Rendiconti

 del
SEMINARIO MATEMATICO

 della Università di Padova
Izabela Malinowska
 On automorphism groups of finite \boldsymbol{p}-groups

Rendiconti del Seminario Matematico della Università di Padova, tome 91 (1994), p. 265-271
http://www.numdam.org/item?id=RSMUP_1994_-91__265_0
© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On Automorphism Groups of Finite p-Groups.

Izabela Malinowska (*)(**)

Numerous papers on automorphism groups of p-groups can be found in the literature. There are a lot of examples of p-groups, whose automorphism groups have a given structure. Most of them are of nilpotency class 2 and all their automorphisms are central. In [6] Jonah and Konvisser constructed a p-group of order p^{8}, whose the automorphism group is elementary abelian. In 1979 Heineken [4] found a class of finite p-groups all of whose normal subgroups are characteristic.

In this paper we answer the question of Caranti ([7], 11.46 b)) asking whether there exists a finite p-group G of nilpotency class greater than 2, with Aut $G=\operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$, where $\operatorname{Aut}_{c} G$ is the group of central automorphisms of G. We show that no group G of order up to $p^{5}(p>2)$ has the property $\operatorname{Aut} G=\operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$. The p-group of the smallest order with this property has order p^{6} and nilpotency class 3. We also show that for every prime $p>2$ and every integer $n \geqslant 7$ there is a p-group G of order p^{n} with Aut $G=\operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$. Its automorphism group is a p-group of nilpotency class smaller than the nilpotency class of G. Throughout the paper terminology and notation will follow $[1,5]$.

Let G_{1} be a group generated by a, b, c, d, x with the following relations: $a^{p^{r}}=b^{p^{r}}=c^{p}=d^{p}=x^{p}=1$
(1) $[a, b]=a^{p}$,
(3) $[b, c]=1$,
(5) $[b, d]=1$,
(7) $[a, x]=a^{k p^{r-1}} b^{l p^{r-1}}$,
(9) $[c, x]=b^{p^{r-1}}$,
(2) $[a, c]=1$,
(4) $[a, d]=b^{p^{r-1}}$,
(6) $[c, d]=a^{m p^{r-1}} b^{n p^{r-1}}$,
(8) $[b, x]=1$,
(10) $[d, x]=c$,
(*) Indirizzo dell'A.: Institute of Mathematics, Warsaw University, Bialystok Division, Akademicka 2, 15-267 Bialystok, Poland.
(**) Supported by Polish scientific grant R.P.I.10.
where $p>3, r>1$ and $k, l, m, n \neq 0(\bmod p)$, or $p=3, r>1$, $k, l, m, n \neq 0(\bmod 3)$ and $l n \neq 1(\bmod 3)$.

One can easily show that the following subgroups of G_{1} are characteristic:

$$
\begin{align*}
& Z\left(G_{1}\right)=\left\langle a^{p^{r-1}}, b^{p^{r-1}}\right\rangle \tag{11}\\
& \gamma_{2}\left(G_{1}\right)=\left\langle a^{p}, c, b^{p^{r-1}}\right\rangle \tag{12}\\
& \Omega_{1}\left(\gamma_{2}\left(G_{1}\right)\right)=\left\langle c, Z\left(G_{1}\right)\right\rangle, \tag{13}\\
& C_{G_{1}}\left(\Omega_{1}\left(\gamma_{2}\left(G_{1}\right)\right)\right)=\langle a, b, c\rangle, \tag{14}\\
& A=\left\langle c, d, x, Z\left(G_{1}\right)\right\rangle \tag{15}\\
& C_{G_{1}}(A)=\left\langle a^{p}, b\right\rangle \tag{16}
\end{align*}
$$

We show only that A is characteristic. Of course for $p>5 .\left(G_{1}\right)$ is regular, so we have $A=\Omega_{1}\left(G_{1}\right)$. It is easily seen that this holds also for $p=5$.

The case $p=3$ is a little more complicated since the group G_{1} as well as A is no longer regular. But it is easy to check that $\Omega_{1}\left(G_{1}\right)=\left\langle a^{3^{r-2}}, b^{3^{r-2}}, c, d, x\right\rangle \quad$ since $\quad a^{-m 3^{r-2}} b^{(-n+1) 3^{r-2}} d^{2} x^{2} \quad$ and $a^{-m 3^{r-2}} b^{(-n-1) 3^{r-2}} d x^{2}$ are in $\Omega_{1}\left(G_{1}\right)$. Furthermore

$$
Z_{2}\left(G_{1}\right)=\left\langle a^{3^{r-2}}, b^{3^{r-2}}, c\right\rangle \quad \text { and } \quad \Omega_{1}\left(G_{1}\right) \leqslant Z_{2}\left(G_{1}\right) \cdot C_{G_{1}}(b)
$$

Now, if d and x belong to $Z_{2}\left(G_{1}\right) \cdot C_{G_{1}}\left(a^{\alpha} b^{\beta} c^{\gamma}\right)$, it follows that $\alpha \equiv 0$ and $\gamma \equiv 0(\bmod 3)$, so the subgroups $\left\langle a^{3}, b\right\rangle,\left\langle a^{3^{r-1}}, b^{3^{r-2}}\right.$, $c, d, x\rangle=C_{\Omega_{1}\left(G_{1}\right)}\left(a^{3}, b\right)$ and $\Omega_{1}\left(\left\langle a^{3^{r-1}}, b^{3^{r-2}}, c, d, x\right\rangle\right)=A$ are characteristic in G_{1}.

Proposition 1. Aut $G_{1}=\operatorname{Aut}_{c} G_{1} \cdot \operatorname{Inn} G_{1}$.
Proof. We prove the proposition for $r>2$. The proof of the case $r=2$ is similar.

Let φ be an automorphism of G_{1}. By (13)-(16) we see at once that $\varphi(c) \in \Omega_{1}\left(\gamma_{2}\left(G_{1}\right)\right), \varphi(a) \in C_{G_{1}}(c), \varphi(b) \in C_{G_{1}}(A)$ and $\varphi(d), \varphi(x) \in A$. So the subgroups $H=\left\langle b^{p^{r-1}}\right\rangle$ and $B=\left\{g \in G_{1}: \forall h \in \gamma_{2}\left(G_{1}\right) h^{g} \equiv h(\bmod H)\right\}=$ $=\left\langle a, b^{p^{r-2}}, c, x\right\rangle$ are characteristic in G_{1}. Hence $\varphi(a) \in B \cap C_{G_{1}}(c)=$ $=\left\langle a, b^{p^{r-2}}, c\right\rangle, \varphi(x) \in \Omega_{1}(B)=\left\langle c, x, Z\left(G_{1}\right)\right\rangle$ and then

$$
\begin{aligned}
& \varphi(a) \equiv a^{\alpha} b^{\beta p^{r-2}} c^{\gamma} \\
& \varphi(b) \equiv a^{\partial p} b^{\varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi(c) \equiv c^{\zeta} \\
& \varphi(d) \equiv c^{\eta} d^{\vartheta} x^{\iota} \\
& \varphi(x) \equiv c^{\kappa} x^{\lambda}
\end{aligned}
$$

where «三» means «congruent modulo $Z\left(G_{1}\right)$ ».
Applying φ to the (1) and (7) relations gives $\beta \equiv 0(\bmod p), \varepsilon \equiv 1$ $\left(\bmod p^{r-1}\right), \lambda \equiv 1(\bmod p)$ and

$$
\begin{equation*}
l \equiv l \alpha+\gamma(\bmod p) \tag{17}
\end{equation*}
$$

Hence by $(9) \zeta \equiv 1(\bmod p)$. Applying it to the (10) and (6) relations gives $\vartheta \equiv 1(\bmod p), \alpha \equiv 1(\bmod p)$ and $\iota \equiv 0(\bmod p)$, so by $(17) \gamma \equiv 0$ $(\bmod p)$. Now we see that each automorphism φ of G has the form:

$$
\begin{aligned}
& \varphi(a) \equiv a^{1+\alpha \cdot p} \\
& \varphi(b) \equiv b a^{\beta p} \\
& \varphi(c) \equiv c \\
& \varphi(d) \equiv c^{\gamma} d \\
& \varphi(x) \equiv c^{\delta} x
\end{aligned}
$$

where $\alpha, \beta, \gamma, \delta \in Z$.
The number $1+\alpha p$ can be expressed in the form $(1+p)^{\alpha^{\prime}}\left(\bmod p^{r}\right)$. Now one can easily verify that φ acts as the conjugation by $b^{\alpha^{\prime}} a^{-\beta} d^{-\delta} x^{\gamma}$ modulo $Z\left(G_{1}\right)$. Thus φ belongs to Aut $G_{1} \cdot \operatorname{Inn} G_{1}$, and then Aut $G_{1}=\operatorname{Aut}_{c} G_{1} \cdot \operatorname{Inn} G_{1}$.

Let G_{2} be a group generated by a, b, c, d, x, z with the following relations: $a^{p^{r}}=b^{p^{r}}=c^{p}=d^{p}=x^{p}=z^{p}=1$

$$
\begin{array}{ll}
{[a, b]=a^{p}} & {[a, c]=1[b, c]=1} \\
{[a, d]=z} & {[b, d]=1[c, d]=a^{p^{r-1} m} b^{p^{r-1} n}} \\
{[a, x]=a^{p^{r-1} k} b^{p^{r-1} l}[b, x]=1[c, x]=b^{p^{r-1}}} \\
{[d, x]=c,} & \\
{[a, z]=[b, z]=[c, z]=[d, z]=[x, z]=1,}
\end{array}
$$

where $p>2, r \geqslant 2, k, l, m, n \neq 0(\bmod p)$.
Symilarly as in the previous case it can be proved that
Proposition 2. Aut $G_{2}=\operatorname{Aut}_{c} G_{2} \cdot \operatorname{Inn} G_{2}$.

This shows that for all $n \geqslant 7$, there is a p-group G of order p^{n} with Aut $G=\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G$.

Now we shall see that the smallest p-group with this property has order p^{6} and nilpotency class 3 . First we show that there are no groups with this property of order p^{4}. We use the list of p-groups of order p^{4} found in [2], pages 145-146. We use also the numbering of the groups as given replacing of P, Q, R, S, E respectively by a, b, c, d and 1 . Since we want to find a group of nilpotency class greater than 2 only groups (xi), (xii), (xiii), (xv) should be considered. One can easily find for them automorphisms which do not belong to $\mathrm{Aut}_{c} G \cdot$ Inn G. For these groups we define such automorphisms by indicating images of generators. We have then

Group	a	b	c	d
(xi)	$a c$	b	c	
(xii)	a^{-1}	$b a^{p}$	c^{-1}	
(xiii)	a^{-1}	$b a^{p}$	c^{-1}	
(xv) $p>3$	a	b	c	$d c$
(xv) $p=3$	a^{-1}	b^{-1}	c	

Now let G be of order p^{5}. It is clear that G is metabelian and for $p>3$ is regular.

Case 1. $\quad \operatorname{cl} G=4$.
Since $\left|G / \gamma_{2}(G)\right|=p^{2}$ and G is metabelian then by [3] \mid Aut $G \mid$ is divisible by p^{6}. But $|\operatorname{Inn} G|=p^{4},\left|\operatorname{Aut}_{c} G\right|=p^{2}$ and $\left|\operatorname{Inn} G \cap \operatorname{Aut}_{c} G\right|>1$, so $\left|\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G\right| \leqslant p^{5}$. Hence Aut $G \neq \operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$.

CASE 2. $\mathrm{cl} G=3$.
Let $G=\gamma_{1}(G)>\gamma_{2}(G)>\gamma_{3}(G)>\gamma_{4}(G)=1$ be the lower central series of G. Since $\left|\gamma_{i}(G) / \gamma_{i+1}(G)\right| \geqslant p$ for $i=1,2,3$, we have $p^{2} \leqslant$ $\leqslant\left|G / \gamma_{2}(G)\right| \leqslant p^{3}$.

If G is metacyclic then $G=\left\langle a, b: a^{p^{3}}=b^{p^{2}}=1, a^{b}=a^{1+p}\right\rangle$. It is easy to see that the correspondence:

$$
a \rightarrow a^{-1}, \quad b \rightarrow b
$$

determines the automorphism of G which does not belong to $\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G$.

Assume that G is not metacyclic.
If $\left|G / \gamma_{2}(G)\right|=p^{2}$, then $G / \gamma_{2}(G)$ has the type (p, p) and by Theorem $1.5[1]\left|\gamma_{2}(G) / \gamma_{3}(G)\right|=p, \gamma_{3}(G)$ is elementary abelian of order p^{2}. Of course $Z(G)=\gamma_{3}(G)$ and $Z_{2}(G)=\gamma_{2}(G)$. Let G be generated by elements a, b. Since G is not metacyclic and $\mho_{1}\left(\gamma_{2}(G)\right) \leqslant \gamma_{3}(G)$, by [5], III.11.3. $\mho_{1}(G) \leqslant Z(G)$ and so $\left(a^{p}\right)^{b}=a^{p}$. On the other hand we have

$$
\begin{aligned}
\left(a^{b}\right)^{p}=(a[a, b])^{p}=a^{p} & {[a, b]^{a^{p-1}} \cdot \ldots \cdot[a, b]^{a}[a, b]=} \\
& =a^{p}[a, b]\left[a, b, a^{p-1}\right] \cdot \ldots \cdot[a, b][a, b, a][a, b]= \\
& =a^{p}[a, b]^{p}[a, b, a]^{(p-1) p / 2}=a^{p}[a, b]^{p}
\end{aligned}
$$

since $\gamma_{3}(G)=Z(G)$ and $\gamma_{3}(G)$ is elementary abelian. So we get $\exp \gamma_{2}(G)=p$.

Now it is easy to see that the correspondence

$$
a \rightarrow a^{-1}, \quad b \rightarrow b^{-1}
$$

determines the automorphism of G, which does not belong to $\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G$.

If $\left|G / \gamma_{2}(G)\right|=p^{3}$, then by Theorem 1.5[1] $\left|\gamma_{2}(G) / \gamma_{3}(G)\right|=$ $=\left|\gamma_{3}(G)\right|=p$.

Let $G / \gamma_{2}(G)$ be of the type (p^{2}, p). Since G is not metacyclic there exist a, b such that $G=\langle a, b\rangle$ and $a^{p^{2}}, b^{p} \in \gamma_{3}(G)$. By [5], III.11.3 $G / \gamma_{3}(G)$ is of the type (x) (see [2]). Then the correspondence

$$
a \rightarrow a^{1+p}, \quad b \rightarrow b
$$

determines the automorphism of G, which does not belong to $\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G$.

Let $G / \gamma_{2}(G)$ be of the type (p, p, p). If $Z(G) \neq \gamma_{3}(G)$, then G is either a direct product of groups A and B or a central product of groups A and C, where A is a group of order p^{4} and class $3, B$ is a group of order p, C is a cyclic group of order p^{2}. In both cases we can extend considered automorphisms of the groups of order p^{4} and class 3 to the whole group G. Of course such automorphisms do not belong to Aut $_{c} G \cdot \operatorname{Inn} G$.

Therefore we may assume that $Z(G)=\gamma_{3}(G)$. Then by [5], III.2.13a) $Z_{2}(G) / Z(G)$ is of exponent p. Since $\left|G / Z_{2}(G)\right|=p^{2}$ we can choose a, b, c such that $G=\langle a, b, c\rangle, a^{p}, b^{p} \in \gamma_{2}(G), c \in Z_{2}(G)$ and $c^{p} \in Z(G)$. Since $Z_{2}(G)$ is not cyclic ([5], III.7.7a)) either $\gamma_{2}(G)$ is ele-
mentary abelian or cyclic. In the second case there exists $c \in Z_{2}(G)$ such that $c^{p}=1$. In both cases we can find b with $[b, c]=1$, as $[a, c]$, $[b, c] \in Z(G)=\gamma_{3}(G)$. If $c^{p}=1$, then the correspondence

$$
a \rightarrow a c, \quad b \rightarrow b, \quad c \rightarrow c
$$

determines the automorphism of G, which does not belong to $\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G$.

Assume that $c^{p} \neq 1$. Since $\gamma_{2}(G)$ is elementary abelian we have

$$
\begin{aligned}
& {\left[a^{p}, b\right]=[a, b]^{a^{p-1}} \cdot \ldots \cdot[a, b]^{a}[a, b]=} \\
& \quad=[a, b]\left[a, b, a^{p-1}\right] \cdot \ldots[a, b][a, b, a][a, b]=[a, b]^{p}[a, b, a]^{(p-1) p / 2}=1
\end{aligned}
$$

so $a^{p} \in Z(G)=\left\langle c^{p}\right\rangle$ and in the similar way $b^{p} \in Z(G)$. So there exist a, b of orders p such that $G=\langle a, b, c\rangle$ and $[b, c]=1$. If $[a, b, b]=1$ then the correspondence

$$
a \rightarrow a^{-1}, \quad b \rightarrow b, \quad c \rightarrow c
$$

determines the desired automorphism of G. If $[a, b, b] \neq 1$ then there exists a with $[a, b, a]=1$. Hence the correspondence

$$
a \rightarrow a, \quad b \rightarrow b^{-1}, \quad c \rightarrow c
$$

determines the automorphism of G, which does not belong to $\mathrm{Aut}_{c} G \cdot \operatorname{Inn} G$.

Example. We end the paper with the example of the group G of or$\operatorname{der} p^{6}$ and class 3 with Aut $G=\operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$:

$$
\begin{gathered}
G=\left\langle a, b, c, d: a^{p^{2}}=b^{p^{2}}=c^{p}=d^{p}=1,[a, b]=a^{p},[a, c]=b^{p}\right. \\
\left.[b, c]=1,[a, d]=c,[b, d]=a^{p m} b^{p k},[c, d]=a^{p l}\right\rangle
\end{gathered}
$$

where $p>3$ and $k, l, m \neq 0(\bmod p)$ or $p=3, \quad l=1, \quad k, m \neq 0$ $(\bmod 3)$.

REFERENCES

[1] N. Blackburn, On a special class of p-groups, Acta Math., 100 (1958), pp. 45-92.
[2] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press (1911).
[3] A. Caranti - C. M. Scoppola, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, UTM, 286 (Ottobre 1989).
[4] H. Heineken, Nilpotente gruppen, deren sämtliche normalteiler characteristish sind, Arch. Math., 33 (1979), pp. 497-503.
[5] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin and New York (1967).
[6] D. Jonah - M. Konvisser, Some non-abelian p-groups with abelian automorphism groups, Arch. Math., 26 (1975), pp. 131-133.
[7] Kouroskaja tetrad', Nowosybirsk (1990).
Manoscritto pervenuto in redazione il 30 aprile 1992 e, in forma revisionata, il 28 novembre 1992.

