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Harnack’s Inequality
for Quasilinear Elliptic Equations
with Coefficients in Morrey Spaces.

PIETRO ZAMBONI (*)

1. Introduction.

In recent years many papers have been devoted to the study of the
regularity properties of the solutions to linear second order elliptic
equations under very general assumptions on the lower order terms
(see e.g. [1], C3], C4], [5], [9]).

These Authors study an equation of the form:

where Lu = - (aijUx)xj for some uniformly elliptic measurable matrix
A = (aij (x)) (indeed in [1], [5], [9] a2~ (x) = 8ij) and V belongs to the
Stummel-Kato class or some closely related Morrey space (see [4]
or [12] for comparisons).

We stress that these assumptions on the coefficient V are weaker
than those used by [6] and [10] in their study of (1.1).

In this paper we begin to study the same kind of problem for a
quasilinear equation of the form:

Precisely, under structure conditions which are the same as in the
classical work [8], we prove the local boundedness and an Harnack’s in-
equality for the weak solutions of (1.2).

The pattern of the proof, which we only sketch, follows Serrin’s
work very closely, the only novelty consisting in the spaces in which
we take the coefficients. These spaces are classical Morrey spaces
which properly contain the LP spaces in Serrin’s work.

(*) Indirizzo dell’A.: Dipartimento di Matematica, Contrada Papardo, Salita
Sperone 31, 98166 Sant’Agata - Messina.
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This improvement on [8] has been made possible by some imbed-
ding inequalities which we establish in Section 2 (essentially relying on
a celebrated Fefferman’s inequality). Also in Section 2 some compari-
son with Serrin’s hypotheses may be found. Section 3 and 4 are devoted
to the sketch of the proof of the local boundedness and Harnack’s in-
equality respectively.

2. Structure hypotheses and preliminary results.

Let 0 be a bounded open subset of Let

and

two continuous functions such that

for a.e. Vu E R, Vp Here a is a given number in ]1, n[, a is a
positive constant, and the functions b(x), c(x) and d(x) are such
that:

We recall that for p E ]1, [, A e]0, n[, LP’). = LP’). (0) denotes the
classical Morrey space of the functions satisfying

(1) Here B(x, p) is the ball centered at x with radius p. Whenever x is not re-
levant we will write B(p).
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We will say that u E (Q) is a local solution of (1.2) in Q if

In the following we will use C. Fefferman’s inequality (see [2]):

THEOREM 1. Let

Here c depends on n and p only.

Using Theorem 1 we can prove the following lemmas:

LEMMA 1. Let q &#x3E; 1 and d E Lq, n-(X. Then there exist - &#x3E; 0 and

r1 &#x3E; 1 such that

where I~1 = rl, diam 0).

PROOF. We start by showing that we can find c &#x3E; 0 and r1 &#x3E; 1 such
that .

Indeed define r1 = q(a - with z &#x3E; 0 such that ri &#x3E; 1.
Than we have

Using Theorem 1 and H61der’s inequality we obtain:

LEMMA 2. Let q &#x3E; a &#x3E; 1 and c e n-1. Then there exist g &#x3E; 0 acnd
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r2 &#x3E; 1 such that

with ~2 ~ I~2 (a, r2, diam Q).

PROOF. Following the pattern of Lemma 1 we prove that there
exist e &#x3E; 0 and r2 &#x3E; 1 such that e L T2,n - aT2. Indeed taking r2 =
= q(1 - E)/a with E &#x3E; 0 such that ~2 ~ ~~ we have:

By Theorem 1 and H61der’s inequality we have:

LEMMA 3. Let q &#x3E; a/(a - 1) &#x3E; 1 and Then there exist
e &#x3E; 0 and ~3 &#x3E; 1 such that

where K3 = K3 (,%, r3, diam 0).

PROOF. The proof is similar to that of Lemmas 1 and 2.
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REMARK. We wish now to compare our hypotheses with those
in [8].

In [8] is assumed

We 

Let us prove the first one. clearly

The inclusion is proper because (see [7]) there are functions from
space which are not integrable with any exponent greater than
q.

Also we wish to observe that for (2.4) to hold is necessary that d E
This because, taking in (2.4) p E Co" (B(2p)), p = 1 in B(p),

0 % q % 1 in B(2p), K/p, we have:

Clearly (by H61der’s inequality) and then our

assumption is very close to be necessary for (2.4) (taking q very close to
one).

Finally let us point that for (2.5) to hold true we need to take c(x) in
the space Lloc . This because, for given q e Co° (Q) from (2.5) we
have:

(2) Here I is the measure of B(p).
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or, letting Y) _ ~« -1, we have:

and then cg~ E L " V~ E Cooo (Q) which clearly implies c E L 01 (0).
Similar considerations for the coefficient b show that in order to

have (2.6) b E (0) is necessary.

3. Local boundedness of solutions.

In this section we will show that weak solutions of equation (1.2) are
locally bounded.

THEOREM 2. Let u a weak solution of eq. (1.2) defined in some ball
B(2p)ccD. We assume that conditions (2.1 ) and (2.2) hold. Then

and

PROOF. We consider first the case p = 1. The general case p ~ 1 fol-
lows by application of the linear transformation y = px.

For fixed numbers q &#x3E; 1 and t &#x3E; 0 we consider the functions

and

As a test function in (2.3) we take:

where Y) e Co (B(2)).
Substituting in (2.3) and using the assumptions (2.1) we ob-
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tain, as in [8]:

where v = v(x) = F(u) and q and fi are related by «q = a + 1.

Using H61der’s inequality together with Lemmas 1, 2 and 3 we can
estimate the terms on the right-hand side of (3.1) as follows

Using these inequalities in (3.1 ) we obtain:

where C depends on the quantities listed in the statement of the
theorem.

Proceeding as in [8] we obtain

and by Sobolev inequality we have

Let now h, h’ satisfy h’  h % 2 and choose 77(x) so that r, = 1 in
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Substituting this function in (3.2) and (3.3) we have:

Letting t -~ ~ , since v - ) (3.5) gives

Finally, setting in (3.6)

we obtain

This is the inequality which we will iterate.
We define for v = 0,1, 2, ...

Hence from (3.7), we have:

where K = 2Xa./£.
Letting v ~ 00 gives

The second part of the theorem follows by setting q = 1, h’ = 1,
h = 2 in (3.2).

4. Harnack’s inequality.

THEOREM 3. Let u &#x3E; 0 a weak solution of eq. (1.2) is some open
ball B(3p) c Q. We suppose that conditions (2.1) and (2.2) holds.

Then

where C is a constant depending on the same arguments as in The-
orem 2.
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PROOF. The proof is the same as in [8]* following very closely the
classical Moser’s procedure. The main modification is in the first step
which was given by us in detail in Theorem 2.

Let us only point that in the «central step», in which log u is esti-
mated, we have once more to rely on our Lemmas 1, 2, 3 in order to
bound the relevant integrals instead of H61der’s inequality as

in [8].
With these remarks the conclusion of the theorem can be easily es-

tablished by the reader.
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