In the following formula any
occurrence of ~(z), replaced by w’(i). Define

Now we state two lemmas that will be used later. Their proof



191

is not given since it is a straightforward adaptation of the proofs
of Lemma 4.3 in [3] and Lemma 7.1 in [2].

LEMMA 5.4. For every
such that

LEMMA 5.5. be the set of all maps from 0 to Q. Then, for
every Q E such that HC(Q)  00

Now we are ready to prove our main result.

THEOREM 6. The measure Qv Y has the following property:

Moreover

PROOF. By Theorem 3, Lemmas 5.4 and 5.5 we have

for every w’ E 0. In particular we can choose m ’ to be time-indepen-
dent. Now define

where ~(a) does not depend on a(0). Moreover
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We also notice that

Now, if we define

then, for i = 0, ... , n - 1

and, moreover,

for some constant C &#x3E; 0. In an analogous way we define h’(,7) and
h’(a-). For (o’ time-independent we have

Therefore it follows from (19) that

We notice that the argument we have been following proves a little
more than that, namely that for Q E with HC(Q)  o0

Now we let Q be such that x(Q) = v and  00. In particular
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. Moreover . Therefore

which completes the proof.

It is immediately noticed that formula (18) makes sense for every
v and it is natural to conjecture that it actually holds for
every v E 3K~ (XZd ). However we do not know how to prove it since, al-
though ~ is dense in a lower semicontinuous function is not

uniquely determined by its restriction to a dense set. Nevertheless,
density and semicontinuity, together with Theorem 6 immediately give
the following.

COROLLARY 5.6. For every
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