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Definitions of Standard Stress

and Standard Heat Flux, in Simple Bodies,
Treated According to Mach and Painlevé.

ADRIANO MONTANARO (*) (**)

SOMMARIO - Nozioni di stress standard e flusso di calore standard, nei corpi sem-
plici, trattati alla M ach- Painlevé. Il presente lavoro riguarda i fondamenti in
fisica classica della teoria termodinamica dei mezzi continui ordinari, e costi-
tuisce la naturale estensione sia della Parte 2 di [5] che di [14]. Per generali
corpi semplici nel caso puramente meccanico, in [5] le forze di contatto sono
defmite tramite le forze a distanza e qualche altra nozione cinematica. Lo sco-
po 6 raggiunto mediante i seguenti due passi: (i) si dimostra un teorema di
unicita stretta per la funzione (ordinaria) dello stesso di un corpo iperelastico,
che implicitamente permette di definire le forze di contatto per questi cor-
pi-v. [5, Part 1]; quindi (ii) questa unicita viene estesa al funzionale standard
dello stress di un generico corpo semplice, considerando la possibilita di op-
portuni esperimenti di taglio e contatto di questo con corpi iperelastici-[5,
Part 2]. L’articolo [14] estende alla termodinamica [5, Part 1], in quanto in es-
so sono dimostrati teoremi di unicita per tutte le funzioni di risposta (ordina-
ria) di un qualunque corpo termoelastico. Il presente lavoro estende [14] al
caso termodinamico allo stesso modo in cui, nel caso puramente meccanico [5,
Part 2], estende [5, Part 1]. Infatti, qui si definiscono i funzionali standard
dello stress e del flusso di calore di un generale corpo semplice, e l’unicita del-
le funzioni di risposta (ordinaria) di un corpo termoelastico viene estesa a tali

(*) Indirizzo dell’A.: Dipartimento di «Metodi e Modelli Matematici per le
Scienze Applicate», Via Belzoni 7, 35131 Padova.

(**) This work has been performed within the activity of the Consiglio Na-
zionale delle Ricerche, Group no. 3, in the academic year 1988-89.
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funzionali postulando la possibilita di opportuni esperimenti di taglio e con-
tatto con corpi termoelastici. Ciô permette di definire le corrispondenti nozio-
ni di stress standard e flusso di calore standard, per generali corpi semplici,
anche in termodinamica.

SUMMARY - This work concerns the foundations of the thermodynamic theory of
ordinary continuous media within classical Physics; it constitutes the natural
extension of both the papers [5, Part 2] and [14]. In [5] we define contact
forces, in the purely mechanical case for general simple bodies, in terms of
forces at a distance and some kinematic notions. The aim is attained by two
steps: (i) by proving a strict uniqueness theorem for the (ordinary) response
function for the stress of a hyper-elastic body, which allows us to implicitly
define contact forces for these bodies-see [5, Part 1]; and then (ii) this

uniqueness is extended to the standard functional for the stress of any simple
body by taking into account the possibility of suitable experiments, which
roughly consist in cutting parts of the simple body and putting them in con-
tact with some hyper-elastic bodies-see [5, Part 2]. Paper [14] constitutes
the thermodynamic extension of [5, Part 1 ], in that in it uniqueness theorems
are proved for all the (ordinary) response functions of a thermo-elastic body.
The present paper extends [14] in the thermodynamic case, in the same way
as [5, Part 2] extends [5, Part 1] in the purely mechanical case. Indeed, by
defining the standard functionals and by postulating the possibility of suit-
able experiments of cutting the body and putting it in contact with some
thermo-elastic bodies, here we extend the uniqueness of the response func-
tions of a thermo-elastic body to the standard functionals for the stress and
for the heat flux in a generic simple body. This allows us to define the corre-
sponding notions of stress and heat flux for general simple bodies in thermo-
dynamics too.

1. Introduction.

In [5] contact forces are defined in terms of forces at a distance and
some kinematic notions, within classical physics and for purely me-
chanic continuous media that are simple bodies in a wide sense-see [5,
Defs. 8.1, 8.2 and 12.3]. In part 1 of [5]

(BM.1) generalized and ordinary functions for the stress are de-
fined for any purely mechanical elastic body 83.

A generalized response function for the stress is a smooth enough
function ~’: R 3 x Lin + ~ Lin such that, under suitable regularity con-
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ditions for the motion jc of ~6 and for the body force, the balance laws
are satisfied by the field

where, according to § 2 below, denotes time, X = 9(X) denotes the
reference position of the body point X, ~3 = p(8) is the position of 1B in
the reference configuration p and Jc represents the motion of 83 with re-
spect to the reference position 1B-see [5, § 1 and Def. 3.2]. Incidentally
note that, in this way, the balance laws are simply regarded as condi-
tions in the field T(x, t). An ordinary response ficnction for the stress is
a generalized response function, according to the previous definition,
which also satisfies the boundary condition [5, (6.«)]: the normal stress
determined by it at the boundary of 83 necessarily vanishes wherever
this boundary «touches» an empty space region. For more details see
§ 1 and Def. 6.1 in [5].

Incidentally, note that a very general notion of physical possibility
is used in the present work, as well as in [5]. Following Bressan in [1],
the concept of physical possibility is regarded here as a primitive one.
To say that the process p is physically possible is not equivalent to say
that it is compatible with dynamical laws. Rather, p is physically pos-
sible is meant here as p can (or could) be carried out by ideal experi-
menters. See Bressan [1] and [3] for a detailed characterization and dis-
cussion of the notion of physical possibility in classical physics.

Then [5] proves that

(BM.2) for any hyper-elastic body 83h the ordinary response func-
tion for the stress is uniquely determined by the validity of the first
balance Law along any possible process for ~3h , whereas any two gener-
alized functions for the stress differ by a constant Euleiian pres-
sure-see [5, Theor. 5.1].

This uniqueness theorem, which incidentally has been proved
in [12] by a different procedure, provides the afore mentioned defini-
tion of contact forces in elastic bodies.

In the paper [14], which constitutes the thermodynamic extension
of [5, Part 1 ],

(M.1) generalized and ordinary sets of response functions are de-
fined in connection with any thermo-elastic body.

A generalized set of response function for the thermo-elastic body
83e is a set of response functions for the stress, heat flux, internal en-
ergy and entropy, respectively, for which the balance laws and the
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Clausius-Duhem inequality are necessarily satisfied under suitable

regularity conditions for the possible process of for the body force,
and for the heat supply--cf [14, Def. 3.1]. An ordinary function for the
stress in me is defmed as in the purely mechanical case-see (BM1)
above. To discuss the uniqueness of generalized sets of response func-
tions, [13] proves that

(M.2) there is an indetermination in the generalized functional for
the heat flux of any general simple body, which is physically unobserv-
able by means of usual experiments, that is, experiments in which cuts
of the body are not taken into account.

With the aim of selecting, among the generalized functions for the
heat flux in a physically privileged one, to be called ordinary,
in [13, § 7]

(M.3) the possibility of isolating, by means of cuts, any portion of
and of putting it in a suitable contact with some (heat-)nonconduct-

ing body is postulated. An ordinary function for the heat flux for Be is
a generalized one for which the bcclance laws hold along such

processes.

Lastly, an ordinary set of response functions for 1B~ is a generalized
one in which both the functions for the stress and for the heat flux are

ordinary. Then, also by developing methods used in the proof of some
theorems in [12], in [14]

(M.4) uniqueness theorems are proved for (i) the generalized and
ordinary functions of the stress, (ii) the ordinary functions of the heat
flux, and (iii) the functions of the internal energy and entropy that be-
long to any generalized set of response functions, in which the function
for the stress is ordinary.

Therefore, roughly speaking,

(M.5) with regard to thermo-elastic bodies, besides the contact

forces, also the normal heat flux and the specific interrtal energy and
entropy, are implicitly defined by the validity of the balance laws and
of the Clausius-Duhem inequality.

In [5, Part 2], in considering purely mechanical simple bodies,

(BM.3) it is assumed that we can isolate any part of a simple
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body 83s by means of cuts, and we can put this part in a suitable
contact with some hyper-elastic body 83h.

A standard response functional for the stress in 83s is a response
functional T, for the stress which satisfies the balance laws along both
usual processes and the processes in which 83s has been cut and put in
contact with some hyper-elastic bodies. Furthermore, on the basis of
suitable axioms, the uniqueness of the ordinary response function Th
for the stress of 83h (proved in [5, Part 1]) is extended to T, by using
processes of the kind mentioned in (BM.3)-see [5, Theor. 11.1].
Lastly, the standard stress in 83s is determined through the (unique)
standard functional Ts. Therefore

(BM.4) contact forces can be defined also in connection with purely
mechanical general simple bodies.

The thermodynamic theory of this paper extends the one in [14] in
the same way in which the mechanical theory in [5, Part 2] extends the
one in [5, Part 1 ]. In more detail:

(1.a) In [5, Part 1] the strict uniqueness of the ordinary function for
the stress Tora is proved in mechanics for any hyper-elastic body 83h.

(1.~) In [5, Part 2] the notion of standard stress is introduced, and
the uniqueness of the standard functional for the stress Tst is proved in
mechanics, for any general simple body 83s; the aim is reached by
using cuts of 83s, suitable contacts with some hyper-elastic body 83h,
and by employing in an essential way the strict uniqueness of Tora for
see (BM.1-4) and (l.a).

The main consequence of (1.~) is explained in assertion (BM.5).

(l.,x’) In [ 14], which extends to thermodynamics [5, Part 1], the

uniqueness of each function belonging to an ordinary set of response
functions {Tord, qord, 9 e ord 9 ord connected with any thermo-elastic

body is proved-see (M.1-5).

The main consequence of (l.a’) is explained in assertion (M.5).

(1.~’) In the present paper, by introducing the notions of standards
stress, standard heat flux and standard internal energy for any gener-
al simple body 83s, we extend to thermodynamics the results of [5, Part
2]; and the uniqueness of the functionals Tst and qst , for the standard
stress and heat flux respectively, is proved; this aim is reached (i) by
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postulating cuts of 83s and suitable contacts, with some thermo-elastic
body 83e, and (ii) by using in an essential way the uniqueness of Tord
and 4,,,d for 83e-see (1.«’) and (1.~). Then the uniqueness of Tst and qst
easily implies the uniqueness of the response functional for the stan-
dard internal energy.

The main consequence of ( 1. ~’ ) is that, in this work,

(M.6) with regard to general simple bodies, the definition of contact
forces is extended to thermodynamics by means of the standard notion
of stress. Furthermore, through the introduction of the notion of stan-
dard heat flux, and the uniqueness theorem regarding the correspond-
ing functional, also the notion of normal heat flux can be regarded as
defined for these bodies.

***

To summarize all the results of the various paper mentioned above,
we note that to any general simple body 83s one can associate sets of re-
sponse functionals of various kinds:

The functional qgen is not unique in general see (M.2).
Given any elastic body (e.l) for the function Tgen a (non-strict)

uniqueness theorem holds-see (1)_, and (e.2) a mathematical charac-
terization o, f the maximal indetermination class for qgen is

given-see [13, Theors. 5.1, 5.2]. Furthermore (e.3) no uniqueness the-
orem for 6gen qgen, are proved; in more de-
tail the indetermination of Î’ gen, due to the Eulerian pressure, is strict-
ly related with an indetermination in egen ; and the uniqueness theorems
for and (g can be proved only with regard to sets of the kind

q gen, at the end of § 3. That is, if for i = 1, 2
qi, is a set of the kind {Tord, qgen, for then

(~) This program is called by Truesdell thefirst problem of thermodynamics,
and may be phrased as follows-see [16, p. 121]. In an assigned class 
kinetic processes x(.), 0(.) and an assigned class of functionals T, h, y, n, to de-
termine all constitutive functionals, namely, those that satisfy the Clausius-
Duhem inequality identically.
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Tl --- T2 , and furthermore il - j2 and - 77 1 - n2 are constant at each ma-
terial point see [14, Theors. 5.1, 6.1]. Lastly, (e.4) each element of the
ordinary 4ord , has certain uniqueness properties
corresponding to physical expectations-see [14].

If 1B~ is not purely elastic, e.g. it is a body of differential type or one
with a fading memory, then (s.l ) uniqueness theorems fail to be at dis-
posal both for the q gen, gen I 4ord 
and (s.2) the indetermination of 4gen still holds; obviously the same
holds for Tgen.

Some theorems of strict uniqueness are proved for the standard
functionals Tst and qst of any general simple body If one defines the
standard functionals est and nst for internal energy and entropy, re-
spectively, simply as functionals belonging to a set Ist =

4.t, in which the functionals for the stress and the heat
flux are standard, without additional specific physical criteria to select
physically privileged internal energies and entropies, then also a

uniqueness theorem for the functional 6st holds, whereas (s.3) the

uniqueness cannot be proved.
Assertion (s.3) is a consequence of the well known paper [8] of Day,

in which an infinite number of distinct entropy functionals, all compati-
ble with the Clausius-Duhem inequality, are defined in connection with
a particular simple material. It is for this that

(M.7) in the present paper the existence of an entropy functional is
not assumed; furthermore the Clausius-Duhem inequality, or any
other dissipation inequaLity, is not postulated.

Therefore

(M.8) all the results established here also hold in many therrnody-
namic theories for simple bodies, whichever the assumptions on the en-
tropy notion and the dissipation inequality may be (2).

Now, in analogy with the thermo-elastic case-see (M.4)-, with re-
gard to 8,, one might ask whether or not some uniqueness theorems for
the ordinqary response functionals 1’ord, qord and êord hold.

(1) In particular, the theory developed here also holds in a Green-Naghdi
theory, that is one in which (i) besides the functionals for the entropy, a further
response functional for the (specific) internal rate of entropy production is assumed
to exist; (ii) the Clausius-Duhem inequality is replaced by a balance entropy
equality; and (ill) an unusual form of the second law of thermodynamics is
assumed-see [9].
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In other words: to attain (i) the uniqueness of the above functionals,
and consequently (ii) the definitions of contact forces and normal heat
flux,
- are the standard notions of stress and heat flux really necess-
ary ?
- are the corresponding ordinary notions enough to attain this
ain ?

The present paper leaves these questions unanswered, which I be-
lieve worthy of further deepening.

° 

* * *

A contribution to a program considered by C. Truesdell in [17] is

given here, as in [5] and [14] see § 1 and (~) (2) in [14]. This program is
called by Truesdell the first problem of thermodynamics, and may be
phrased as follows-see [17, p. 121].

In an assigned class of thermokinetic processes x(.), 0(.) and an as-
signed class of functional T, h, ~, Y), to determine all constitutive

ficnctionals, narrzely, those that satisfy the Clausius-Duhem inequali-
ty identically.

This contribution differs from others especially for the use of the
possibility of cutting bodies-see ( 1.~), ( l.a’ ) and (1.~’). Incidentally
note that, by the nature of the indetermination in the response func-
tional for the heat flux ascertained in [13], and by the way used in [14],
to postulate the possibility of cutting bodies appears to be a necessary
tool to single out a physical privileged such functional.

This contribution also differs from others in that possible in-
determinations in the response functionals are considered, at least
a priori here and in [5], [14]. Such indeterminations, admittedly of
a very different nature, were taken into account only in piezo-
elasticity. For instance, in [2, Chap. 9], where materials with memory
and axiomatic foundations are dealt with within general relativity,
the existence of all constitutive equations needed in that theory
is assumed; and the problem of determining all admissible choices
of those equations (possibly up to simple functions such as the
constants functions) is left completely open. Incidentally this also
occurs for piezo-elastic materials. However formula (36.9) in [2] shows
e.g. how, for every such material, any admissible constitutive equation
for stress changes in connection with any change of the expression
of the electromagnetic tensor in terms of the electric and magnetic
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fields and inductions. For more details on this point one can read
the introduction of both [5] and [14].

As explained above, one of the aims of this paper is to show that the
notion of standard stress, defined in [5, Part 2] in the purely mechani-
cal case, can be introduced in thermodynamics too in connection with
any general simple body. There, to treat this matter with the greatest
degree of generality, the most general simple bodies that reasonably
can exist, namely piecewise regular simple bodies, along C’-motions
which are piecewise C~, are considered. Unlikely in [5], in the present
theory we Limit our considerations to regular simple bodies along C 1

processes-see Defs. 2.1 (a) and 3.1 (a); indeed the extension to those
general bodies is a straightforward matter, whose difficulty is only of
technical kind, whereas here we are mainly interested in showing that
the aforementioned extension is possible.

2. Preliminaries.

The notions of body, configuration of a body and material point are
regarded as known here. A possible configuration p to be used as a ref-
erence one is fixed; and the body 1B can be identified with the closed re-
gion M,, = of the ambient space R3 in the sense that, then
«the material point X» means «the material point X that occupies the
geometric point X in p»-for precise definitions see e.g. [4] and [5, § 1
and Def. 3.2].

We assume that ~3~ is a regular domain (the closure of its own interi-
or) in I1~3, whose boundary aMp is piecewise smooth. Subbodies (or
parts) ~P, Q, ... of ~3 are identified with the regular subdomains

1P, , Q, , 9 ... of M;l
Euclidean coordinates in the inertial ambient space [in the refer-

ence space are denoted 

Differently from [5, Part 2], where more general processes are

used, here we only consider processes that are smooth enough; more-
over physically possible processes, instead of conceivable ones, are

used here-see (3).

(3) Following Bressan in [1], the concept of physical possibility is regarded
here as primitive. To say that the process p is physically possible is not equiva-
lent to say that it is compatible with dynamical laws. Rather, p is physically pos-
sible is meant here as p can (or could) be carried out by ideal experimenters.
See [1] and [3] for a detailed characterization and discussion of the notion of
physical possibility in classical physics.
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is a (conceivable, thermo-kinematic) process for the body 83 (described
with respect to the configuration p), if

(i) P is a function of class Cl;
0

(ii) for each t E ~8 the restriction t) to the interior 831J of 83 is
a homeomorphism;

(b) We say that p is C2 at (X, t) if it is C2 on a neighborhood of
(X, t) in x IEB.

DEF. 2.2. (a) We say that the conceivable process p = (x, 6) is the
actual process for the body 8 if

are the position and the temperature, respectively, of the material
point X at time t for each (X, t) E 83~ x R.

(b) Any coinceivable process P for 83 is (obviously) said to be
physically possible if it is physically possible for p to be the actual pro-
cess for 83.

Following [4], where (inertial) mass is defined for continuous me-
dia, we have that

(2.a) if a mass unit is chosen, then for some choice of p there is a
unique C 1 scalar function p : 83~ - II~ +, such that

(x = ac(X, t), p = l9t = k(19, t)) is the macss of any
part 19 of 83 along the actual process-see (2.1)-(2.2).

Let v be any finite-dimensional linear space on the real field R, and
let f ( ~ ) be a function from (a, b) to ’~, for
t E (a, b) the function f t ( ~ ): [ 0, --*V [ f p ( ~ ): ( 0, - IV] defined by
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the totaL [past] history of f ( ~ ) up to time t. In connection with materials
with memory, for the sake of simplicity it is usually assumed

(a, b) E R.

3. Simple bodies.

Following [5, Part 2] a simple body ~3 is a body constituted by a ma-
terial which is simple in the sense that, given a suitably smooth refer-
ence configuration 9 for ~3, to every matter point X of 1B a set of
functionals

for the stress, heat-flux, internal energy and entropy, respectively, is
associated. The domain (Dx of these functionals is a suitable subset of
([0, a) ~ B?), equipped with a suitable topology, where a E R + U I 

Lin x R x R’ (4).
Let be the set of the possible p-processes for 1B-see Defs.

2.1-2.2; and, for (k, 0) among them, let us consider the
tensors

Now we consider the domain DS ( = of any (conceivable)
simple response (p-functional for ~3: 

’

In order to be compatibe with many thermodynamic theories, next
we define simple bodies in a way that, on the one hand, allows us to at-
tain the aims (1.~’) of the present paper and, on the other hand, is con-
siderably unspecified. For instance, no notion of entropy is involved in
the definition below-see § 1, (M.7-8).

(~) Different mathematical versions of the principle of fading memory are
used in various theories of simple materials-see e.g. [6], [7] and [18]. In spite of
this the present work does not use such a principle; hence it complies with any of
those theories.
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DEF. 3.1. Assume that 83 is a body and

(3.a) the reference configuration p of 83 renders (2.3) true for some
(smooth) choice of p.

Then (a) [(b)] we say that {T, q, e } is a [ frame-indifferent] general-
ized set of simple response functionals for J3, connected with 
(M.7-8)-in case conditions (i) and (ii) [(i) to (iii)] below hold.

(i) T E CO(DS, Lin), q E Co (DS, I(83 ) and e E C’ (DS, R)-see
(3.3);

(ii) the functionals T, q and e are frame-indifferent;
(iii) necessarily the conditions (balance laws)

and

hold for every part ~ of 83 in case p = (x, 0) is the actual process of 83 (so
that p E ~), the fields

are of class C’, and represent the (actual) densities per unit mass of the
body force and heat supply respectively at the material point X and at
the instant t; and in addition, for each (X, t) E x R,

(c) [(d)] Furthermore we say that fJ3 is a [ frame-indifferent] sim-
ple body in case it has a [ frame-indi, fferent] generalized set of simple
response functionals.

(5) Let « x » [«.»] denote the cross product [inner product] between vectors,
let r be the position vector and let n = n(x, t) be the unit outward normal at x
to acpt.
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The magnitudes T, q and e in (3.8) represent the Cauchy stress ten-
sor, heat flux vector and specific internal energy, respectively, ex-

pressed in Eulerian form. The scalar product q . n is the rate of flux of
heat energy by conduction from l9t to its exterior across the boundary

at x E 819t.
The above condition (ii) of material frame-indifference will not be

used to prove the uniqueness theorems in § 5; thus also in the present
framework the principle of material frame-indifference can be stated
e.g. in the usual Noll’s form-see e.g. pages 162 and 171-172 in [16]-,
useful to show its physical content. For the sake of brevity one can
state it by requiring every simple body to be frame-indifferent-see
Def. 3.1(c)-(d).

For the sake of simplicity and for the reasons explained at the end of
§ 1, we have not defined (s, p)-regular simple bodies (s = 0,1 ) in the
sense of Def. 8.2 in [5, Part 2]. However, if one would enunciate the

thermodynamic analogues of this Def. 8.2, then the simple bodies de-
fined here would appear as particular (0, p)-regular simple bodies.

Note that in any thermoelastic body there is a twofold indetermina-
tion for the generalized response functions of the stress and the inter-
nal energy. Indeed assume that both 1 = {Tgen, dgen, êgen, ngen } and 1 =

i 4gen gen I are two generalized sets of response functions
for the thermo-elastic body connected with the same reference con-

figuration. By subtracting the energy balance law

written using I with the same written using 1, we find

the corresponding Eulerian fields. As grad v = FF-1, for 0=0 and F =
= 0 equality (3.10) yields div Q = 0, and thus pE = Z . grad v too. The ma-
terial counterpart of the last (space-time) equality is

and Pgen is the first Piola function for the stress associated with

Tgen By [5, Theorem 4.1 and (4.7)] we have
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Thus by the first equality below, the second yields the third equality
below

Now by (3.12)-(3.13) equality (3.11) rewrites as 

which implies that

(3.14) E = V + f (X ) for some scalar function f(X)-see (3.13)2.
Therefore the indetermination of Pgen , due to the Piola-transform of the
Eulerian pressure wI-see (3.12)-, induces a corresponding indeter-
mination for given by (3.13)-(3.14).

This twofold indeterrnination disappears by replacing generalized
junctions for the stress with ordinary ones. Indeed in this case

~ = 0-see [14, Theorems 5.1-6.1]-, and thus (3.12)-(3.14) yield S = 0,
f7 0, E=f(X).

In order to prove the strict uniqueness of the response functionals
for the stress and the heat flux in any simple body with fading memory,
the notions of ordinary stress and ordinary heat flux do not suffice.
This is the reason why in the next Sections we introduce the notions of
standard stress and standard heat flux.

4. Possible processes for simple bodies fit to define standard stress
and standard heat flux within these.

Following [5, Part 2, § 9] we assume that

(i) 83 is a simple body and assertion (3.a) holds for it-see
Def. 3.1;

0

(ii) and X E 83~;
(iii) N is a reference unit vector, IIN is the plane through X nor-

mal to N, with the orientation induced by N; and

(iv) for every r &#x3E; 0, x(X,N, r) is the (hemisphere) intersection
of the closed ball B(X, r) with the half-space determined by IIN (which
contains X + N).

Then it is obvious that, for some R &#x3E; 0 and some y-regular thermo-
elastic body where y is a reference configuration for it,

(v) B(X, R) c 83~ and -N, R),
and that by suitable cuts we can isolate a part 0 of ~3 for which
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Furthermore we assume that

Then it is (reasonably) possible-i.e. in some idealized experiments
we can have-that

(viii) pi = and ~2 = (x2 , 8 2 ) are the actual cp- and ~-proc-
esses of 0 and me, respectively,
where conditions (ix) to (xi) below hold

(ix) for i = 1, 2 the process Pi is C 1;

process PI-see (3.2)-(3.3) and (2.4);
(xi) there is a neighborhood (-rl, ’!"2) of r such that for i = 1, 2 the

motion Xi is C2 in B(X, R) x (r 1, ’r2) and at any t E (’!"l’ ’!"2)’ for some
surfaces 2: i ( t ) (i = 1, 2) we have

0

where for instance ~1 deprived of its bounding curve, and

Obviously the kinematic conditions (x) and (xi) allow mutual sliding
of 19 and me through some neighborhoods f 1 c 8,p(~T) ande 2 C of X
in ~. They are compatible with 19 and me being two bodies, we mean
compatible with 19 not being attached to 1B~ (through e.g. 1:). This keeps
holding even when the dynamic features of the motion ki U x2 , de-
scribed in (viii) through (xi), are taken into account, only in case

(xii) the mutual actions of l9 and Me through 2: = ac1 [1: 1 ( t ), t] at t
have a pointwise pressure character.

However, in the opposite case, 19 and Me have to be mutually at-
tached through some material surface Therefore it is convenient to

strengthen (xi) into the condition (xiii) below, which is again kinemat-
ic.

(xiii) For some neighborhood (1"1’ 1"2) of -1" (possibly with 71 = -

Next we state Axiom 4.1 to summarize rigorously the part of this
section ending with (xiii).
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Axiom 4.1. Conditions (i) through (iv) and (vii) imply that, for
some R &#x3E; 0, there is (or there can be) a §-regular thermo-elastic body

where ~ is a reference configuration for it, a of ~3, and some
(possible) processes PI and P2 such that, first, conditions (v) to (vi)
hold, and second, for some r E R it is possible for conditions (viii) to (xi)
to take place together with either (xii) or (xiii).

Note that by Axiom 4.1 the existence of a simple body implies that
some thermo-elastic bodies can exist. Furthermore one can show that
the last possibility assertion in Axiom 4.1 is reasonable in a way quite
similar with what is done at the end of § 9 in [5] for Axiom 9.1.

5. Functionals for standard stress and heat flux in simple bodies.
Existence axioms and uniqueness theorems.

Assume conditions (i) through (v) and (vii) in § 4; then by Axiom 4.1
for some R &#x3E; 0 and for a thermo-elastic body Be referred to the refer-
ence configuration §, conditions (viii) through (xi) and (vi), together
with either (xii) or (xiii) in § 4, hold.

Now, let T and q be generalized functionals for the stress and for
the heat flux, respectively, in (,B, p); and let T and 4 be ordinary func-
tions for the stress and heat flux, respectively, in (1B~ , ~). Write the en-
ergy balance law (3.6) [the linear momentum balance law (3.6)] first for
~Be U T, second for ~3e and third for 19; hence subtract the sum of the last
two inequalities from the first equality; we obtain

where S = fl = B(X, H see (iii) through (vi) ,
and T, 4 are ordinary response functions of the stress and the heat
flux, respectively, for (93e, ~). Equality (5.1) [(5.2)] implies the local
equality

By choosing the frame in the ambient space such that v = 0 at (x, t),
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equality (5.3) [(5.4)] yields

Note that equality (5.5) [(5.6)] holds along any process described above
and for any generalized response function for the heat flux [stress] in
the thermo-elastic body 83e.

A generalized response functional q for the heat flux [stress] in

(,B, )0) is said to be standard, if equality (5.5) [(5.6)] holds for it at any
(X, t) in which the simple body 83 has been cut and put in contact with a
thermo-elastic body 83e, as it is explained above in detail, and where in
equality (5.5) [(5.6)] q [T ] is the (unique) ordinary response function for
the heat flux [stress] in the thermo-elastic body connected with r#.
Therefore we give the following definition.

DEF. 5.1 [5.2]. Assume that 83 is a simple body and that IT, q, F)
is a generalized set of response functionals for it, referred to the con-
figuration p. We say that T [q ] is a standard functional for the stress

0

[heat flux] in 83 in case, for all X E 83q;, unit vector N, T E I1~, if 83e is a
regular thernw-elastic body havhag the reference configuration ~, ~ is
a part of ~3, and for some history A(.) conditions (ill) to (xi) together
with either (xii) or (xiii) in § 4 hold, then we have the equality

where

(a) [(p)] T [q] is the (unique-see [14] ~-regular ordinary re-

function for the Cauchy stress [heat flux] in 

and n is the unit normal at x = x(X, t) for the image t) of any sur-
face 1: through X perpendicular to N at X:

Next we prove that the uniqueness of the ordinary response func-
tions for the stress and the heat flux in thermo-elastic bodies implies
the uniqueness of the standard response functionals for the stress and
the heat flux in any simple body. The proof uses the possibility of suit-
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able experiments of cutting the body and putting it in contact with
some thermo-elastic bodies.

THEOREM 5.1 [5.2]. Let both T and T’ [q and q’ ] be standard func-
tionals for the stress [heat flux] in Then T = T’ [q = q’ ].

PROOF. Let T and T’ [q and q’ ] be standard functionals, for the
Cauchy stress [heat flux] in ~3, connected with p. Hence, by Defs.
3.1(a-b), (a) both T and T’ have DS as domain-see (3.3). Now (b)
choose (X, A(.)) E DS. Hence (vii) and (ii) in § 4 holds; and assume (iii)-
(iv) in § 4. Then, by Axiom 4.1, for some R &#x3E; 0 there can be a y-regular
thermo-elastic body 83e, where ~ is a reference configuration for it, and
a part P of 1B such that, first, conditions (v) to (vi) hold, and second, for
some T E l~ conditions (viii) to (xi) together with either (xii) or (xiii) can
take place. Since both T and T’ [q and q’ ] are standard functionals of
the stress [heat flux] for (83, 9), by Def. 5.1 [Def. 5.2] they satisfy
equality (5.7) in T [(5.8) in q], where conditions (a) Def. 5.1 and

(5.9)-(5.10) hold. Hence the equality

Hence by the arbitrariness of the unit vector N-see (iii) in § 4-,
equality (5.11) [(5.12)] implies the equality T(X, A(-)) = T’(X, A(-))
[q(X, A(-)) = q’ (X, A(.))]. By the arbitrariness of (X, A( )) in DS-see
(a) and (b) above-this equality yields the thesis. q.e.d.

Note that the condition of frame-indifference involved in the condi-
tion (i) of Def. 4.1 has not been used; thus this condition is not necess-
ary to attain the aims of this paper; and therefore it was written be-
tween parentheses.

Next we postulate the existence of a standard functional for the
stress and of one for the heat flux. Hence Theorems 5.1-5.2 imply the
uniqueness of such functionals-see Corollaries 5.1-5.2 below.

Axiom 5.1 [5.2]. If 1B is a regular simple body-see Def. 3.1-,
then there is some standard response functional for the Cauchy stress
[heat flux] in 8-see Defs. 5.1-5.2.

Now Theorem 5.1 [Theorem 5.2] obviously implies the following
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COROLLARY 5.1 [5.2]. Each simple body has a unique standard
ficnctional T [q] for the stress [heat flux], which is connected with a
given reference configuration.

Next we show that if

(5.A) both IT, q, e} and {T’, q’, e’} are generalized sets of re-
sponse ficnctionals for the simple body 33, connected with the same ref
erence configuration, where T, T’ and q, q’ are standard functionals
for the stress and the heat flux, respectively, then the difference e - e’
between the functionals for the internal energy is a function of the ma-
terial point;

that is, if the functionals for the stress and the heat flux are standard,
then the functional for the internal energy satisfies a physically expect-
ed uniqueness property.

COROLLARY 5.3. Assume (5.A) and let the functionals be of class
Cl. Then e - e’ is a function of the material point.

PROOF. Assume (5.A). Write the local energy law

first using the q, e}, then using the set ~T’ , q’ , e’} and lastly
subtract the two equalities which are obtained; we find

where E = e - e ’, Z = T - T’, Q = q - q’ and E, Z, Q are the corre-
sponding Eulerian fields. The material counterpart of the space-time
equality (5.10) is

where S and ~~ are the Piola-transform of Z and Q, respectively. By
Corollaries 5.1-5.2 we have S = 0 and ~~ = 0. Hence equality (5.11)
yields Ev3.004 0 (along any possible process), which implies the the-
sis of the Lemma. q.e.d.

Now we say that a functional e for the internal energy is standard if
it belongs to a generalized set of response F) where
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both the functionals T and q are standard. Furthermore in this case we
say that IT, q, e} is a standard set of functionals. By Corollaries 5.1-
5.3 the standard functionals of any simple body satisfy physically satis-
factory uniqueness properties.

6. On primitive notions in thermodynamics.

In the definition of simple body, Def. 3.1, the balance laws (3.4)-
(3.6) are not postulated; instead they are used as conditions imposed on
the stress, internal energy and heat flux. Indeed no notions of contact
forces, internal energy and heat flux are considered as primitive here
(for the notion of entropy read (M.7-8) in § 1 again). This is the reason
why the balance laws cannot be postulated here. Furthermore we pos-
tulate Axiom 4.1. By using this axiom we can prove physically satisfac-
tory uniqueness properties for the standard functionals of the stress,
heat flux and internal energy. Note that the notion of forces at a dis-
tance (body forces) used here can be borrowed from papers [4] and [11],
where within theories of various kinds it is defined on purely kinerrtat-
ic notions.

Therefore this work (implicitly) conforms with the Mach-Painlev6
point of view. By assertion (M.5) in § 1, also the entropy notion can be
regarded as defined in the thermo-elastic case.

In [15], with regard to a certain class of differential materials of
complexity one, it is proved that the response function for entropy sat-
isfies the same uniqueness property proved in [14] for thermo-elastic
bodies; thus the entropy notion can be regarded as defined also for
some class of dissipative materials.

By the above italcized assertions we can state that the present paper
shows that, with regard to simple bodies, the number of primitive no-
tions in thermodynamics can be considerably reduced with respect to
the usual theories. In more details, to set up a thermodynamic theory
for simple bodies, besides the usual purely kinematic notions (de-
scribed e.g. in [4]) and the notion of forces at a distance, which can be
regarded as defined, one needs the primitive notion of absolute tem-
perature. For certain materials of the differential type also the notion
of entropy can be regarded as defined.
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