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Existence Results for Infinite Dimensional

Differential Equations without Compactness.

GIOVANNI COLOMBO - BARNABAS M. GARAY(*)

ABSTRACT. - Let E be a Banach space and f: E - E be limit of a sequence of
bounded Lipschitz functions, uniformly on compact sets. We show that there
exists a continuous extension F: such that the Cauchy
problem X’ = F(X) admits solutions, in the future, for all initial conditions in
[ o, + oo) x E. We also prove an existence result valid for the map f (x) _
= xINIlix1l for x ;d 0, f ( o ) = 0, hence admitting a non-compact set of sol-
utions.

1. Introduction.

Let E be a Banach space and f: E - E a function. A result of Godu-
nov [6] states that E is finite dimensional if and only if the Cauchy
problem

admits solutions for all xo E E and all continuous f (a detailed version of
Godunov’s original proof is presented in [11]; different proofs are given
in [12], [5]; see also [1], [7]). The earliest example of nonexistence, due
to Dieudonné [4], is constructed in the space co of all real sequences

converging to zero: having set f = to be (VfX:T + the Cau-
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chy problem x’ = f (x), = 0 does not admit solutions in co. How-

ever, it admits solutions for every initial point, if considered in the

(1-dimension) larger space c of all converging sequences. According to
this example, we consider the following problem:

Let E be a Banach space and f : E - E a continuous function; does
there exist a continuous extension F of f to the Banach space R x E
such that the Cauchy problem

(X = (À, x)) admits solutions for all Xo E R x E?
A partial positive answer is given in Section 2.
We consider also a second problem, originated by the following

example, due to A. Cellina. Let f(x) = for r # 0, f(0) = 0. The
Cauchy problem x’ = f (x), = 0 has a nonempty set of solutions,
which is not compact in the space C(I ; E ) for any interval I, provided E
is infinite dimensional. On the other hand, all the existence criteria
known by the authors (see [2], [3], [8], [10], [13], [14] and [15]) use a
combination of compactness and uniqueness assumptions on f (a-Lip-
schitzeanity and «-dissipativity), which as a by product provide a com-
pact set of solutions. According to this remark, Cellina stated the pro-
blem of finding a condition for existence without obtaining a compact
set of solutions.

Section 3 contains a result, valid in a Hilbert space, with the above
considered features.

Both the existence results obtained here, unlikely from the classical
techniques, are based on conditions providing a lack of uniqueness for
an auxiliary scalar differential equation. We prove existence by assu-
ming it everywhere except in a region, which, due to the assumption on
the auxiliary problem, can be reached by a solution in a finite backward
time.

2. An extension ensuring existence.

Let f : E -~ E be continuous, bounded and such that

(A) there exists a sequence ( fn ) of bounded Lipschitzean fun-
ctions such that fn converges to f uniformly on the compact subsets
of E.

We remark that the right hand side of Dieudonné’s counterexample
satisfies (A) (actually, it is the uniform limit of a sequence of Lipschit-
zean functions). We have
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PROPOSITION 2.1. Let f be continuous, bounded and satisfying (A).
Then there exists a continuous map F from I~ x E into itself such that
F( o, x) _ , f(x) for all x E E and, for any Xo = [ 0, + oo) x E,
the Cauchy = F(X), X(O) = Xo admits solutions on [ 0, + 00).

PROOF. Let Ln be the Lipschitz constant of fn (assume (Ln )n increas-
ing) and let 0  h~ 5 be decreasing, À1 = 1, and such that

h 5 0 set Fo (h, x) = f (x). We claim that the map Fo is a continuous
extension of f to R x E and there exists a function L(~) such that, for
all k &#x3E; 0 and x, y E E,

and

Indeed, to check the continuity on
for a suitable sequence of integers
and

Both terms of the last expression tend to zero as k tends to 00: the first
one because the x ~ is compact, while the second one by conti-
nuity. The properties (2.1) and (2.2) hold by construction, with L(h) =
-Ln+1 

Now define setting

We claim that the Cauchy problem X’ _ ~’(X), X(O) = Xo : _
~ _ (~.o, xo ) E [0, + oo ) x E admits solutions on [0, + - ). In fact, for
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0 this system splits into ~’ ( t ) = 2N/T(t), ~(0) = Ào and x’ ( t ) =

r(t)), r(0) = xo.IfthesolutionÀ(t) = + t)2 to the first equa-
tion is chosen, the Picard operator of the second one is Lipschitzean, by
(2.1), (2.2); hence there exists a solution on [ o, T) for some T &#x3E; 0. Since

Fo is bounded, T = + oo. 0

The approximation property (A) plays a central role in the above re-
sult. The question whether every continuous map f: E -~ E satisfies it
(in every Banach space or in particular types of spaces) seems to be
open. However, it is not hard to prove that the set of bounded conti-
nuous functions from E into itself which can be approximated uniform-
ly by Lipschitzean functions is nowhere dense in the space of all
bounded continuous functions. (In fact, choose a sequence {ek} in
E with IIek - eh 11 &#x3E; 2 (k # h) and consider a sequence of continuous
functions p~: E - [ 0, satisfying = 1 /m, k = 1, 2, ... and

nally, fix eo E E with ileo 11 = 1. Given an arbitrary function f : E ~ E,

Then, foreach m separately, either Vm or Wm consists entirely of
functions that cannot be uniformly approximated by Lipschitzean
maps. Indeed, let g E Vm and Y1 be a function with Lipschitz constant
Li such that and for each 

e E E

If also some g e Wm can be approximated within a distance 1/m2 by a
function ~2 with Lipschitz constant L2, an analogous argument shows
that + 4/m2 + L2 /k. Applying the triangle ine-
quality again, it follows that 2/m = 8~m2 + (Ll + 
But this is impossible if k is large. On the other hand, an arbitrary con-
tinuous map f E -~ E can be uniformly approximated by a sequence of
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locally Lipschitzean maps (see [9]). This provides an existence result,
for the extended problem, for a dense set of initial conditions.

PROPOSITION 2.2. Let f: E - E be continuous and bounded. Then
there exist a set D dense in E and a continuous map F, from R x E into
itself such that = f ( x ) for all x E E any Xo =
= ( o, xo ) E R x D, the Cauchy problem X’ = F(X), X(O) = Xo admits
soLutions on [ o, +oo).

PROOF. Let ( fn ) be a sequence of bounded, locally Lipschitzean
maps uniformly converging to f. Define Fo : R x E - E as done in the
proof of the previous result and fix xo E E, ~ &#x3E; 0. Assume Fo is bounded
by M &#x3E; 0. Fix 0  z  ~/M and consider the Cauchy problem X’ -
= F(X), X(,r) = ( z2 , xo ), where F is given by (2.3). This system admits a
unique solution X : _ (~, x) _ (t2 , x(t)), by the local Lipschitzeanity,
which is prolongable down to t = 0. Clearly, 
Hence in B(xo , E) falls a point x * x(O) such that the problem X’ =
= F(X), X((0) = ( o, x * ) admits a solution.

3. Existence without compactness of the solution set.

In what follows, X is a Hilbert space with unit sphere S =

- ~ x E X I =1}. The Bouligand tangent cone to a set 1, at x E r, i.e.

PROPOSITION 3.1. Let f: X ~ X continuous, bounded on the unit
ball and such that

1) there exists 0 c S, closed, such that for every ~ E r : = ( 0, + 00 )o
the Cauchy problem

has local existence;
2) for every x E r, - f ( x ) E Tr ( x );
3) there exists k: ( 0, + (0) ~ ( 0, + (0), continuous, such that for

every x E r
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Then, for every ~ E S~ there exists a solution Xç of

on some interval [ 0, z), 0  z £ T such that x ç (z) = ~.

PROOF. Let E E O and let rx be a solution of x’ = f(x), r(T ) = I defi-
ned on some interval I = (a, T ], 0 ~ ~  T, and such that x( t ) E r for all
J £ t £ T. Such a solution exists by 1), 2), see § VI.2 in [10]. We may
assume that xE is nonextendable to the left.

From 3), 4) we obtain that r, the nonextendable left maximal sol-
ution to the Cauchy problem ~c’ - u(T ) = 1 is defined at
least on and

In virtue of 4),
t

= 0, then lim = 0, hence rx can
t-o+

be extended as a solution down to rx ( 0) = 0. 0, then, being x~ ( ~)
bounded on I and 7 finite, lim x~ ( t ) = x exists. By 1), 2) x must be zero,

t - o+

otherwise the maximality of I is contradicted. A straightforward repa-
rametrization of xE(·) then concludes the proof.

REMARK. The map f(x) = 0 and 0 for x = 0 satisfies
the assumptions of Proposition 3.1, witch 0 = ,S, k( ~ ) = ý- and T = 2. As
it is shown by the trivial example f (x) = v, v E ,S k(’) = .
and T = 1, the assumptions of Proposition 3.1 do not imply that

,f(o) = 0.
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