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On the Location of Zeros of Solutions

of Non-homogeneous Linear Differential Equations.

STEVEN B. BANK (*)

ABSTRACT - For any non-homogeneous linear differential equation of arbitrary
order, having rational functions for coefficients, we determine precisely,
those rays Arg z = ~ which have the property that for any e &#x3E; 0, there is a
solution of the equation which has infinitely many zeros tending to 00 in the
sector I  ~. We remark that it is possible for there to be infinitely
many such for a given equation.

1. Introduction.

For a non-homogeneous linear differential equation of arbitrary or-
der n, having polynomial coefficients,

the following result was proved in [2] concerning the possible location
of the zeros of the solutions of (1.1):

THEOREM 1.1. Given an equation (1.1) where % * 2, and where
Ro ( z ), ... , Rn _ 1 ( z ), and Q(z) are polynomials with ~( z ) ~ 0 . Then there
exist a nonnegative integer t and real numbers so , sl , ... , st + 1 with
- 

~c = so  sl ...  st + 1 = IT, such that for each k E=- 10, 1, ... ,~}, one of
the following two properties holds:

(a) For any 0 E (sk , sk + 1 ) and any e &#x3E; 0, there is a solution of (1.1)
having infinitely many zeros in Arg z - 0 I  ~.

(*) Indirizzo dell’A.: Department of Mathematics, University of Illinois, 1409
West Green Street, Urbana, Illinois 61801, USA.

This research was supported in part by the National Science Foundation
(DMS-9024930).
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(b) For any e &#x3E; 0, any solution of (1.1) can have at most finitely
many zeros in the closed sector + e £ Arg z ~ s~ + 1 - ~.

We remark that the results in [2] (which are reviewed in § 3 below
for the reader’s convenience) provide a method for the explicit calcula-
tion of the numbers sk from the equation, and also for determining
which of the two possibilities (a) or (b) in Theorem 1.1 holds for a given
k. (Examples produced in [2] show that for a given equation (1.1), it is
possible for property (a) to hold for some 1~, while property (b) holds for
other 1~. For example, if we consider the third-order equation,

where Q(z) is any polynomial which is not identically zero, it is shown
in [2; § 9] that the ... , consists of so = - x, s, = 201357r/6,
S2 = "7r/2, 83 = - ~c/6, s4 = 7r/6, s5 = ~c/2, S6 = 5x/6, and S7 = 77, and
that property (a) holds for k = 0, 1, 5, 6, while property (b) holds for
k = 2, 3, 4.) We also remark that analogous results to Theorem 1.1 hold
for equations (1.1) having more general coefficients than polynomials,
such as rational functions or algebraic functions (see [2; Theorem 6.1 ] or
§ 3 below).

For a given equation (1.1) and a value Sk ... , tl)g it is
obvious that if property (a) holds for either 1, then for any
ê &#x3E; 0, there is a solution of (1.1) having infinitely many zeros in

( Arg z - I  E. (This follows easily by applying property (a) to a ray
Arg z = 0 where 6 is sufficiently close to Sk’ ) However, if for this given
sk, property (b) holds for both k and 1~ - 1, then for a given E &#x3E; 0, no in-
formation is provided by Theorem 1.1 on whether or not there exists a
solution of (1.1) which has infinitely many zeros in Arg z - I  ê. If
for some e &#x3E; 0 no such solution exists, then Sk is really extraneous since
property (b) could then be improved to actually assert that for any
ê &#x3E; 0, any solution of (1.1) can have at most finitely many zeros on

1 + e £ Arg z ~ Sk + 1 - E- In fact, it is easy (see § 3) to give simple
examples of equations (1.1) which possess such extraneous In this

paper, we develop a simple method for determining whether or not a
given Sk is extraneous, and this method is given in Theorem 4.1 in § 4.
In order to develop this method, we must review how the Sk are pro-
duced and this is done in § 3. There are several reasons why methods
in [2] can produce extraneous Sk- One reason is that we first deal with
the homogeneous equation corresponding to (1.1), and we may find an
Sk for which the homogeneous equation has solutions f =t= 0 having in-
finitely many zeros around Arg z = Sk but for which Sk is extraneous for
the non-homogeneous equation. (This is the case in the example in § 3).
Another reason for extraneous Sk is that our asymptotic existence theo-
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rem produces solutions having prescribed asymptotic behaviour in sec-
tors, and the extraneous sk can occur as the boundary rays of these sec-
tors. In this paper (see Theorem 6.1 in § 6 below), we deal with this
problem of boundary rays by developing a process of continuing the
solutions over these rays, while at the same time preserving the
asymptotic properties of the solutions in the enlarged domain. This
process is based on Phragmen-Lindel6f principles.

It should be noted that the problem of extraneous rays arose earlier
in [5] in connection with the oscillation properties of solutions of homo-
geneous linear differential equations of arbitrary order n, having poly-
nomial coefficients,

The problem for (1.3) is considerably simpler than for (1.1) because for
homogeneous equations there cannot be the «mixture» of properties (a)
and (b) as the following result [5; Theorem 1] shows:

THEOREM 1.2. Given an equation (1.3) where % a 2 and where
Ro ( z ), ... , Rn _ 1 ( z ) are polynomials. Then one of the following two
properties holds:

(A) For any 0 E ( -7r, 7r] and any - &#x3E; 0, there is a solution f 0 0 of
(1.3) having infinitely many zeros in the sector I Arg z - 0 1  E.

(B) There exist a nonnegative integer t and real numbers so,

sl , ... , St + 1 with - 7r = so  s,  ...  st + 1 = ~, such that for any -E &#x3E; 0,
any solution f 0 0 of (1.3) has at most finitely many zeros in the closed
sector Sk + e % Arg + 1 - ê for each E ~ 0, 1, ... , ~}.

It was shown in [ 1 ] that a simple example of an equation (1.3) which
possesses property (A) in Theorem 1.2 is,

However for second-order equations (1.3), a classical result (see
Hille [7; § 5.6] or R. Nevanlinna [9; p. 345] or Wittich [16; p. 282]) shows
that all second-order equations (1.3) possess property (B) in Theo-
rem 1.2.

For a given homogeneous equation (1.3), the results in [5] provided
a method for determining which property (A) or (B) in Theorem 1.2
holds. If property (B) holds, the results in [5] give a method for explic-
itly calculating the numbers sl , s2 , ... , st and will also determine if an sk
is extraneous in the sense that for some - &#x3E; 0, no solution f=t= 0 of (1.3)
has infinitely many zeros in Arg z - I  ê. The problem of determin-
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ing which sk (if any) are extraneous for (1.3) was solved in [5] by also
using a continuation process for the solutions. However, for the rea-
sons indicated earlier, the process in [5] for (1.3) is of a much simpler
nature than that required in this paper for (1.1). For completeness, the
results from [5] are reviewed in § 10 below.

2. Concepts from the Strodt theory [10].

In this paper, we will consider equations (1.1) whose coefficients are
of a more general nature than just polynomials or rational functions.
We will actually treat equations (1.1) whose coefficients belong to a cer-
tain type of function field (i.e. a logarithmic differential field of rank
zero) consisting of functions which are analytic in some element of a
neighborhood system of sectorial regions. This neighborhood system
was introduced by W. Strodt in [ 10; § 94], and is denoted F( a, b). It has
the following property (see [2; p. 269]):

LEMMA 2.1. Let V be an element of F( a, b), and lest &#x3E; 0 be arbit-

rary. Then there is a constant Ro ( ~) &#x3E; 0 such that V contains the set,
a + e  Arg z  b + e, 

In a logarithmic differential field of rank zero over F(a, b), every el-
ement f(z) is admissible in F(a, b) (i.e. is analytic in some element of
F(a, b)) and if f(z) is not identically zero, then f(z) is asymptotically
equivalent to a function of the form CZCX (where c and a are constants
with c nonzero and « real) as z tends to infinity over elements of
F(a, b). (The concept of a logarithmic differential field of rank zero over
F(a, b) was introduced by W. Strodt in [12; p. 244].) We are using the
strong relations of asymptotic equivalence, f --- g, and of asymptotic
smallness, f « g, which were introduced by Strodt in [10; § 13]. (The re-
lation, f « g, is a generalization of the usual relation, f = o(g). The
strong relation of asymptotic equivalence defined in [10; § 13] is de-

signed to ensure that if M(z) is a nonconstant logarithmic monomial of
rank 5 p (i.e. a function of the form,

for real aj , and complex K # 0), then f --- M implies f ’ ~- M’ in F( a, b)
(see [10; § 28]). As usual, z’ and Log z will denote the principal branches
of these functions on Arg z ~  7r). If f - M in F( ac, b ) where M is given
by (2.1), then we will denote ao by 80(f), a1 by ~1 ( f ) etc. If/= 0, we
will set 
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The following two facts are proved in [6; p. 309] and [10; § 28]
respectively:

LEMMA 2.2. Let f(z) be admissible in F(a, b). Then:

where 0 j denotes the operator

We will write f1 = f2 in F(a, b) to mean that fi - cf2 for some nonzero
constant c. An admissible function g(z) in F(a, b) is called trivial in

F(a, b) if g « z -" in F(a, b) for every « &#x3E; 0. If f - cz -1 + d in F(a, b),
where c ~ 0 and d &#x3E; 0, then the indicial ficnction of f is the function

defined by,

(2.2) IF( f, ~) = Cos (d~ + Arg c) for a  ~  b .

(It is obvious that IF( f, ~ ) has at most finitely many zeros on ( a, b ). ) If

g is any admissible function in F(a, b), we will denote by f g any primi-
tive of g in an element of F(a, b). We will require the following two
facts (see [2; p. 270]):

LEMMA 2.3. Let f - cz -1 + a in F(a, b), where c ~ 0 and d &#x3E; 0. If

(ai , b1) is any subinterval of (a, b) on which IF( f, ~ )  0 (respectively,
IF( f, ~ ) &#x3E; 0 ), then for all real «, (respectively,

in F(a1, bl ).

LEMMA 2.4. Let « = a + bi be a complex number. Then for any
e&#x3E;0, we have z~-~«z" and in F( -7t, 7r).

We will also require the following facts. The first is obvious and the
second follows from [10; Lemma 30]:

LEMMA 2.5. (a) If b is a real number, then on Arg z (  7r, we have

(b) If f is a trivial function in F(a, b), then f’ is also a trivial function
in F(a, b).

3. Preliminaries and results from [2] and [5].

Given a homogeneous equation (1.3) where the are functions
which belong to a logarithmic differential field of rank zero over some
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F(a, b), we can follow the procedure developed in [5; pp.6-8] (or see
[2; pp. 271-274]), and thereby determine for (1.3) the critical degree,
the critical equation, the logarithmic set, the full factorization polyno-
mial, the exponential set, and the transition set on (c~ b) as defined
in [5]. As defined in [5; p. 8], if Ml , M2 , ... M~ are the elements of the
logarithmic set for (1.3), and if § 1 , ~2’ ... ~p are admissible functions in
some F(c, d) such that for each j, the function Yj solves (1.3) and satis-
fies Yj - Mj in F( c, d ) for j = 1, ... , p, then we will ... , Yp} a
complete logarithmic set of solutions of (1.3) in F(c, d).

Using the above concepts, we recall the following result from

[2; p. 274] or [5; p. 10-11]:

THEOREM 3.2. Given the equation (1.3) where % a 1 and where
the functions Ro ( z ), ... , Rn _ 1 ( z ) belong to a logarithmic differential
field of rank zero over F(a, b). When written in terms of the operator 0
(where let (1.3) have the form Q(w) = 0, where Q(w) =

n

= 2: Bj (z) 0iw. Let p be the critical degree, let F * (oc) = 0 be the critical
j=0

equation, and let Nl , ... , Ns be the distinct elements (if any)’ of the ex-
ponential set for (1.3). Then there exist a nonnegative integer d, with
d  n - p, and a set {V1, ... , of d distinct functions such that all of
the following hold:

(a) For each j, the function Vj belongs to a logarithmic differen-
tial field of rank zero over F( a, b), and there exists k E ~ 1, s I such
that Vj - Nk over F(a, b ).

(b) If j ~ m, then there exists a strictly positive real number
c = c( j , m ) such that V - V,,, F(a, b ).

(c) For each j E ~ 1, ... , d}, the equation = 0, where,

has coefficients belonging to a logarithmic differential field of rank zero
over F(a, b), and has a strictly positive critical degree t~ ;

(e) if ...~s} and if N~ has multiplicity m as a critical
monomial of the full factorization polynomial for (1.3), then
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where Jk is the set of for which over

F( a, b ); i

(f) let Qo denote Q, and let E1 denote the union (for j in

~ 0, 1, ... , , d ~) of the transition sets of the equations = 0 on (a, b),
say E1 = ..., r, I where r,  r2  ...  rq’ Letro=a and 
(If E1 is empty, set q = 0. ) Then in each of F(ro , r1 ),
F(rl r2 ), ... , F(rq , rq + 1 ) separately, the following hold:

(i) the equation = 0 possesses a complete logarithmic set of
and for the equation

~~ (u) = 0 possesses a complete logarithmic set of solutions,

(ii) if we set and

then the set d o U 41 U ... is a fundamental set of
solutions of (1.3).

REMARK. The functions Vj can be explicitly calculated from (1.3)
(see [5; Theorem 3]), and hence the set E1 can be explicitly calculated
from (1.3).

The previous theorem can be used to discuss the oscillation proper-
ties of solutions of an equation (1.3). We now recall the following con-
cepts which were introduced in [2; p. 276] for an equation (1.1) whose
coefficients are admissible functions in some F( a, b):

(A) We say that (1.1) has the global oscillation property in
a  Arg z  b if the following holds: For any 0 E (a, b) and any - &#x3E; 0,
there exist strictly positive constants 6 and K, and a solution f ~ 0 of
(1.1), such that 6  min 10 - a, b - 6, ~ ~, and such that f is analytic and
has infinitely many zeros z1, Z2, ... , with lim I Zm I = + oo, on the re-

m - oo

gion defined by |Arg z - O| [  8 and Iz &#x3E; K.

(B) We say that (1.1) has the non-osciLLation properly in
a  Arg z  b, if for any solution f=1= 0 of (1.1) which is admissible in
F(a, b), and any -s &#x3E; 0, there exists a constant K = f ) &#x3E; 0 such
that f is analytic and has no zeros on the set defined by,
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Using Theorem 3.2, we can now deduce the following oscillation re-
sult for equations (1.3) as stated in [2; p. 277]:

THEOREM 3.3. Assume the hypothesis and notation of Theo-
rem 3.2. Let E2 denote the union (over all j and ..., d} with
j ~ k) of the sets of zeros on (c~ b) of the functions IF(V - Vk , 0).
Let E3 = El U E2 (where El is defined in Part ( f ) of Theorem 3.2), say
E3 = f Sl 9 ... , where Sl  s2  ...  st . Set so = a and = b. (If E3
is empty set t = 0. ) Then the following hold:

(A) If for some j E{0,l,...,d}, the critical equation of the equa-
tion Dj (u) = 0 possesses two distinct roots having the same real part,
then (1.3) has the global oscillation property in a  Arg z  b.

(B) If (1.3) does not satisfy the condition in Part (A), then (1.3)
possesses the non-oscillation property in sk  Arg z  Sk + 1 for each

k E ~O, 1, ..., t~.

REMARKS. (a) In view of the Remark after Theorem 3.2, it easily
follows that the set E3 = ~ s1, ... , st I can be explicitly calculated from
(1.3). It will be seen later that the numbers si , ... , st in Theorem 1.1
for equation (1.1) are precisely the numbers sl , ... , st obtained in Theo-
rem 3.3 for the corresponding homogeneous equation (1.3), and so they
can be explicitly calculated from (1.1).

(b) It is easy to see that Theorem 1.2 follows immediately from
Theorem 3.3 since we may take (a, b ) = ( - x, 7r) when the coefficients
of (1.3) are polynomials.

For non-homogeneous equations (1.1), the following result was

proved in [2; p. 278]:

THEOREM 3.4. Given the equation (1.1) where % a 2 and the Rj(z)
belong to a logarithmic differential field of rank zero over F(a, b), and
where Q(z) is an admissible function in F( a, b ) for which there is a real
number (3 such that Q(z) = z a over F( a, b). Using (3.1) and dividing the
equation (1.1) through by a suitable real power of z, we can rewrite
(1.1) in the form Q(w) = ~, where is of the form (3.3), whose coeffi-
cients satisfy (3.4), and where for some complex c # 0 and some real
number o~, we have § - cz’ over F(a, b). We define a function M(z) as
follows: If o is not a root of the critical equation, F* («) = 0, of = 0, 9
we set M = (F * ( ~)) -1 cz Q . If 7 is a root, say of multiplicity r, of F * ( a ) =
= 0, we set,



143

where Ko is the value at oc = 7 of the rth derivative of F* (oc). Let
r1  r2  ...  rq be the points of the transition set for Q( w) = 0 on
(c~ b), and set ro = a and rq + 1 = b (If the transition set is empty, set q =
= 0). Then in each of F( ro , r1 ), F( r1, r2 ), ... , F( rq , rq + 1 ) separately, the
equation (1.1) possesses a solution wo - M.

For a non-homogeneous equation (1.1), the function M(z) in (3.11)
plays a key role in the oscillation properties of (1.1). Therefore, the fol-
lowing concepts were introduced in [2; p. 278]:

Under the hypothesis of Theorem 3.4, the number o- will be called
the principal exponent of (1.1). If a is a root of F * (a) = 0, we will call r
the multiplicity of ~. is not a root of F * (a) = 0, we will say that it
has multiplicity r = 0. Following the terminology of [10; §§ 67, 69], the
function M(z) will be called the principal monomiaL of (1.1), and any
solution w(z) of (1.1) which satisfies w -~- M over some F(c, d), will be
called a principal soLution of (1.1) in F( c, d).

Finally, as in [2; p. 280], the oscillation properties of the solutions of
(1.1) can be deduced from Theorem 3.4 as follows:

THEOREM 3.5. Given an equation (1.1), where % a 2, where the co-
efficients belong to a logarithmic differential field of rank zero
over F(a, b), and where Q(z) is an admissible function in F(a, b) for
which there exists a real number [3 such that Q(z) = z R over F(a, b).
Let o- be the principal exponent of (1.1) with multiplicity r. Applying
Theorem 3.2 to the homogeneous equation (1.3) corresponding to

(1.1), let p, F* (a), N1, ... , Ns , Vl , ... , Vd , and S~ o , ... , ,~ d be as defined
in Theorem 3.2 and let so , ... , st + 1 be as in Theorem 3.3. Then:

(A) Assume that at least one of the following two conditions
is satisfied: (i) the equation F * ( « ) = 0 possesses two distinct roots
« and h such that Re(ce)=Re(A) (ii) the equation
F * ( « ) = 0 possesses a root « of multiplicity at least r + 1 such that

Then, (1.1) possesses the global oscillation property in

a  Arg z  b.
(B) Let /CE{0,1,...,~}, and assume that the following condition

is satisfied: (iii) there exists j E {1, ... , d} such that IF(V00FF, 6) &#x3E; 0 on

(sk , Sk + 1 ), and the critical equation of Dj (u) = 0 possesses at least two
distinct roots having the same real part. Then equation (1.1) possesses
the global oscillation property in sk  Arg z  sk + 1.

(G’~ Let 1, ... , ~}. and assume that neither condition (i) or
(ii) in Part (A) holds. Assume further that the following condition
holds: (iv) for every j E {1, 2, ...,d} such that the critical equation of

= 0 has two distinct roots having the same real part, we have
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IF(Vÿ, 0)  0 on (sk , Sk + 1)’ Then equation (1.1) possesses the non-oscil-
lation property in sk  Arg z  sk + 1.

REMARKS. (a). It is easy to see (see [2; p. 290]) that Theorem 1.1
follows from Theorem 3.5 when we take (ac, b) _ ( - 7c, 7r). We note that
the Points Sk in Theorem 1.1 are the points Sk given in Theo-
rem 3.5.

(b) It is easy to give simple examples of equations (1.1) for which
some of the points sk which are produced by Theorem 3.5 are extrane-
ous in the sense described in § 1. For example, we may take the simple
equation, 

°

Of course, this equation can be explicitly solved and possesses the gen-
eral solution,

for arbitrary cl , c2 .

Since e -z and e iz are trivial functions in ~c/2 ) (e.g., see Lemma
2.3), it follows that any solution of (3.12) satisfies w -- i on F(0, ~/2 ). It
follows from Lemma 2.1, that no solution of (3.12) can have infinitely
many zeros on a sector Arg z - (x/4) I  s where E  ~/4. However,
we now show that ~c/4 is an sk produced by our method and so extrane-
ous. To see this, we first use (3.1) to write (3.12) in the form Q(w) = ~,
where is of the form (3.3) whose coefficients satisfy (3.4). This
form is,

For the homogeneous equation corresponding to (3.14), the critical

degree is clearly zero, and the full factorization polynomial H(z, v) in
(3.6) is,

Using the remarks at the end of § 2, we find that H( z, v) has two critical
monomials, N1 = -1 and N2 = i and both have multiplicity 1. By defi-
nition, the is the exponential set for the homogeneous
equation corresponding to (3.14), and so in Theorem 3.2 (using Parts
(a) and (e)), the set of functions {V1, ... , Vd} consists of two functions,
VI - N1 and V2 --- N2 over F( - ~r, ~c). Since IF(V1 - V2 , ~) vanishes at
~ = ~/4, it follows from Theorem 3.3 that 7r/4 is an Sk as we claimed. We
note that by the same reasoning, - 3 7r/4 is also an sk , but our main re-
sult (which will be stated in the next section) will show that -3n/4 is
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not extraneous because both of the functions e -z and e iz have large
growth in F(-n, -n/2).

4. Main result.

We now state one of our main results. The proof will be concluded
in § 8.

THEOREM 4.1. Given an equation (1.1), where n a 2, where the co-
efficients belong to a logarithmic differential field of rank zero
over F(a, b), and is an admissible function in F(a, b) for
which there exists a real number B such that Q(z) = zB over F(a, b). Ap-
plying Theorem 3.2 to the homogeneous equation (1.3) corresponding
to (1.1), let p, F * ( « ), Nl , ..., Ng, Vi , ... , Vd , and ... , ~ d be as de-
fined in Theorem 3.2, and let so , ... , be as in Theorem 3.3. Let
k E ~ 1, ... , t } and assume that equation (1.1) possesses the non-oscilla-
tion property in both sk - 1  Arg z  sk and sk  Arg z  Sk + 1 (see The-
orem (3.5)). Then:

(A) Assume that at least one of the following two conditions
is satisfied: (i) There such that IF(Vj, = 0;
(ii) There exist distinct elements j and m in the set {1, ... , d } such that

while and Then,
there is an admissible solution f(z) of (1.1) in F(sk _ 1, Sk + 1 ) such that
for any s &#x3E; 0, f ( z ) possesses infinitely many zeros z1, z2 , ... , with
lim = + 00, which lie in the sector Arg  s.

(B) Assume that neither condition (i) or (ii) in Part (A) holds.
Then (1.1) has the non-oscillation property in s- i  Arg z  

REMARKS. 1) Theorem 4.1 gives a simple criterion for determining
when an sk , for 1~ E ~ 1, ... , t }, is extraneous, namely when Part (B)
holds. In the case where the coefficients of (1.1) are rational functions
(so that (a, b) = ( - 7c, 7r)), one can ask if the negative real axis (i.e.,
st + 1 = x) is also extraneous in the sense described in § 1. Clearly, Theo-
rem 4.1 does not apply directly to 1~ = t + 1, but one can use it indirect-
ly to test st + 1 = x by the following simple device: We make the change
of independent variable ~ _ - z in ( 1.1 ) which converts the negative re-
al axis into Arg ~ = 0. We then determine whether the value 0 is an sk
for the transformed equation (using Theorem 3.3), and, if so, we then
use Theorems 3.5 and 4.1 to test it.

2) The method of proof of Theorem 4.1 will show that if either (i)
or (ii) in Part (A) holds, then the sequence of zeros of the solution f(z) in
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Part (A) will have a strictly positive exponent of convergence (see [14;
p. 50]).

5. Continuation theorems.

DEFINITION 5.1. Given an equation (1.3) where we assume the hy-
pothesis and notation of Theorem 3.2. Let 1, ..., be the log-
arithmic set of Q(w) = 0 (so that to = ~) and ..., d}, let

mi, 1 ... , M~, denote the logarithmic set for the equation = 0.

Setting Vo = 0, and letting Vi , ... , TTd be as in Theorem 3.2, the set of n
functions

will be called the asymptotic set for (1.3). (We note that the elements of
the asymptotic set are admissible in F(a, b ). ) If ~ G1, ... , denotes
the asymptotic set for (1.3), is a fundamental set of sol-
utions of (1.3) consisting of functions which are admissible in F(c, d),
where (c, d) is a subset of (a, b), and satisfying 1 in F(c, d) for
1 ~ j ~ n, then we will call f fl, ... , fn ~, a basic fundamental set for
(1.3) in F(c, d). (Thus, Theorem 3.2 asserts the existence of a basic fun-
damental set for (1.3) in each of F(ro , rl ), ... , F(rq , rq + 1 ) separately,
and hence in each F(sk , Sk + 1 ) separately, for 0 ~ k ~ t, where the sk are
as in Theorem 3.3.)

DEFINITION 5.2. Given an equation (1.1) where we assume the hy-
pothesis and notation of Theorem 3.4. Let M denote the principal
monomial of (1.1). Any solution wo ( z ) of ( 1.1 ) which is admissible in
F(c, d), where (c, d) is a subset of (c~ b), and which satisfies wo /M ~ 1
in F(c, d) will be called a solutions of principal type for ( 1.1 ) in F(c, d).
(Thus, as in Definition 5.1, the result in Theorem 3.4 asserts the exis-
tence of a solution of principal type for ( 1.1 ) in each sepa-
rately, for 0 ~ 1~ ~ t, where the Sk are the points obtained by applying
Theorem 3.3 to the homogeneous equation corresponding to (1.1).)

We now state our continuation theorems. The proofs will be given
in § 7.

THEOREM 5.1. Given the equation (1.3) where % % 1 and where
the functions Ro (z), ..., Rn _ 1 (z) belong to a logarithmic differential
field of rank zero over F( a, b). Let so , ... , st + 1 be as in Theorem 3.3.
Then for any (=- f 1, ... , the equation (1.3) possesses a basic funda-
mental set in + 1 ).
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THEOREM 5.2. Given the equation (1.1) where n ~ 2 and the 
belong to a logarithmic differential field of rank zero over F( a, b), and
where Q(z) is an admissible function in F(a, b) for which there is a real
number [3 such that Q( z ) -== z R over F( a, b ). Let so , ... , st , 1 be the points
obtained by applying Theorem 3.3 to the homogeneous equation corre-
sponding to (1.1). Then, for any ... , t ~, the equation (1.1) pos-
sesses a solution of principal type in F(sk - 1, sk + 1 ).

6. Preliminary results for continuation theorems.

We will require several preliminary results. The first is a combina-
tion of several Phragmen-Lindel6f principles whose proofs can be found
in [14; pp. 176-180].

LEMMA 6.1. Let f(z) be analytic and of finite order of growth in a
closed sectorial region of the form a % argz % /3, K. Then there
exits 8 &#x3E; 0 such that for any real numbers c and d, with a % c  
and d - c  8, for which the limits,

exist and are finite, the following conclusions hold: L1 = L2 , and

LEMMA 6.2. Given the equation (1.1) where the coefficients 
belong to a logarithmic differential field of rank zero over F( a, b), and
where either Q(z) = 0 or Q(z) is an admissible function in F(a, b) for
which there is a real number fi such that z!3 over F( a, b ). Let f(z)
be a solution of (1.1) which is admissible in F( a, b). Then, for any real
numbers c and d, with a  c  d  b, there exists K &#x3E; 0 such that f is
analytic and of finite order in the closed sectorial region defined by,
c 5 Arg z K d, 

PROOF. For homogeneous equations (i.e., Q(z) = 0) the conclusion
was proved in [5; Lemma 8.2] by using the method developed in [3] for
transforming the equation to the unit disk and applying the Valiron-
Wiman theory (see [3; p. 149]). The same proof also works in the non-
homogeneous case because the non-homogeneous term ~(z), when
transformed to the unit disk, becomes a function whose growth is negli-
gible with respect to the growth of a solution of positive order.

LEMMA 6.3. Let f(z) be analytic and of finite order of growth in a
closed sectorial region of the form a ~ arg z ~ K. Then, for any
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real numbers a 1 and B1 with «  a i  B1  /3, there exists K1 &#x3E; 0 such
that f’ (z ) is analytic and of finite order on a1 

&#x3E; K1.

PROOF. This follows immediately from Cauchy’s formula for
derivatives.

LEMMA 6.4. Let f(z) be an admissible function in F(a, b) and let
c E (a, b). Assume that there exist real numbers a, and bl with

such that f is analytic and of finite order of growth
on the closed sectorial region Arg z ~ b1, I z ( ~ K, for some K &#x3E; 0.
Assume that for some complex number cr, we have over F( c, b).
Assume also that for some positive integer 1~, there exist complex con-
stants c1, ... , ck , and distinct real numbers k1, ... , À k such that,

where El , ... , Ek are admissible functions in F( a, c) which are all o( I)
in F( a, c). Then the following two conclusions hold:

PROOF. We first prove Part (B) by induction on k. We assume that
a = 0. If 1~ = 1 in (6.2), we set g Since is bounded from be-
low on Arg z ~  7r by a nonzero constant (see Lemma 2.5), it follows
from the hypothesis that g ~ 0 over F( c, b ) and g - cl over F( a, c).
Since 9 is clearly of finite order on Arg z ~ b1, I sufficiently
large, it easily follows from Lemmas 2.1 and 6.1 that C1 = 0 proving
that Part (B) holds for k = 1.

We now assume that &#x3E; 1 and that Part (B) holds 1.
If f satisfies (6.2), we set g = f/ziÀk, so that over F( a, c), we have

where E - 0 by Lemma 2.5. We now compute zg’ from (6.3), and
observe that zE’ and all zE;’ tend to zero over F(ac, c) by Part
(A) of Lemma 2.2. Since the functions z’(Aj-Ak) are all bounded
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on ( Arg z ~ I  7r: by Lemma 2.5, the resulting relation has the form,

Again by Lemma 2.5, we have g - 0 over F(c, b) so that by Lem-
ma 2.2, we have zg ’ ~ 0 over F( c, b). Finally, we note that zg ’ is of
finite order on some closed region a2  Arg z  b2 , K1 where
a1  ~  c  b2  b1, by Lemma 6.3, and we note also that the numbers
Àj - Àk are all distinct for 1 ~ j ~ k - 1. Thus, by the induction hypoth-
esis, it follows from (6.4) that 1 ~ j ~ k - 1. Since
the Àj are distinct, we have c; = 0 for 1 ~ j ~ 1~ - 1, and so from (6.2) we
have

Since we have proved the result for k = 1, we can now conclude that
Ck = 0 also, proving Part (B) by induction.

PROOF OF PART (A). We set fi = f - ~ so that fl 0 over F(c, b).
We distinguish two cases.

Case I. The ... , in (6.2) does not contain zero. Thus,
writing fi as f - aziO and using (6.2), we can apply Part (B) to f1 to con-
clude that 0’=0 and c; = 0 for 1 ~ j ~ k. Thus fi ~ 0 in F(a, c) also.
Using Lemmas 2.1 and 6.1, it follows that there is a 8 &#x3E; 0 such that

f, - 0 as z -&#x3E; 00 in I Arg z - c ~ e/3 and thus f, - 0 over F(c - (8/3),
c+(~/3)). From [10; Lemma 97], we can conclude that fl 0 over
F(a, b) and Part (A) is proved in this case.

Case II. The set ~ ~ 1, ... , ~ k ~ in (6.2) contains zero, 
Again we set fi = f - ~, and we have from (6.2) that in F(a, c),

Since fl - 0 over F(c, b), we can conclude from Part (A) that ci = 0 for
j ~ m and cm = ~. Thus fi ~ 0 over F(a, c) also, and as in Case I, we
again obtain f1 - 0 over F(a, b) proving Part (A) completely.

7. Proofs of Theorems 5.1 and 5.2.

We begin with some notation:

DEFINITION 7.1. Let .
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« and are complex numbers, and m and n are nonnegative integers.
We write M1 == M2 if Re (oc) = Re (v) and m = n. (Thus, M1 = M2 if and
only if = z i~ for some real number ~).

DEFINITION 7.2. Given a homogeneous equation (1.3) whose coef-
ficients Rj (z) belong to a logarithmic differential field of rank zero over
F(a, b). Let q be the critical degree of (1.3), and let ..., be the

logarithmic set for (1.3), say,

where a~ is complex and nj is a nonnegative integer. Let aj = aj + 
where o-j are real, and consider all the triples A.i = (0-j, ~~ ).
We arrange these triples in decreasing lexicographic order, say,

Aj,, ... , A~q (so that for each k, we have and if equality holds,
we have 1;~ % and if equality holds again, we 
Since the triples are all distinct, this order is a total order). The corre-
sponding q-tuple ... , Pjq) will be called the ordered logarithmic
system for (1.3). By partitioning this system by keeping together only
those triples which have the same pairs and if we set Qm = P~m
for m = 1, ... , q, then we can assume that the ordered logarithmic sys-
tem has the form (Qi , ..., Qq) and can be partitioned as follows:

(7.2) (Qi, Q2..... Q~). (~di+1» ..., ~~)~ ...,(~~,+1» ..., 

where by Definition 7.1 and Lemmas 2.4 and 2.5(ac), we have on
F( - 7rg 7r)g

and in general (setting dr + 1 = q),

over F( - x, 7r) for 1 ~ j ~ r. We will call (7.2) the canonical partition of
(’9G1 ~ ... Qq)-

PROOF OF THEOREM 5.1. We are given an equation (1.3), and we
assume the notation in Theorems 3.2 and 3.3 when we apply these re-
sults to (1.3). Let k r= f 1, ... , t ~, and set Hm = exp f V,,, for 1 ~ m ~ d,
and set Ho --- 1. In each of (sk _ 1, Sk ) and (sk , Sk + 1 ), none of the indicial
functions IF(VJ, 0) or IF(Vÿ - for j # m, have any zeros and so
must be of constant sign. It follows from Lemma 2.3 that if j and m are
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distinct elements of ~ 0, 1, ... , d ~ then

(7.5) either

and

(7.6) either

It easily follows (e.g., see [2; Lemma 7.2]) that there exist permuta-
tions {mo, ..., md I ... , of {0, 1, ... , d} such that both of
the following hold:

Let .10, ..., dd denote the sets of solutions in (3.9) of equation (1.3) in
F(sk , + 1 ), and let A 0 9 - - -, 4 d denote the corresponding sets in

F(sk _ 1, sk ). We begin with .1mo’ and we let (Q1, , ... , Q ) denote the or-
dered logarithmic system for the equation = 0, with canonical
partition (7.2). By Theorem 3.2, there are admissible functions

~ 1 ... , in sk + 1 ) and there are admissible functions g1, ... , gq in
F(sk _ 1, Sk ) such that

We begin with solution y1 Hm0 of (1.3). By basic existence theory
(e.g. [15; Theorem 2.2]), this solution has an extension G1 (z) which is
admissible in F( a, b ). Hence in F(Sk - 1, sk ), the solution G1 can be writ-
ten as a linear combination of the elements of 4 o U ... U 4 d . Thus in
view of (7.5), (7.7) and (7.10), there exist constants C1, ... , cq such

that,

where T1 is trivial in Thus from (7.10) and (7.3), and Lem-
ma 2.4, we have,
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But from (7.2) and (7.10) clearly for 1 ~ j ~ dl , there is a real number ~j
such that,

and the are all distinct since the functions

Q1, ..., Qdl are distinct. In addition, we note that on F(sk , sk + 1 ), we
have since and y1 1 --- Ql. Finally, we note
that G1 /Q1 Hmo is of finite order of growth on any sector Arg z  b1
where a  a,  61  b, for I z I sufficiently large, since G1 has this prop-
erty by Lemma 6.2. Thus, we can apply Lemma 6.4 to conclude

that,

Since is in the asymptotic set for (1.3), we now have constructed
the first element, namely G1, in the basic fundamental set for (1.3) in
F(sk - 1, sk + 1 ). The same proof is obviously valid for the extension G~ of

for each j = 1, ... , d1, so now have solutions G1, ... , Gdl of (1.3)
such that for j = 1, ... , d1

We now consider the where d1 is as in (7.2). As
above, this solution has an extension Gdl + 1 to F(a, b), which is of finite
order of growth, and as in (7.11) we have,

where Tdl + 1 is trivial. Dividing (7.16) by Q1, we obtain (7.12) with G1
replaced by Of course, (7.13) is still valid. But now,

tends to zero over s~ + 1 ) by (7.9) and (7.3), since it
agrees with + 1 /Q1’ Thus by Lemma 6.4, we must have c; = 0 for 1 
~ j ~ d1. Thus, when we divide (7.16) by ~dl + 1, we are now back in the
situation we had in (7.12), and we can argue as before to show

Gdl + 1 lqdl F’( s~ _ 1, sk + 1 ). Similarly, all the extensions

G~ of for d1 + 1 ~ j ~ d2 yield solutions satisfying 1

over sk + 1 ). If r &#x3E; 1 in (7.2), we consider the extension Get¿ + 1 of
As above can be written as a linear combination

(7.16). As above, by dividing by Q1 and using Lemma 6.4, we obtain
c; = 0 for 1 ~ j ~ dl . Then dividing the relation by Qdl + 1, we obtain
using Lemma 6.4 that c; = 0 for j ~ d2. Then we are back in the situ-
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ation in (7.12) and we show that over

F(sk _ 1, sk + 1 ). In this way, we obtain solutions G1, ... , Gq , which are
admissible and satisfy

We also note together with the union of the sets 4mj
for j = 1, ... , d, form a fundamental set for (1.3) s~ ). This can
be seen as follows: A dependence relation would obviously take the
form,

where T2 is trivial in F(sk - 1, sk ). Dividing (7.18) by Qi , and noting that
Gj /QIHmo is of the form ZiÃj (1 + o( 1 )) for 1 ~ j ~ d1, we can apply Lem-
ma 6.4 to the zero function (where we take (a, b) = ( sk _ 1, sk ) and c to
be any point in (sk - 1, to yield c; = 0 for 1 ~ j ~ dl . We then divide
(7.18) by ~dl + 1 and repeat the argument. In this way we obtain coy = 0
for 1 ~ j ~ q and independence is now clear since the union of the sets

L1mo ’J 
consists of linearly independent solutions.
We now proceeded by induction. We assume that r is a nonnegative

integer less than d, and we assume that we have constructed solutions
of (1.3) for j = mo , ... , mr and 1 ~ which are admissible in

F(~ -1, sk + 1 ) and satisfy

(where the 1 are as in (5.1)) and have the property that together
with the sets 4m. for j = r + 1, ... , d, form a fundamental set for (1.3) in
F(sk-1, Sk )- 

’

We use induction on r, and for ease of notation, let ( Q1, Qq) de-
note the ordered logarithmic system = 0, with canonical
partition (7.2). For this equation, let § 1 , i ... , §  and gl , ... , gq be the

complete logarithmic sets of solutions in + 1 ) and F( s~ _ 1, s ) re-
spectively, with ~ 2013 Qj in sk + 1 ) Qj in F(s/c -1 ,s~). We let
1-’ denote the subset ... , consisting of those mj for which

F(sk , For ease of notation, we denote the ele-
ments of r by ma , nzp , ... where a  B  .... Let O denote

~ mo , ... , mr ~ - h, so that by the total ordering (7.8), we have

in F(sk , for As before, the solution Y1 Hmr + 1
has an extension G1 to F(a, b), and so can be written as a linear combi-
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nation of the 1 for j = mo , ... , mr , and the elements of for j a r +
+ 1, in F(sk _ 1, sk ). Setting Uj, l = (so that 
F(sk -1, sk + 1 ) by (7.19)) this combination for G1 in ~(~ -1, sk ) takes the
form,

where for j  r, Wm. ’J is a linear combination of the functions while
W is a linear combination of gl , ... , gq , and where for j &#x3E; r + 1, W mj is a
linear combination of a complete logarithmic set of solutions of

= 0. We now set,

so we have in F(sk _ 1, sk ),

On F(sk _ 1, sk ), we have from (7.22), (7.5) and (7.7) that G1 =

= W;:ex + T where T = for all c  0. However, on it fol-
lows from (7.21) and the definitions of r, ~ and G1 that G* = o(z ~ )
for every c  0. This is the same situation that we had in (7.16) and we
argue the same way to prove all coefficients in are zero. That is, we
canonically partition the ordered logarithmic set for = 0 as in

(7.2), say (D1, D2 , ... ), (De , ... ), ... , and we use Lemma 6.4 successive-
ly on etc. to conclude that all coefficients in

Wma are zero. We then do the same for Wm and so on, so we obtain from
(7.22) that 

Again from (7.21), we have ~ while from

(7.23), we have on F(sk _ 1, 

where T2 is trivial. This is the same situation as we had in (7.12) and by
using Lemma 6.4 again, we obtain over

F(sk _ 1, sk + 1 ). By replacing Q1 in this argument by l~~ for any j =
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= 1, ... , dl , we obtain a solution Gj* of (1.3) such that I

over 

We then consider the extension Gdl + 1 1 to F( a, b), so
that Gdl + 1 is given by a linear combination as in (7.20). We then sub-
tract E from Gdl + 1, and call the resulting function 

which is given by the right side of (7.22) in F(sk - 1, sk). As above, we
show Wma = 0, WmB = 0, etc. so that G*d1 + 1 is given by the right side of
(7.23). This is the same situation as in (7.16), and by dividing the rela-
tion (7.23) by Q1 H m,. + 1 and using Lemma 6.4, we find that all coeffi-
cients of gl , ... , gdl in W are zero. Then dividing (7.23) by ~dl + 1, we
find as in (7.16) that by Lemma 6.4 we obtain Gdl + 1 +1~~.+1 1--~ 1 in
F(s~ _ 1, sk + 1 ). We continue this process, and we have now constructed
solutions Gj, 1 of (1.3) for j = and 1 ~ such that

To complete the induction, we must show that these for

j = mo , ... , mr + 1, together with 3m. ’J for j a r + 2 form a fundamental
set for (1.3) in F(sk - 1, This is easily proved exactly as was done for
the case r = 0 in (7.18). If we have a dependence relation, we divide it
by Hmo yielding a relation (7.18), which was shown to imply c; = 0 for
1 ~ j ~ q. We then divide the dependence relation by Hml and the same
argument shows that all coefficients of the functions Gml , will be zero.
We then continue and we obtain the desired conclusion that all coeffi-
cients in the dependence relation are zero.

8. Proof of Theorem 5.2.

Let a be the principal exponent of (1.1) with multiplicity r, so that
the principal monomial M(z) of (1.1) is given by (3.11). By Theorem 3.4,
the equation (1.1) possesses a principal solution w, in F( sk _ 1, and a

principal solution w2 in F(sk , sk + 1 ), so,

For the homogeneous equation (1.3) corresponding to (1.1) we adopt
the notation developed in the proof of Theorem 5.1. In particular, we
assume (7.5)-(7.8) hold, and we let be the elements in the basic
fundamental set for (1.3) in F(sk _ 1, s~ + 1 ) satisfying the relation (7.19).
We also note that from Lemma 2.3, in each of and
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F(sk , sk + 1 ) separately, we have,

By basic existence theory, the solution w2 has an extension D2 which
is admissible (and of finite order of growth by Lemma 6.2) in F(a, b).
Hence on F(sk _ 1, we can write (as in (7.20)),

where is a linear combination of the functions Um. ’J’ l = for
1 = 1, 9 ... , tm.. We now distinguish two cases.

Case I. The critical degree of (1.3) is zero. In this case the term in
(8.3) for which mj = 0, vanishes identically. From (8.2), we distinguish
two subcases. First, if all Hm~ (for 0), are trivial in F(sk _ 1, sg ),
then D2 /M - 1 in both F(sk, ;k + 1 ) and in F(sk - 1, (by (8.3)). It now
follows from Lemmas 6.1 and 2.1, and [10; Lemma 97], that 1
over F(sk _ 1, sk + 1 ), and so D2 is the desired solution. Second, if for

0, the function Hm. is not trivial in F(sk _ 1, then refer-

ring to (7.7), let q be the largest element of{0,l,...,d} for which
0 and Hmq is not trivial in F(sk _ 1, Then, from (8.3), we can

write, 

where T1 for all c  0. We now let O denote the subset of

{~o~...~~} consisting of those m~ for which H~, is trivial in

F(sk , sk+1), and we let r denote {m0, ... , lP. Let D2 denote the
function so we have,

where we are denoting the elements of 1’ by m(X, ... , where

a  ,~  .... Of course, on F(sk , s~ + 1 ), D2 /M ~ 1, so that 
o(z’) for all c  0. This is exactly the same situation we had in (7.21)
and (7.22), and, as shown there, we find Wma = 0, = 0, ... , and we
obtain from (8.5) that D2 /M ~ 1 over also. As in the first

subcase, D2 is then the desired solution.

Case II. The critical degree of (1.3) is not zero. In this case, the
term in (8.3) with mj = 0 need not vanish. For definiteness, let 1 denote
the element of ~ 0, 1, ... , d} for which ml = 0 (and so 7~ --- 1 ). Again
we distinguish two subcases. First, assume that for all 0, the func-
tion Hmj is trivial in F(sk _ 1, sk ). Of course, by (7.7), then 1 = 0, and so
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by (8.3), we have

where T2 = for all c  0. Let (Pl , ... , Pq ) be the ordered logarith-
mic system for (1.3), where the Pj are given by (7.1). Then, of course,
for some constants c; , we have

We can write W~ = U1 + U2 + U3, where U1 consists of the terms in
(8.7) where Re (a  )  a, where u2 consists of the terms where 
= (7, and where ~c3 consists of the terms where Re &#x3E; ~. By Lemma 2.4,
we have from (8.6) that,

Let (Pl , ... , + 1, ... , P~ ), ... , be those portions of the canonical
partition of (PI, ... , Pq ) consisting of those Pj for which &#x3E; a.

Now in s~ + 1 ) while from (8.8) we have in

F( sx -1 ~ 

Since = for some real ).. j if 1 ~ j ~ dl , we can conclude from
Lemma 6.4 that c; = 0 for 1 ~ j ~ dl . We can then repeat the argument
using Pdl + 1 etc. instead of Pi , and we conclude that U3 = 0. Thus,

We note that if U2 = 0, then D2 is the desired solutions as in Case I.
Thus we may assume that there are Pj for which Re (CXj) = ~, and we let
(P~ , ..., Pel ), (Pel + 1, 9 ... , Pe2)’ ... , be those portions of the canonical
partition having a. Noting that within each of these portions,
the exponent nj of Log z in (7.1) is the same, let these exponents in
these portions be ~31 &#x3E; /32 &#x3E; ... respectively. We note first that if p i  r
(where r is as in (3.11)), then by Lemma 2.5, clearly U2 = O(Wl) in

sk ) and again by (8.10), the desired solution is D2 as before.
Thus we may assume that B1 &#x3E; r. Assume first that (31 &#x3E; r, and let u4 be
the sum of the terms in U2 corresponding to B1 (that is, corresponding to
(P~, ... , Pel )) . From (8.10), we obtain,
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But since &#x3E; r, clearly D2 ~ 0 in F(sk , sk + 1 ), so from Lemma 6.4,
we conclude cj = 0 for j = a, ..., Thus u4 = 0. If (32 &#x3E; r, we apply the
same argument, and we show that all terms in U2 corresponding to
those for which (3j &#x3E; r, are all zero. Thus we may write U2 = u5 + us ,
where u5 consists of those terms (if any) where = r, and us contains
the terms where Clearly in so we

have,

If u5 = 0, we are done as in Case I. Hence we may assume that in

F(sk-1, sk),

for some nonempty set J, and some distinct real numbers Àj. We note
0 if c~ ~ 0 since A~ = 0 would imply that belongs to

the logarithmic set for (1.3). But then o~ would be a root of the critical

equation of (1.3) having multiplicity at least r + 1 which contradicts the
definition of r. Thus we have in F(sk - 1, from (8.12) and (8.13),

where we note that w, IM = z i° ( 1 + E), where E --3- 0, since WI - M in
1, Since D2 /M - 1 over F(sk , sk + 1 ) (since D2 = w2 ), we can

conclude from Lemma 6.4 that D2 /M -~ 1 over 1, sk + 1 ). Thus D2
is the desired solution.

The second subcase in Case II, is the case where not all Hmo ’J
(for 0) are trivial in F( sk _ 1, sg ). Thus clearly from (7.7), 1 &#x3E; 0.

Let 4) denote the subset of {mo, ... , ml _ 1 ~ consisting of those m~
for which Hm, is trivial in and let 1, denote

{m0, ... , ml -1} - O. Letting D2 denote the function D2 -
- E Wm.Hm, we have from (8.3),

where T3 = o(z ~ ) for all c  0, and where we are denoting the elements
of 1, by ma, ... where a  p  .... This is identical to the situation
in (8.5), and we showed that W mIX = 0, = 0, .... Thus, we have

Since sk + 1 ), this is exactly the same situation
(with D2 replaced by D2 ) as we had in (8.6), and the same argument
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shows that D2 /M - 1 over 1, sk + 1 ). Thus D2 is the desired

solution, and the proof is complete.

9. Proof of Theorem 4.1.

We assume the hypothesis of the theorem, and we adopt the nota-
tion developed in the previous two proofs. In particular, we let be
the elements of the basic fundamental set for (1.3) in F(sk _ 1, sk + 1 ),
satisfying (7.19) (and where Hm = exp and Ho = 1 ~. Let W denote
the solution of principal type of (1.1) in F( sk _ 1, sk + 1 ), so that W/M ~ 1
where M is the principal monomial (3.11).

PROOF OF PART (A). Assume condition (i) in Part (A) holds. For
this j, the function f = W - is a solution of (1.1), and in view of
(7.19), the equation f ( z ) = 0 can be written in the form,

where El ~ 0 over F(sk _ 1, sk + 1 ), and where is 
This is the same equation as was obtained in [5; Formula (10.5)], and as
shown in [5], since IF(VJ sk ) = 0, the solution f(z) satisfies the conclu-
sion of Part (A).

Now assume (ii) holds, and consider the solution f(z) of (1.1) defined
by W - The equation f(z) = 0 can be written in the

form,

where and Since and

/Mm, 1 - 1 over F(s~ _ i, Sk +1) by (7.19), and since Wexp f - Vim =
- o( U~,1 ) by Lemmas 2.3 and 2.4, it is clear that (9.2) has the form (9.1)
with Vj replaced by and where 
Thus f has the desired property as before. This proves Part (A).

PROOF OF PART (B). We now assume that neither (i) nor (ii) in Part
(A) holds. We will show that for any admissible solution f of (1. 1), there
is an element of F(sk - 1, Sk + 1 ) on which f has no zeros. This will yield
the conclusion of Part (B) by Lemma 2.1. Letting U~, denote Gj, 1 lHj,
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so that Uj, 1 lMj, l ~ 1 over F(sk - 1, Sk + 1 ), the solution f can be writ-
ten,

where Wy is a linear combination of the functions Uj, z. We now distin-
guish two cases.

Case I. For ... , d I for which we have

IF(V , Sk )  0. Since IF(V , 0) has no zeros on (Sk - 1 , sg ) or (sk , sk + 1 ),
we must have IF(Vÿ, 0)  0 on (Sk - 1, Sk + 1 ). Thus by Lemmas 2.3 and
2.4, we can write (9.3) as,

where T1 = o(z -~ ) for any c &#x3E; 0 over If Wo = 0, then
(9.4) shows that f has no zeros on some element of + 1 ), since
f/M - 1, and so we are done. If Wo ~ 0, we observe that by the hypoth-
esis of the theorem, clearly neither of the conditions (i) nor (ii) of Part
(A) of Theorem 3.5 can hold (or we would have global oscillation). This
is the same hypothesis as we had in [2; Lemma 7.5], and the same argu-
ments shows that W + Wo is either of the form W(l + o( 1 )) or

in for some L E ~ 1, ... , to ~ and some
nonzero constant Ko . In either case, (9.4) shows that f has no zeros on
some element of Thus we are done in Case I.

Case II. There for which and

IF(Vÿ, s~ ) ~ 0. Let J denote the set of all j E ~ 1, ... , d} with this prop-
erty. In view of the assumption that condition (i) does not hold, we
must have IF(Vÿ, &#x3E; 0 for j E J, and hence we have IF(Vÿ, 0) &#x3E; 0 on

(Sk - 1 , sk + 1 ) since IF(Vÿ, 0) has constant sign on both (Sk - 1, Sk ) and
(Sk 

Subcase A. J has only one element, m. Then the relation (9.3) takes
the form,

where T2 = o(z -~ ) for all c &#x3E; 0 over F(sk _ 1, sk + 1 ). In view of the hy-
pothesis that (1.1) does not have the global oscillation property in

sk  Arg z  Sk + 1, we have by Part (B) of Theorem 3.5, that the critical
equation of Qm (u) = 0 does not possess two distinct roots having the
same real part. In view of Lemma 2.4, one term in the linear combina-



161

tion Wm dominates the rest, so that for some 1 E ~ 1, ... , tm ~ we have for
some nonzero constant Ko , the relation

which shows that f has no zeros on some element of 1, sk + 1 ),

Subcase B. J has more than one element. Since we are assuming
(ii) does not hold, if j and m are distinct elements of J, then

Since has constant sign on

each of ( s~ _ 1, Sk ) and ( sk , sk + 1 ) by definition of the sk , it follows that
IF(VI - has constant sign on (sk _ 1, sk + 1 ) for any two distinct

elements j and m in J. Thus by Lemma 2.3, the set Y = f exp f Ij : j E J
has the property that the ratio of two distinct elements of Y is either
trivial or its reciprocal is trivial in F(sk - 1, sk +1). It easily follows that
for some element m E J, we have

is trivial in

for any j e J - {m}. It easily follows from (9.3) that

However, by the same reasoning as in Subcase A, Wm = 1 -
. (1 + o( 1 )) for some 1 and now it is clear that f has no zeros on some ele-
ment of + 1 ). This concludes the proof.

10. The homogeneous case [5].

For a homogeneous equation (1.3) whose coefficients belong to a
logarithmic differential field of rank zero over F(a, b), we known from
Theorem 3.3 that either (1.3) has the global oscillation property in
a  Arg z  b, or it possesses the non-oscillation property in all the sec-
tors Sk  Arg z  for k = 0, 1, ... , t. In the latter case, we can ask
whether a given Sk (for ... , t 1) is extraneous in the sense that
there is an c &#x3E; 0 such that for any solution f=t= 0 of (1.3), f has no zeros
on a set of the form, Arg z -  ~, ~ z ~ ; K( f ) for some K( f ) &#x3E; 0.
The question of determining whether an Sk is extraneous for (1.3) was
completely solved in [5; § 7] as follows: Under the given hypothesis,
Theorem 3.3 shows that the condition in Part (A) of Theorem 3.3 does
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not hold. It easily follows from Lemmas 2.3 and 2.4, that in each of
and separately, the whole asymptotic set

... , for (1.3) (see § 5) is totally ordered by the relation « « ».
That is, there exist permutations {m1, ... ,mn} and {q1, ... , qn} of

{1, ... , n ~ such that

and

It is proved in [5; § 7] that Sk is extraneous if and only if Gqj = for all

j = 1, ..., n. Hence an Sk is not extraneous if and only if the ordering of
the asymptotic set changes as we pass the ray Arg z = sk .
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