RENDICONTI

SEminario Matematico

 della
Università di Padova

Patrizia Longobardi
 Mercede Maj

Finitely generated soluble groups with an Engel condition on infinite subsets

Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 97-102
http://www.numdam.org/item?id=RSMUP_1993__89__97_0
© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Finitely Generated Soluble Groups with an Engel Condition on Infinite Subsets.

Patrizia Longobardi - Mercede Maj(*)
Dedicated to Professor Cesarina Tibiletti Marchionna
for her 70th birthday

1. Introduction.

B. H. Neumann proved in [7] that a group G is centre-by-finite if and only if in every infinite subset X of G there exist two different elements that commute. This answered to a question posed by Paul Erdös. Extensions of problems of this type are studied in [1], [2], [4], [5], [6], and recently in [9].

For example in [6] J. C. Lennox and J. Wiegold studied the class $N(\infty)$ of groups G such that in every infinite subset X of G there are two elements x, y such that $\langle x, y\rangle$ is nilpotent, and proved that a finitely generated soluble group is in $N(\infty)$ if and only if it is finite-by-nilpotent.

We denote by $E(\infty)$ the class of groups G such that, for every infinite subset X of G, there exist different $x, y \in X$ such that $\left[x,{ }_{k} y\right]=1$ for some $k=k(x, y) \geqslant 1$.

If the integer k is the same for any infinite subset X of G, we say that G is in the class $E_{k}(\infty)$.

We prove the following
THEOREM 1. Let G be a finitely generated soluble group. Then $G \in E(\infty)$ if and only if G is finite-by-nilpotent.
${ }^{(*)}$ Indirizzo degli AA.: Dipartimento di Matematica e Applicazioni «R. Caccioppoli», Università degli Studi di Napoli, Via Cinthia, Monte S. Angelo, 80126 Napoli, Italy.

Work partially supported by M.U.R.S.T. and G.N.S.A.G.A. (C.N.R.).

Moreover, if $R(G)$ denotes the characteristic subgroup of G consisting of all right 2 -Engel elements of G, we show that

Theorem 2. Let G be a finitely generated soluble group. Then $G \in$ $\in E_{2}(\infty)$ if and only if $G / R(G)$ is finite.

Our notation and terminology follow [8]. In particular, if x and y are elements of a group G and k is a non-negative integer, the commutator $\left[x,{ }_{k} y\right]$ is defined by the rules

$$
\left[x,{ }_{0} y\right]=x \quad \text { and } \quad\left[x,{ }_{k+1} y\right]=\left[\left[x,{ }_{k} y\right], y\right]
$$

2. Proofs.

We start with some preliminary Lemmas.
Lemma 2.1. Let $G \in E(\infty)$ and let A be an infinite normal abelian subgroup of G.

Then, for every $x \in G$, there exists a subgroup $B \leqslant A$ (depending on $x)$ of finite index in A and such that, for every $b \in B,\left[b,{ }_{k(b)} x\right]=1$ for some $k(b) \geqslant 1$ (depending on b).

Proof. Let $x \in G$. If b is in G, call ($*$) the following property:
(*) there exists an integer $k(b) \geqslant 1$ such that $\left[b,{ }_{k(b)} x\right]=1$.
Put $B=\{b \in A / b$ satisfies (*) $\}$. For arbitrary $b, c \in B$ we have $\left[b,{ }_{n} x\right]=1=\left[c,{ }_{m} x\right]$ for suitable integers n, m. Write $d=\max \{m, n\}$, then $\left[b^{-1} c,{ }_{d} x\right]=\left[b,{ }_{d} x\right]^{-1}\left[c,{ }_{d} x\right]$, since A is abelian and normal in G. Therefore B is a subgroup of A.

Assume by contradiction that $|A: B|$ is infinite. Then there exists a sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ of elements of A such that $a_{i}^{-1} a_{j} \notin B$ for any $i \neq j$. Thus the set $\left\{x a_{i} / i \in \mathbb{N}\right\}$ is infinite, and there exist an integer $k \geqslant 1$ and $i \neq j$ such that $\left[x a_{i},{ }_{k}\left(x a_{j}\right)\right]=1$, since $G \in E(\infty)$.

Hence $\left[\left[x, a_{j}\right]\left[a_{i}, x\right],{ }_{k-1}\left(x a_{j}\right)\right]=1$, and $\left[a_{j}{ }^{-1} a_{i},{ }_{k} x\right]=1$; therefore $a_{j}^{-1} a_{i} \in B$, a contradiction.

Lemma 2.2. Let $G \in E(\infty)$ be a finitely generated soluble group. Suppose that there exists an infinite normal abelian subgroup A of G with G / A polycyclic. Then $A \cap \zeta(G)$ is infinite.

Proof. We show that $A \cap \zeta(H)$ is infinite, for every normal subgroup H of G, with $H \geqslant A$ and H / A polycyclic.

Put $H / A=\left\langle h_{1} A, \ldots, h_{s} A\right\rangle$. By Lemma 2.1 there exists a subgroup B of A, with $|A: B|$ finite, and such that for every $b \in B$ there is a positive integer $k(b)$ for which $\left[b, k(b) h_{i}\right]=1$, for any $i \in\{1, \ldots, s\}$.

Write l the derived length $l(H / A)$ of H / A and argue by induction on l.

If $l=1$, then H / A is abelian and $[c,[x, y]]=1$, for any $c \in A$ and $x, y \in H$. Thus $c^{x y}=c^{y x} \quad$ and $[c, x, y]=\left(c^{-1} c^{x}\right)^{-1}\left(c^{-1} c^{x}\right)^{y}=$ $=\left(c^{x}\right)^{-1} c\left(c^{y}\right)^{-1} c^{x y}=\left(c^{y}\right)^{-1} c\left(c^{x}\right)^{-1} c^{y x}=[c, y, x]$ for every $c \in A$, $x, y \in H$.

Hence $[c, y, x]=[c, x, y]$ for any $c \in A, x, y \in H$. Now let $b \in B$ and put $n=s k(b)$. Let $h_{i_{1}}, \ldots, h_{i_{n}}$ be arbitrary elements of $\left\{h_{1}, \ldots, h_{s}\right\}$. Then, for any $a \in A,\left[a, h_{i_{1}}, \ldots, h_{i_{n}}\right]=\left[a, h_{i_{i_{1}}}, \ldots, h_{i_{\text {on }}}\right]$ for every permutation σ of $\{1, \ldots, n\}$.

Furthermore at least k of the $h_{i,}$ must be equal to the same $h_{i} \in$ $\in\left\{h_{1}, \ldots, h_{s}\right\}$. Hence we get $\left[b, h_{i_{1}}, \ldots, h_{i_{n}}\right]=\left[b, h_{i}, \ldots, \mathrm{o}_{k(b)} h_{i}, h_{\left.j_{n-k i b}\right)}\right]=1$.

That holds for any $h_{i_{1}}, \ldots, h_{i_{n}} \in\left\{h_{1}, \ldots, h_{s}\right\}$, so that $b \in \zeta_{n}(H)$, the n-th centre of H. Thus for every $a \in B$ there exists a positive integer m such that $a \in \zeta_{m}(H)$. Then $a^{G} \leqslant \zeta_{m}(H)$ since H is normal in G. But G satisfies $\operatorname{Max} n$, the maximal condition on normal subgroups, because it is a finitely generated abelian-by-polycyclic group (see [8], part I, Theorem 5.34). Hence $B^{G}=b_{1}^{G} b_{2}^{G} \ldots b_{v}^{G}$, for some finite subset $\left\{b_{1}, b_{2}, \ldots, b_{v}\right\}$ of B. Therefore there exists a positive integer i such that $B^{G} \leqslant A \cap \zeta_{i}(H)$, and $A \cap \zeta_{i}(H)$ is infinite. From that we easily get that $A \cap \zeta(H)$ is infinite, as required.

Now assume $l>1$. Then $H^{\prime} A$ is normal in $G,\left(H^{\prime} A\right) / A$ is polycyclic and $l\left(\left(H^{\prime} A\right) / A\right)<l$. Therefore, by induction, $A \cap \zeta\left(H^{\prime} A\right)$ is infinite. Write $C=A \cap \zeta\left(H^{\prime} A\right)$. Then, arguing as before, we get, for any $c \in C$, $\left[c, h_{i_{1}}, \ldots, h_{i_{i}}\right]=\left[c, h_{i_{\sigma_{11}}}, \ldots, h_{i_{\text {ro }}}\right]$ for any $t \geqslant 2, h_{i_{1}}, \ldots, h_{i_{i}} \in\left\{h_{1}, \ldots, h_{s}\right\}$, and for any permutation σ of $\{1, \ldots, t\}$. Furthermore, with $D=B \cap C$, we have that D is infinite and for any $d \in D$ there exists a positive integer $m=m(d)$ such that $\left[d, h_{i_{1}}, \ldots, h_{i_{m}}\right]=1$, for any $h_{i_{1}}, \ldots, h_{i_{m}} \in$ $\in\left\{h_{1}, \ldots, h_{s}\right\}$. Hence $d \in \zeta_{m}(H)$. As before, from $D^{G}=d_{1}^{G} \ldots d_{l}^{G}$ for some finite subset $\left\{d_{1}, \ldots, d_{l}\right\}$ of D, we get $D^{G} \leqslant \zeta_{j}(H) \cap A$ for a suitable j. Hence $\zeta_{j}(H) \cap A$ is infinite, and $\zeta(H) \cap A$ is infinite, as required.

Proof of Theorem 1. Let $G \in E(\infty)$ be a finitely generated infinite soluble group. By induction on the derived length $l=l(G)$, we show that $\zeta(G)$ is infinite. From that the result will follow, since we get $G / \bar{\zeta}(G)$ finite, where $\bar{\zeta}(G)$ is the hypercentre of G, and $G / \zeta_{i}(G)$ finite for some $i \in \mathbb{N}$, since G is finitely generated. Then G is finite-by-nilpotent by a result of P. Hall (see [3]).

If $l=1$, the result is trivial. Assume $l>1$, and write $A=G^{(l-1)}$ the last non-trivial term of the derived series of G. Then by induction every infinite quotient of G / A has an infinite centre, so that G / A is finite-bynilpotent and hence polycyclic.

If A is finite, then G is finite-by-nilpotent, and $G / \zeta_{i}(G)$ is finite for some $i \in \mathbb{N}$ (see [3]), so that $\zeta(G)$ is infinite.

If A is infinite, then Lemma 2.2 applies, and $A \cap \zeta(G)$ is infinite. Hence again $\zeta(G)$ is infinite.

Conversely, assume that G is a finitely generated finite-by-nilpotent soluble group.

Then, by a result of P. Hall (see [3]), there exists $k \in \mathbb{N}$ such that $G / \zeta_{k}(G)$ is finite. Hence, if X is an infinite subset of G, there exist $x, y \in X$ with $x \neq y$ and $x \zeta_{k}(G)=y \xi_{k}(G)$. Thus $y=x a$, with $a \in \zeta_{k}(G)$, and we get $1=\left[a,{ }_{k} x\right]=\left[x a,{ }_{k} x\right]=\left[y,{ }_{k} x\right]$, as required.

Notice that we have shown that if a finitely generated soluble group G is in $E(\infty)$, then $G \in E_{k}(\infty)$ for some $k \geqslant 1$.

Proof of Theorem 2. Suppose that $G \in E_{2}(\infty)$ is infinite. Then G is finite-by-nilpotent by Theorem 1 , and $G / \zeta_{i}(G)$ is finite, for a suitable $i \in \mathbb{N}$. Thus $\zeta(G)$ is infinite. Furthermore G satisfies the maximal condition on subgroups. Let A be a subgroup of G maximal with respect to being normal, torsion-free and contained in some $\zeta_{j}(G), j \in \mathbb{N}$.

Then $\zeta(G / A)$ is finite, and G / A is finite by Theorem 1.
We show that $\zeta(G /(A \cap R(G)))$ is finite, so that $G /(A \cap R(G))$ is finite by Theorem 1 and $G / R(G)$ is finite, as required.

Assume by contradiction that there exists $a(A \cap R(G)) \in \zeta(A /(A \cap$ $\cap R(G))$), $a(A \cap R(G))$ torsion-free.

Then $[a, b] \in A \cap R(G)$ for every $b \in G$. Hence $\langle[a, b]\rangle^{G}$ is abelian, $[a, b, a, a]=1=[a, b, b, b]$. Thus, by induction on i, it is easy to verify that, for any $i \in \mathbb{N}$,

1) $\left[a^{i}, b, a\right]=[a, b, a]^{i}$,
2) $\left[a^{i}, b\right]=[a, b]^{i}[a, b, a]^{(i(i) 1) / 2}$,
3) $\left[a, b^{i}\right]=[a, b]^{i}[a, b, b]^{j(i-1) / 2}$.

Furthermore we have
4) $[a, b, a, b]=[a, b, b, a]$.

For, from $[a, b] \in R(G)$ it follows $[a, b, a, b]=[a, b, b, a]^{-1}$, moreover, from $[a, b]^{a b}=[a, b]^{b a}$ it follows $[a, b, a b]=[a, b, b a]$ and $[a, b, b]$. $\cdot[a, b, a][a, b, a, b]=[a, b, a][a, b, b][a, b, b, a]$, so that $[a, b, a, b]=$ $=[a, b, b, a]$ and $[a, b, b, a]^{2}=1$. Thus $[a, b, b, a]=1$, since A is torsionfree.

Finally, from 4) and 2) we get easily
5) $\left[a^{i}, b, b\right]=[a, b, b]^{i}$, for any $i \in \mathbb{N}$.

Now consider the infinite set $\left\{a^{i} b / i \in \mathbb{N}\right\}$. Then there exist $i, j \in \mathbb{N}$, with $i \neq j$, such that

$$
\begin{aligned}
& 1=\left[a^{i} b, a^{j} b, a^{j} b\right]=\left[\left[a^{i}, b\right]^{b}\left[b, a^{j}\right]^{b}, a^{j} b\right]= \\
& =\left[\left[a^{i}, b\right]\left[b, a^{j}\right], b a^{j}\right]=\left[a^{i}, b, b a^{j}\right]\left[b, a^{j}, b a^{j}\right]= \\
& \\
& =[a, b, a]^{i j}[a, b, b]^{i}[a, b, a]^{-j^{2}}[a, b, b]^{-j} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
1=[a, b, a]^{i j}[a, b, b]^{i}[a, b, a]^{-j^{2}}[a, b, b]^{-j} \tag{*}
\end{equation*}
$$

Therefore $\left[a, b, a^{i j-j^{2}} b^{i-j}\right]=1$.
Write $\alpha=i j-j^{2}, \beta=i-j$. Then $\left[a, b, a^{\alpha} b^{\beta}\right]=1$, and

$$
\left[a, a^{\alpha} b^{\beta}, a^{\alpha} b^{\beta}\right]=\left[a, b^{\beta}, a^{\alpha} b^{\beta}\right]=\left[[a, b]^{\beta}, a^{\alpha} b^{\beta}\right]=1
$$

Hence, with $c=a^{\alpha} b^{\beta}$, we have $[a, c, c]=1$.
Arguing on a and c as before on a and b, we get

$$
[a, c, a]^{h k}[a, c, c]^{h}[a, c, a]^{-k^{2}}[a, c, c]^{-k}=1=[a, c, a]^{h k-k^{2}}
$$

for some $h, k \in \mathbb{N}, h \neq k$.
Then $[a, c, a]=1$, since A is torsion-free, so that $1=\left[a, b^{\beta}, a\right]=$ $=\left[[a, b]^{\beta}, a\right]=[a, b, a]^{\beta}$, and $[a, b, a]=1$, again since A is torsionfree.

Hence, by (*), $[a, b, b]^{i-j}=1$ and $[a, b, b]=1$. That holds for every $b \in G$, so $a \in R(G)$.

From $a^{s} \in A$ for some $s \in \mathbb{N}$ it follows $a^{s} \in A \cap R(G)$, a contradiction since $a(A \cap R(G))$ is torsion-free.

Conversely, if $G / R(G)$ is finite, then $G \in E_{2}(\infty)$ arguing as in Theorem 1.

REFERENCES

[1] M. Curzio - J. C. Lennox - A. H. Rhemtulla - J. Wiegold, Groups with many permutable subgroups, J. Austral. Math. Soc. (Series A), 48 (1988), pp. 397-401.
[2] J. R. J. Groves, A conjecture of Lennox and Wiegold concerning supersoluble groups, J. Austral. Math. Soc. (Series A), 35 (1983), pp. 218-220.
[3] P. Hall, Finite-by-nilpotent groups, Proc. Cambridge Phil. Soc., 52 (1956), pp. 611-616.
[4] J. C. Lennox, Bigenetic properties of finitely generated hyper-(abelian-byfinite) groups, J. Austral. Math. Soc. (Series A), 16 (1973), pp. 309-315.
[5] P. Longobardi - M. Maj - A. H. Rhemtulla - H. Smith, Periodic groups with many permutable subgroups, J. Austral. Math. Soc., 53 (1992), pp. 116-119.
[6] J. C. Lennox - J. Wiegold, Extensions of a problem of Paul Erdös on groups, J. Austral. Math. Soc. (Series A), 31 (1981), pp. 459-463.
[7] B. H. Neumann, A problem of Paul Erdös on groups, J. Austral. Math. Soc. (Series A), 21 (1976), pp. 467-472.
[8] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, part I and II, Springer-Verlag, Berlin (1972).
[9] M. J. Tomkinson, Hypercentre-by-finite groups, University of Glasgow, Department of Mathematics, Preprint Series, Paper No. 90/55 (1990).

Manoscritto pervenuto in redazione il 15 novembre 1991 e, in forma revisionata, il 21 gennaio 1992.

