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A Stability Criterion for Periodic Systems
with First Integrals.

K. PEIFFER (*)

ABSTRACT - The link between an extension of Routh’s theorem and general sys-
tems with first integrals is briefly indicated. A criterion assuring stability in
the presence of first integrals is established. More precisely, it is shown that
under suitable hypotheses, conditional asymptotic stability implies uncondi-
tional stability. This extends a result of D. Aeyels and R. Sepulchre [1] to non
autonomous periodic systems.

1. - Introduction.

The use of first integrals in order to get stability criteria has a long
history (see for instance [5] or [6]). In classical mechanics, except for
energy conservation, this idea appears probably for the first time in
Routh’s theorem. Here we deal with a system described by the La-
grange coordinates

the variables r being ignorable. If we suppose the kinetic energy T and
the potential energy V given by

where the matrices A, C are symmetric and positive definite, then the

(*) Indirizzo dell’A.: Institut de Math. Pure et Applique6, Universite Catho-
lique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgio.
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equations of motion are derived from the Lagrange function

and given by

Let us suppose that this system admits the «steady state» solution

with constant

Without loss of generality, we can assume that ~3 = 0 and K = 0. Let us
now introduce the Routh function

and note

Putting

we get

and system (1) is clearly equivalent to

Moreover, stability of the steady state solution o = (0, 0, 0) of system
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(1) amounts to stability of the solution (q, q, K) = (0, 0, 0) of sys-
tem (2).

The classical Routh’s theorem states that, if the modified potential
( To + V ) has a strict local minimum at q = 0 for K = 0, then the origin
q = 0 of system (1) or (2) is stable for perturbations such that K = 0, i.e.
the origin is conditionally stable.

In his paper [8] of 1953, L. Salvadori has shown that in this case,
without supplementary hypotheses, the origin is stable for all pertur-
bations. In other words, conditional stability implies unconditional

stability.
A similar extension does not hold for the origin of a general

parametrized system

with 0) = 0. As a counterexamples it suf-
fices to consider g(y, K) = K2y. This makes it clear that the «mechani-
cal character of the equations is important in Salvadori’s exten-
sion.

Considering Routh’s hypotheses and assuming moreover that, for
small K, To (q, K) + V(q) has a local strict minimum at q = a(K) where
« is continuous and a( o) = 0, A. M. Lyapunov stated without proof that
the steady state solution o =(0,0,0) is unconditionally stable. A proof
is shortly indicated by V. V. Rumjantsev [7]. But even with a similar
additional assumption, i.e. if for small K, we have a Lyapunov function
for the solution y = «(K ) of (3.1), conditional stability does not imply
stability for system (3). This is clearly pointed out by the example

where ~)=0,KeR. 
’

REMARK 1.1. It is worth to note here that, for any K, the origin
y = 0 is stable for (4.1) and nevertheless, the origin (y, K) = (0, 0) is
unstable for (4). Moreover, for any K E R, the function W( y ) = y 2 is a
Lyapunov function for (4.1) and its derivative is even negative definite
for K # 0. But there is no neighborhood of y = 0 in R, independent of K,
where W’ ~ 0. That is the major reason why the auxiliary function
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is not a Lyapunov function for (4) and Salvadori’s method can not be
transposed to system (3).

REMARK 1.2. We notice that the origin of (3) can be stable even if,
for any K # 0, the origin y = 0 of (3.1) is unstable. An example is given
by 9’(y, K ) = K2 y(K 2 - y 2 ).

For a general system (3), not necessarily of mechanical type, we can
state the following, nowadays merely trivial proposition.

PROPOSITION 1.1. If there real ficnctions W( y, K, t),
U(y, k) and positive constants c &#x3E; 0, r~ &#x3E; 0 such that

(i) W(y, K, t) ~ U(y, K),
(ii) U( y, 0) is positive definite in y,

(iii) W’ (y, K, t) ~ 0 for  g, 7?,

then the origin ( y, K) = (0, 0) is stable for (3).

PROOF. The function

is positive definite and non-increasing along the solutions of (3) in some
neighborhood of the origin. Indeed, its Dini-derivative D + F (see for in-
stance [6]) is such that D + F ~ 0. This achieves the proof.

REMARK 1.3. Proposition 1.1 holds also if equation (3.1) depends
on time and if we suppose g(y, K, t) continuous and locally lipschitzian
in y. Moreover, the domains of y and K may be restricted to some open
neighborhoods of the origin in R nand 

Recently, D. Aeyels and R. Sepulchre [1] stated a stability result
for autonomous dynamical systems with a first integral

where x ERn, h E R k, h constant, f(O) = 0 and G( o ) = 0. They proved
that, if x = 0 is asymptotically stable for perturbations xo such that
G(xo ) = 0, then x = 0 is stable for all perturbations. In other terms,
conditional asymptotic stability implies stability.

Of course, if the jacobian matrix of G is of maximal rank at the ori-
gin, the implicit function theorem assures that system (5) can be

brought in the form (3). In this case, the theorem is only a particular
case of well known total stability results (see for instance [2], p. 445)
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and in the corresponding mechanical case, i.e. Lagrange systems with
ignorable coordinates and dissipation, many results have been obtained
by C. Risito, V. V. Rumjantsev, L. Salvadori and others. But if the
rank of the jacobian matrix of G is not maximal, it may happen that (5)
can not be brought in form (3) and the theorem is of full interest.

In their proof, D. Aeyels and R. Sepulchre do not use any Lya-
punov or Lyapunov-like function. Therefore, the proof is completely
different from that used by Salvadori in the extension of Routh’s theo-
rem and also from that of Malkin’s total stability theorem. It is based
only on the consideration of topological flows and so, at a first look, the
autonomous character of (5.1) seems to be important. Our purpose in
the next section is to extend the latter result to non autonomous peri-
odic systems (5.1) with time dependant first integral (5.2).

2. - A stability criterion.

Let us consider the continuous functions

and

where S~ is an open connected set containing the origin. We
assume that f is locally lipschitzian in x, T-periodic in t and that
for every t E R,

Moreover, we assume that G is e1 1 and satisfies

on R x SZ . Then the origin is an equilibrium point for the system

which admits the first integral

h being an arbitrary constant in Without loss of generality,
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we can assume that

Now, we can state the following.

THEOREM 2.1. If G is continuous in x, uniformly on IEg- _ (- 
and if x = 0 is uniformly asymptotically stable for perturbations
(to, xo) such that G( to , xo ) = 0, then x = 0 is uniformly stable for
(8.1).

PROOF. We represent the solution of (8.1) issued from (to, 
E I by x( t ; to, xo) and note B~ _ ~ x : ~  ~ } . As f is T-periodic, it
suffices to show that x = 0 is stable. Let’s procede ab absurdo and sup-
pose that x = 0 is unstable. Then there exists somme &#x3E; 0 such that

B, c 0 and a sequence (ti , xi) with ti &#x3E; 0, xi -~ 0 as such that

Without loss of generality, we may assume that

Once E &#x3E; 0 is fixed, the hypothesis of conditional asymptotic stability
can be written as follows:

and

Clearly a  s/2 and we may assume 77  8/2, a &#x3E; T. Consider now the

sequence of solutions x(t; 0, xi). As xi - 0, because of (10) (11), there
exists, for every i large enough, some ti : 0  ti  ti such that

where xi = 0, and

0bviously, ti’ ~ 00 as i ~ 00 and for i large enough, we have

The sequence (ti’ , xi ) is bounded. Therefore, going to a subsequence if
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necessary, we get convergence and

Let’s first show that G(t ", xo ) = 0. As G is continuous,

and, as f is T-periodic,

Thus, G being a first integral, we get

By hypothesis, G( t, x ) ~ 0 0 uniformly on Il~ - . Thus,

and, because of (18),

Consider now the solution x(t; t ", xo ). Given (12), there exists some
0 &#x3E; 0 such that, for any t in the compact interval [t - 0, t + ~ + e],

and for large i, by continuity with respect to initial conditions,

Clearly, for i large enough, and we

get

it follows from (22) that

But ti  ti and therefore (11) implies
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Thus ! I and (10) now implies

Putting t = t i’ + o- in (23) and taking account of (15), we get

Together with (21), the last relation yields

On the other hand, because of (13),

The last inequalities lead to a contradiction for i large enough. This
achieves the proof.

REMARK 2.2. Obviously, if the set Xt = {~: G(t, x)l = 0 does not
depend on t, hypothesis of conditional uniform asymptotic stability can
be replaced by conditional asymptotic stability.

REMARK 2.3. The hypothesis that f is T-periodic is restrictive but
it can certainly not simply be dropped. This is made clear by the
example

given in [6]. Indeed, the origin (x, y) = (0, 0) is unstable although it is
asymptotically stable for perturbations such that y = 0.

Before giving several examples, we define a function of class % and
establish an auxiliary proposition.

DEFINITION 2.1. A reaL function a, defined on some intervaL

[0, ple p &#x3E; 0, is said to be of class x if it is continuous, strictly increas-
ing and if a(O) = 0.

Consider the equation
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where g is defined on R x R k, continuous, T-periodic in t, locally
lipschitzian in x and g(t, 0, K) = 0. Then we get the following:

PROPOSITION 2.1. If there exists V(t, x, K ) and func-
tions a, b of class ~t, with

(iii) for any K E Rk, x = 0 is asymptotically stable.

Then, for any compact set A c stability and asymptotic stability
are uni, form in (t, K ) E R x A.

PROOF. As g is T-periodic, uniformity on t E R is obvious and it
suffices to establish uniformity on K E A.

Clearly, for any E &#x3E; 0 small enough such that B~ c S~, there exists
some 6 &#x3E; 0 such that, for any (xo, K): E R k and any t ; 0,
Ilx(t; 0, xo ,  ê. Indeed, it suffices to choose 8 &#x3E; 0,
~  b _~ (a(~)).

Let us now show that, for any v: 0  v  6, there exists some

a(8, v) &#x3E; 0 such that for any ( xo , K): K E A and any t ~ a,
1 lx(t; 0, xo, K)II  v. If we = b -1 (a(v)), it suffices to establish the
existence of some t * ( xo , K ): 0 ~ t * ~ ~ such that I lx(t * ; 0, xo , 72.

Obviously, because of (iii), for any (xo , K): llxo II ~ 8, K E A, there is
some t * (xo, K) &#x3E; 0 such that 0, xo, -t~/2. By continuity,
there exists some open ball B(xo , p) in R n and some open ball B(K, p) in
R k with p(xo , K ) &#x3E; 0 such that, for any (xo , K’ ) E B(xo , p) x B(K, p),
we The family B(xo , p) x B(K, p):

is clearly an open covering of the compact set

Bi x A. Taking a finite covering with the corresponding constants ti*,
1 ~ i ~ j, we can choose = and the proposition is
proved.

3. - A few examples.

EXAMPLE 3.1. As a first example, we consider a spherical pendu-
lum of mass m and length l, the connection point moving along the ver-
tical upwards z axis like z = a cos t, a &#x3E; 0. We suppose the force of grav-
ity f = - mge3 and some viscous friction F = - kv acting on the par-
ticle. The spherical coordinates p, 0 are chosen such that for the mass m

These generalized coordinates are regular at the origin p = 0 = 0. Ex-
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cept for an additive function of time, the Lagrangian can be writ-
ten

and the generalized friction forces are given by

Putting

we can write the equations of motion as follows

Using the auxiliary function

w( ~, 0, ~, e&#x3E; _ ~ sin 6 - 6 cosp sinp cos 0

which, except for a constant, represents the third component of the an-
gular momentum, we easily verify that

Hence, system (25) admits the first integral

Clearly, the jacobian matrix of G is not of maximal rank at the origin so
that Theorem 2.1 can be useful. The first hypothesis of this theorem is
satisfied. Indeed, G -4 0 as (cup, 0, ~, b) - 0 uniformly on t E II~-. More-
over, the 0, ~, b): G = 0} is time independent and the condition
K = 0 permits us to reduce the problem of a spherical pendulum to that
of a plane one. More precisely, the condition K = 0 implies one of the
equations

where the constant c satisfies 1.
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In the last case, near the origin, we get

and (25) reduces to

If a is small and satisfies the auxiliary function

is positive definite in ( e, 6 ) and such that

where the real functions dl , d2 do not depend on c and are of class
x. If moreover

the derivative V, computed along (27), is given by

and satisfies, for 0 and b small,

where d3 is another function of class x, independent of c. For any
c, ] c ] % 1, uniform asymptotic stability of ( e, b) can easily be deduced
from a theorem of N. N. Krasovskii [3] or V. M. Matrosov [4]. As
the functions dl , d2 , d3 do not depend on c, uniformity with respect
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to c can be deduced from Proposition 2.1. Finally, uniform asymptotic
stability for (rip, ~) follows directly from tg p = c sin 0.

The other cases are treated in a similar way and Theorem 2.1 to-

gether with Proposition 2.1 assures that the origin of system (25) is

uniformly stable.
We notice that this example is merely academic because a stronger

result, i.e. uniform asymptotic stability, can be obtained using the lin-
ear approximation directly in (25). Nevertheless, it shows how Theo-
rem 2.1 can work with a time dependent first integral and illustrates
the somewhat strange condition G - 0 as x ~ 0 uniformly on R .

EXAMPLE 3.2. Consider the system

with k &#x3E; 0, h(t) &#x3E; 0, h continuous and periodic. Here, the friction force
is acting only in the radial direction and its norm is chosen rather artifi-
cially. The energy

can not be used as a Lyapunov function for (28) because its time
derivative

is not semi-negative definite. But, as all forces are central ones, the

system admits the first integral

The condition K = 0 yields y = mx or x = my with 1. Consider-

ing only the former case, we get

and now the energy

satisfies
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Asymptotic stability of the origin (x, x) _ (0, 0) follows from [3] or [6].
The case x = may is similar and Theorem 2.1 together with Proposi-

tion 2.1 assures stability of the origin (~~~~)=(0,0,0,0) for (28).

EXAMPLE 3.3. As a last example, we consider the system

with a &#x3E; 0, g(x, x) ~ 0.
If g( x, x ) = 1, the origin x = 0 is clearly asymptotically stable for

~ = 0 and, by Theorem 2.1, the origin (x, x, ~) = (0, 0, 0) is stable for
(30), even if a is a square integer, i.e. even if there is parametric reso-
nance. Moreover, as (30.1) is linear, we can conclude that x = x = 0 is
stable for small E. So we find again a result of the damped Mathieu
equation which, of course, is well known in the literature. We note,
that for small E, asymptotic stability of x = x = 0 in (30.1) can be estab-
lished directly by using the Lyapunov function

In case of nonlinear friction, for instance g(x, x) = x2 or g(x, x) = x2,
Theorem 2.1 still shows that the variables (x, x, ê) can be controlled by
choosing xo , io and s small enough. But (31) is not more a Lyapunov
function for (30.1) and we can not conclude, as above, that (x, x) _
= (0, 0) is stable for (30.1). This last observation becomes evident if we
consider g( x, x ) = X2 _ E. Indeed, Theorem 2.1 still applies and for

0, the origin ( x, x ) = (0, 0) is clearly unstable for (30.1).
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