RENDICONTI del Seminario Matematico della Università di Padova

IZABELA MALINOWSKA

On automorphism groups of finite *p*-groups

Rendiconti del Seminario Matematico della Università di Padova, tome 91 (1994), p. 265-271

http://www.numdam.org/item?id=RSMUP_1994__91__265_0

© Rendiconti del Seminario Matematico della Università di Padova, 1994, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On Automorphism Groups of Finite *p***-Groups.**

IZABELA MALINOWSKA(*)(**)

Numerous papers on automorphism groups of p-groups can be found in the literature. There are a lot of examples of p-groups, whose automorphism groups have a given structure. Most of them are of nilpotency class 2 and all their automorphisms are central. In [6] Jonah and Konvisser constructed a p-group of order p^8 , whose the automorphism group is elementary abelian. In 1979 Heineken [4] found a class of finite p-groups all of whose normal subgroups are characteristic.

In this paper we answer the question of Caranti ([7], 11.46 b)) asking whether there exists a finite p-group G of nilpotency class greater than 2, with Aut $G = \operatorname{Aut}_c G \cdot \operatorname{Inn} G$, where Aut_c G is the group of central automorphisms of G. We show that no group G of order up to $p^5(p > 2)$ has the property Aut $G = \operatorname{Aut}_c G \cdot \operatorname{Inn} G$. The p-group of the smallest order with this property has order p^6 and nilpotency class 3. We also show that for every prime p > 2 and every integer $n \ge 7$ there is a p-group G of order p^n with Aut $G = \operatorname{Aut}_c G \cdot \operatorname{Inn} G$. Its automorphism group is a p-group of nilpotency class smaller than the nilpotency class of G. Throughout the paper terminology and notation will follow [1,5].

Let G_1 be a group generated by a, b, c, d, x with the following relations: $a^{p^r} = b^{p^r} = c^p = d^p = x^p = 1$

(1)
$$[a, b] = a^p$$
, (2) $[a, c] = 1$,

(3)
$$[b, c] = 1$$
, (4) $[a, d] = b^{p^{r-1}}$,

- (5) [b, d] = 1, (6) $[c, d] = a^{mp^{r-1}} b^{np^{r-1}}$,
- (7) $[a, x] = a^{kp^{r-1}}b^{lp^{r-1}}$, (8) [b, x] = 1,

(9)
$$[c, x] = b^{p^{r-1}},$$
 (10) $[d, x] = c,$

(*) Indirizzo dell'A.: Institute of Mathematics, Warsaw University, Bialystok Division, Akademicka 2, 15-267 Bialystok, Poland.

(**) Supported by Polish scientific grant R.P.I.10.

where p > 3, r > 1 and k, l, m, $n \neq 0 \pmod{p}$, or p = 3, r > 1, $k, l, m, n \neq 0 \pmod{3}$ and $ln \neq 1 \pmod{3}$.

One can easily show that the following subgroups of G_1 are characteristic:

(11)
$$Z(G_1) = \langle a^{p^{r-1}}, b^{p^{r-1}} \rangle,$$

(12)
$$\gamma_2(G_1) = \langle a^p, c, b^{p^{r-1}} \rangle,$$

(13)
$$\Omega_1(\gamma_2(G_1)) = \langle c, Z(G_1) \rangle,$$

(14)
$$C_{G_1}(\Omega_1(\gamma_2(G_1))) = \langle a, b, c \rangle,$$

(15)
$$A = \langle c, d, x, Z(G_1) \rangle$$

(16)
$$C_{G_1}(A) = \langle a^p, b \rangle.$$

We show only that A is characteristic. Of course for p > 5. (G_1) is regular, so we have $A = \Omega_1(G_1)$. It is easily seen that this holds also for p = 5.

The case p = 3 is a little more complicated since the group G_1 as well as A is no longer regular. But it is easy to check that $\Omega_1(G_1) = \langle a^{3^{r-2}}, b^{3^{r-2}}, c, d, x \rangle$ since $a^{-m3^{r-2}}b^{(-n+1)3^{r-2}}d^2x^2$ and $a^{-m3^{r-2}}b^{(-n-1)3^{r-2}}dx^2$ are in $\Omega_1(G_1)$. Furthermore

$$Z_{2}(G_{1}) = \langle a^{3^{r-2}}, b^{3^{r-2}}, c \rangle \quad \text{and} \quad \Omega_{1}(G_{1}) \leq Z_{2}(G_{1}) \cdot C_{G_{1}}(b).$$

Now, if d and x belong to $Z_2(G_1) \cdot C_{G_1}(a^{\alpha}b^{\beta}c^{\gamma})$, it follows that $\alpha \equiv 0$ and $\gamma \equiv 0 \pmod{3}$, so the subgroups $\langle a^3, b \rangle$, $\langle a^{3^{r-1}}, b^{3^{r-2}}, c, d, x \rangle = C_{\Omega_1(G_1)}(a^3, b)$ and $\Omega_1(\langle a^{3^{r-1}}, b^{3^{r-2}}, c, d, x \rangle) = A$ are characteristic in G_1 .

PROPOSITION 1. Aut $G_1 = \operatorname{Aut}_c G_1 \cdot \operatorname{Inn} G_1$.

PROOF. We prove the proposition for r > 2. The proof of the case r = 2 is similar.

Let φ be an automorphism of G_1 . By (13)-(16) we see at once that $\varphi(c) \in \Omega_1(\gamma_2(G_1)), \varphi(a) \in C_{G_1}(c), \varphi(b) \in C_{G_1}(A)$ and $\varphi(d), \varphi(x) \in A$. So the subgroups $H = \langle b^{p^{r-1}} \rangle$ and $B = \{g \in G_1: \forall h \in \gamma_2(G_1) \ h^g \equiv h(\mod H)\} = \langle a, \ b^{p^{r-2}}, \ c, \ x \rangle$ are characteristic in G_1 . Hence $\varphi(a) \in B \cap C_{G_1}(c) = \langle a, \ b^{p^{r-2}}, \ c \rangle, \ \varphi(x) \in \Omega_1(B) = \langle c, \ x, \ Z(G_1) \rangle$ and then

$$arphi(a) \equiv a^{\,lpha} b^{eta p^{r-2}} c^{\,\gamma} \,,$$

 $arphi(b) \equiv a^{\,\delta p} \, b^{\,\varepsilon} \,,$

,

$$arphi(c) \equiv c^{\zeta} ,$$

 $arphi(d) \equiv c^{\eta} d^{\vartheta} x^{\iota}$
 $arphi(x) \equiv c^{\kappa} x^{\lambda} ,$

where $\ll \equiv \gg$ means \ll congruent modulo $Z(G_1) \gg$.

Applying φ to the (1) and (7) relations gives $\beta \equiv 0 \pmod{p}$, $\varepsilon \equiv 1 \pmod{p^{r-1}}$, $\lambda \equiv 1 \pmod{p}$ and

(17)
$$l \equiv l\alpha + \gamma(\mathrm{mod}\,p).$$

Hence by (9) $\zeta \equiv 1 \pmod{p}$. Applying it to the (10) and (6) relations gives $\vartheta \equiv 1 \pmod{p}$, $\alpha \equiv 1 \pmod{p}$ and $\iota \equiv 0 \pmod{p}$, so by (17) $\gamma \equiv 0 \pmod{p}$. Now we see that each automorphism φ of G has the form:

$$\begin{split} \varphi(a) &\equiv a^{1+\alpha \cdot p} ,\\ \varphi(b) &\equiv b a^{\beta p} ,\\ \varphi(c) &\equiv c ,\\ \varphi(d) &\equiv c^{\gamma} d ,\\ \varphi(x) &\equiv c^{\delta} x , \end{split}$$

where α , β , γ , $\delta \in Z$.

The number $1 + \alpha p$ can be expressed in the form $(1 + p)^{\alpha'} \pmod{p^r}$. Now one can easily verify that φ acts as the conjugation by $b^{\alpha'}a^{-\beta}d^{-\delta}x^{\gamma}$ modulo $Z(G_1)$. Thus φ belongs to $\operatorname{Aut}_c G_1 \cdot \operatorname{Inn} G_1$, and then $\operatorname{Aut} G_1 = \operatorname{Aut}_c G_1 \cdot \operatorname{Inn} G_1$.

Let G_2 be a group generated by a, b, c, d, x, z with the following relations: $a^{p^r} = b^{p^r} = c^p = d^p = x^p = z^p = 1$

$$[a, b] = a^{p} \qquad [a, c] = 1 \ [b, c] = 1$$

$$[a, d] = z \qquad [b, d] = 1 \ [c, d] = a^{p^{r-1}m} b^{p^{r-1}n}$$

$$[a, x] = a^{p^{r-1}k} b^{p^{r-1}l} \ [b, x] = 1 \ [c, x] = b^{p^{r-1}}$$

$$[d, x] = c,$$

$$[a, z] = [b, z] = [c, z] = [d, z] = [x, z] = 1,$$

where p > 2, $r \ge 2$, k, l, m, $n \ne 0 \pmod{p}$.

Symilarly as in the previous case it can be proved that

PROPOSITION 2. Aut $G_2 = \operatorname{Aut}_c G_2 \cdot \operatorname{Inn} G_2$.

This shows that for all $n \ge 7$, there is a *p*-group G of order p^n with Aut $G = \operatorname{Aut}_c G \cdot \operatorname{Inn} G$.

Now we shall see that the smallest *p*-group with this property has order p^6 and nilpotency class 3. First we show that there are no groups with this property of order p^4 . We use the list of *p*-groups of order p^4 found in [2], pages 145-146. We use also the numbering of the groups as given replacing of *P*, *Q*, *R*, *S*, *E* respectively by *a*, *b*, *c*, *d* and 1. Since we want to find a group of nilpotency class greater than 2 only groups (xi), (xii), (xiii), (xv) should be considered. One can easily find for them automorphisms which do not belong to $\operatorname{Aut}_c G \cdot \operatorname{Inn} G$. For these groups we define such automorphisms by indicating images of generators. We have then

a	b	с	d
ac	b	с	
a^{-1}	ba^p	c ⁻¹	
a^{-1}	ba^p	c ⁻¹	
a	b	с	dc
a^{-1}	b ⁻¹	с	
	$ ac a^{-1} a^{-1} a $	ac b a^{-1} ba^p a^{-1} ba^p a b	ac b c a^{-1} ba^p c^{-1} a^{-1} ba^p c^{-1} a b c

Now let G be of order p^5 . It is clear that G is metabelian and for p > 3 is regular.

CASE 1. $\operatorname{cl} G = 4$.

Since $|G/\gamma_2(G)| = p^2$ and G is metabelian then by [3] $|\operatorname{Aut} G|$ is divisible by p^6 . But $|\operatorname{Inn} G| = p^4$, $|\operatorname{Aut}_c G| = p^2$ and $|\operatorname{Inn} G \cap \operatorname{Aut}_c G| > 1$, so $|\operatorname{Aut}_c G \cdot \operatorname{Inn} G| \leq p^5$. Hence $\operatorname{Aut} G \neq \operatorname{Aut}_c G \cdot \operatorname{Inn} G$.

CASE 2. $\operatorname{cl} G = 3$.

Let $G = \gamma_1(G) > \gamma_2(G) > \gamma_3(G) > \gamma_4(G) = 1$ be the lower central series of *G*. Since $|\gamma_i(G)/\gamma_{i+1}(G)| \ge p$ for i = 1, 2, 3, we have $p^2 \le \le |G/\gamma_2(G)| \le p^3$.

If G is metacyclic then $G = \langle a, b: a^{p^3} = b^{p^2} = 1, a^b = a^{1+p} \rangle$. It is easy to see that the correspondence:

$$a \rightarrow a^{-1}$$
, $b \rightarrow b$

268

determines the automorphism of G which does not belong to $\operatorname{Aut}_{c} G \cdot \operatorname{Inn} G$.

Assume that G is not metacyclic.

If $|G/\gamma_2(G)| = p^2$, then $G/\gamma_2(G)$ has the type (p, p) and by Theorem 1.5 [1] $|\gamma_2(G)/\gamma_3(G)| = p$, $\gamma_3(G)$ is elementary abelian of order p^2 . Of course $Z(G) = \gamma_3(G)$ and $Z_2(G) = \gamma_2(G)$. Let G be generated by elements a, b. Since G is not metacyclic and $\mathcal{U}_1(\gamma_2(G)) \leq \gamma_3(G)$, by [5], III.11.3. $\mathcal{U}_1(G) \leq Z(G)$ and so $(a^p)^b = a^p$. On the other hand we have

$$(a^{b})^{p} = (a[a, b])^{p} = a^{p}[a, b]^{a^{p-1}} \cdot \dots \cdot [a, b]^{a}[a, b] =$$

= $a^{p}[a, b][a, b, a^{p-1}] \cdot \dots \cdot [a, b][a, b, a][a, b] =$
= $a^{p}[a, b]^{p}[a, b, a]^{(p-1)p/2} = a^{p}[a, b]^{p}$

since $\gamma_3(G) = Z(G)$ and $\gamma_3(G)$ is elementary abelian. So we get $\exp \gamma_2(G) = p$.

Now it is easy to see that the correspondence

 $a \rightarrow a^{-1}$, $b \rightarrow b^{-1}$

determines the automorphism of G, which does not belong to $\operatorname{Aut}_c G \cdot \operatorname{Inn} G$.

If $|G/\gamma_2(G)| = p^3$, then by Theorem 1.5[1] $|\gamma_2(G)/\gamma_3(G)| = |\gamma_3(G)| = p$.

Let $G/\gamma_2(G)$ be of the type (p^2, p) . Since G is not metacyclic there exist a, b such that $G = \langle a, b \rangle$ and $a^{p^2}, b^p \in \gamma_3(G)$. By [5], III.11.3 $G/\gamma_3(G)$ is of the type (x) (see [2]). Then the correspondence

 $a \rightarrow a^{1+p}$, $b \rightarrow b$

determines the automorphism of G, which does not belong to $\operatorname{Aut}_c G \cdot \operatorname{Inn} G$.

Let $G/\gamma_2(G)$ be of the type (p, p, p). If $Z(G) \neq \gamma_3(G)$, then G is either a direct product of groups A and B or a central product of groups A and C, where A is a group of order p^4 and class 3, B is a group of order p, C is a cyclic group of order p^2 . In both cases we can extend considered automorphisms of the groups of order p^4 and class 3 to the whole group G. Of course such automorphisms do not belong to Aut_cG · Inn G.

Therefore we may assume that $Z(G) = \gamma_3(G)$. Then by [5], III.2.13*a*) $Z_2(G)/Z(G)$ is of exponent *p*. Since $|G/Z_2(G)| = p^2$ we can choose *a*, *b*, *c* such that $G = \langle a, b, c \rangle$, $a^p, b^p \in \gamma_2(G)$, $c \in Z_2(G)$ and $c^p \in Z(G)$. Since $Z_2(G)$ is not cyclic ([5], III.7.7*a*)) either $\gamma_2(G)$ is elementary abelian or cyclic. In the second case there exists $c \in Z_2(G)$ such that $c^p = 1$. In both cases we can find b with [b, c] = 1, as [a, c], $[b, c] \in Z(G) = \gamma_3(G)$. If $c^p = 1$, then the correspondence

$$a \rightarrow ac$$
, $b \rightarrow b$, $c \rightarrow c$,

determines the automorphism of G, which does not belong to $\operatorname{Aut}_c G \cdot \operatorname{Inn} G$.

Assume that $c^p \neq 1$. Since $\gamma_2(G)$ is elementary abelian we have

$$[a^{p}, b] = [a, b]^{a^{p-1}} \cdot \dots \cdot [a, b]^{a}[a, b] =$$

= [a, b][a, b, a^{p-1}] \cdot \dots [a, b][a, b, a][a, b] = [a, b]^{p}[a, b, a]^{(p-1)p/2} = 1

so $a^p \in Z(G) = \langle c^p \rangle$ and in the similar way $b^p \in Z(G)$. So there exist a, b of orders p such that $G = \langle a, b, c \rangle$ and [b, c] = 1. If [a, b, b] = 1 then the correspondence

$$a \rightarrow a^{-1}$$
, $b \rightarrow b$, $c \rightarrow c$,

determines the desired automorphism of G. If $[a, b, b] \neq 1$ then there exists a with [a, b, a] = 1. Hence the correspondence

$$a \rightarrow a$$
, $b \rightarrow b^{-1}$, $c \rightarrow c$,

determines the automorphism of G, which does not belong to $\operatorname{Aut}_c G \cdot \operatorname{Inn} G$.

EXAMPLE. We end the paper with the example of the group G of order p^6 and class 3 with Aut $G = \text{Aut}_c G \cdot \text{Inn } G$:

$$G = \langle a, b, c, d: a^{p^2} = b^{p^2} = c^p = d^p = 1, [a, b] = a^p, [a, c] = b^p,$$
$$[b, c] = 1, [a, d] = c, [b, d] = a^{pm} b^{pk}, [c, d] = a^{pl} \rangle,$$

where p > 3 and $k, l, m \neq 0 \pmod{p}$ or $p = 3, l = 1, k, m \neq 0 \pmod{3}$.

REFERENCES

- N. BLACKBURN, On a special class of p-groups, Acta Math., 100 (1958), pp. 45-92.
- [2] W. BURNSIDE, Theory of Groups of Finite Order, Cambridge University Press (1911).

- [3] A. CARANTI C. M. SCOPPOLA, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, UTM, 286 (Ottobre 1989).
- [4] H. HEINEKEN, Nilpotente gruppen, deren sämtliche normalteiler characteristish sind, Arch. Math., 33 (1979), pp. 497-503.
- [5] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin and New York (1967).
- [6] D. JONAH M. KONVISSER, Some non-abelian p-groups with abelian automorphism groups, Arch. Math., 26 (1975), pp. 131-133.
- [7] Kouroskaja tetrad', Nowosybirsk (1990).

Manoscritto pervenuto in redazione il 30 aprile 1992 e, in forma revisionata, il 28 novembre 1992.