
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

ZVI ARAD

GIDEON EHRLICH

OTTO H. KEGEL
An application of Ramsey’s theory to
partition in groups. - II
Rendiconti del Seminario Matematico della Università di Padova,
tome 89 (1993), p. 57-81
<http://www.numdam.org/item?id=RSMUP_1993__89__57_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1993__89__57_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

An Application of Ramsey’s Theory
to Partition in Groups. - II.

ZVI ARAD - GIDEON EHRLICH - OTTO H. KEGEL (*)

Introduction.

In 1916 I. Schur [Sc] proved the following theorem, one of the ear-
liest results of Ramsey type:

THEOREM. In every finite coloring of the positive there
exists ac monox solution to the equaction x + y = z.

In [AEKL] we applied Ramsey theory in order to generalize Schu-
r’s theorem to arbitrary groups, finite and infinite, and at the same ti-
me to weaken Schur’s assumptions.

Define a group G (or partial semigroup G) to have an n-partition; in
short, G is in the class nP, if there exists a partition of the set G into
subsets {1}, A1, ..., An , n ~ 2, (Ai may be empty) such that if x, y E Ai ,

1 ~i~n, then
We proved in [AEKL] that infinite groups are not in nP, for any po-

sitive integer n ; 2. Also finite groups of order greater than

R(2, 8, (1/2) (n2 + 2)) are not in nP. In particular, we proved that for
n = 2 groups of order greater than 9 are not in 2P and that for n = 3
groups of order greater than 18 are not in 3P.

(*) Indirizzo degli AA.: Z. ARAD and G. EHRLICH: Department of Mathemat-
ics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel; 0. H.
KEGEL: Mathematisches Institut, Albert-Ludwigs-Universitat, D-7800 Freiburg
i. Br., Germany.

This research was supported by a Grant from the G.I.F., the German-Israeli
Foundation for Scientific Research and Development.

58

The Ramsey numbers R(2, 8, (1/2) (n2 + 2)) are large and it is an
open question how to compute them [Grll.

For a more complete background and more detailed information
see [AEKL].

The goal of this paper is to obtain the following main theorem:

MAIN THEOREM. An abelian group G is 4P if and only if G is iso-
7%morphic to one of the following:

a) A cyclic group Ck of order k where either 1~ ~ 45 or

k = 48.

b) A non-cyclic group. of order - 40.

c) A non-cyclic group of order 45, 48 or 49.

d) The non-cyclic group. C3 x C3 x C3 x C2.

e) The non-cyclic group C3 x C3 X C3 X C3.

The list in the main theorem is shorter if we delete the assumption
y in the definition of the class 4P.

If flt) denotes the largest natural number n such that {1, ... , n } c N
can be split into t set, none of which contains a solution of x + y = z,
then by [Gr2, p. 88], f(l) = 1, f(2) = 4, f(3) = 13, f(4) = 44. The evalu-
ation of f(5) appears to be a difficult computational problem [Gr2].

If f *(t) denotes the largest natural number n such that {1, ..., n~ c
c N is in tP, then we proved in [AEKL] that f * (1) = 2, f*(2) = 8 and
f *(3) = 23.

In this paper we find that f*(4) = 66 and f *(5) ~ 195. Our conjectu-
re is that f*(5) = 195 and f * (n) = 3[f * (n - 1) - 1] for % * 4.

The number of partitions of {1, ... , 66} c N into 4 subsets is known
as the Stirling number of the second kind S(66, 4); it is larger than 462 .
This relation shows that the present super computers need more than a
life-time to handle all 4 partitions of 11, ..., 66}. We constructed a fast
algorithm and found all the possible partitions of {1, ..., 66} that are in
4P; there are 29931 of them. We found also that f *(4) = 66.

The evaluation of f *(4) = 66 enables us to prove that a cyclic group
Ck of order 1~ is in 4P if and only if either k % 45 or k = 48. Consequen-
tly, the largest prime power dividing the order of a cyclic subgroup of a
4P-group is 43. This fact leads us to the proof of our main theo-
rem.

It bears mentioning that there is a significant difference between
the cases n = 3 and n = 4. This fact forces us to construct a new more

59

delicate algorithm to deal with the case n = 4. This new algorithm is
useful also in dealing with related problems; therefore we describe it
here in full detail.

PROOF OF THE MAIN THEOREM. We use freely the following two sta-
tement about 4P-groups:

(*) If a proper subset of H of G is not in nP, then G is not in nP.

(**) Proper subsets of nP-groups are in mP for some 7% % n.

In order to prove constructively that a given subset of a group G is
in nP we constructed the following algorithm.

THE ALGORITHM. In order to constructively decide whether or not
a group G of n elements has an r-partition for a given r, we apply the
backtrack method.

By a sub-partition of the group G we mean a partition of a subset of
the group elements to at most r mutually exclusive subsets, so that the-
re is no solution to the equation x * y = z, within any of the
subsets.

By systematically generating some collection of sub-partitions we
will either get a partition-a sub-partition which is a partition of the
whole group-, or no partition and thus know that no partition
exists.

Given a random function the following is a definition of such a
collection:

Our collection is the set of nodes of a tree T. The root of T is the

empty sub-partition. Given a node SP, select randomly an x not yet in
SP and join ut in turn to each subset of SP if possible, in order to get
at most r children of SP.

Pay attention to the following facts:

a) All partitions of G are leaves of T no matter which random func-
tion was used.

b) It may happen that SP is a leaf-has no children-and SP is
not a partition of G. Almost all leaves are of this type.

c) If ~ SP ~ I r then fxl may be added to it as a singleton.

60

We can look for a partition by searching the above tree. We will ge-
nerate each new node when we visit it. The first come-in-mind method
is the «width first search» method. We start with visiting the 0 level of
the tree-the empty sub-partition. After visiting all sub-partitions of
some level k (sub-partitions of k elements) we will visit the next le-
vel-all children of the previous ones (sub-partitions of k + 1 ele-
ments). This method requires saving all elements of the previous level
and, hence, consumes space that may grow exponentially with the dep-
th of the tree.

Another method is the «depth first search» method. We search the
tree by examining the root and then all the sub-trees rooted on it using
the same method. This method involves saving the parent of each node,
except for the root, and thus the amount of space it consumes seemed to
be about proportional to the depth of the tree.

Starting with the root, we search subtree rooted on a node by:

1) generating the node,

2) processing it (in our case checking it for being a solution),

3) searching in the same way all subtrees rooted on the node’s
childs.

This implies that if pk was the last element to enter a sub-partition
SP then after checking all nodes in a subtree rooted on SP we transfer
pk to some other subset of SP in order to get a new sub-partition SP’.
After pk was located in all subsets it was able to join, and all the appro-
priate subtrees were searched we omit pk and try to transfer the re-
maining last joined element to a new subset and so on. The process is
terminated after omitting the first joined element.
A general algorithm of the above backtrack algorithm is described

in [RND].
The backtrack time-complexity is mainly affected by the number of

nodes in the tree and by checking whether or not the new element may
join a subset. In order to condense the tree we look for possible prunin-
gs. Namely, we ignore a sub-tree rooted on some sub-partition whene-
ver we know that it does not contain a partition. We number the sub-
sets of a partition from 1 to at most r and save a Boolean matrix, CAN,
which for each element not in the current sub-partition and for each
subset of the current sub-partition, indicates whether or not the ele-
ment may join the subset. When an element x j oins a subset A, we up-
date that matrix by setting all solutions z of: zx = y, zy = x, and
xy = z; y in A (we pre-prepare a matrix that gives the 3 appropriate z’s

61

for each x, y) and z not yet in the sub-partition, to «false». This by itself
does not save time, but for each z not in the sub-partition we save the
number of subsets it may join-its «degree». When the element x will
be removed from the subset A (in order to be added to some other sub-
set of its parent, or in order to switch one of its ancestor nodes for that
node’s brother), we will update the degrees and the Boolean values
changed because of adding to A. No re-computations are done since
we save the needed information we got on adding x.

PRUNING. Pruning a sub-tree rooted on the current sub- partition
SP means ignoring that sub-tree. That is, we move the last joined ele-
ment x to another, subset in order to get a brother of SP or we return to
SP’s parent. The following property A is a sufficient reason for

pruning.

A: on joining x to the sub-partition SP, some z not in SP gets the de-
gree 0.

We will ensure that A will never even be about to occur since we will
use a stronger pruning rule.

Instead of selecting randomly the new joined x we will select just
one of the degree 1 elements if there are such elements not in our

sub-partition.
We keep the following property B as an invariant of our algori-

thm.

B: There are no 2-degree 1 elements outside the sub-partition such
that each of them can, and hence must, join the same subset but one
cannot join it if the other one does.

We claim: B is true when a new element x is about to join SP in or-
der to generate SP’.

If B is false then we prune the sub-tree rooted on SP’, since SP’
cannot be completed to a partition of G. Under these circumstances, A
cannot occur since if z is a degree-1 and x was selected to join SP, then
according to our method, x is a degree-1, B is true and hence A is
false.

Therefore, when joining x and updating the degree of some z we
check if it should become 1. If it should, and it must join some other
subset a’, we check if B is about to be violated as to that a’. If it will be
violated, then we prune the tree rooted on SP’.

62

Saving intermediate states: Since the Algorithm consumes a lot of
time, for some cases days and for others much more, we save interme-
diate states of the algorithm each time we visit a node in some fixed le-
vel, for instance, 8 or 12.

The program was written in standard Pascal, and runs on a variety
of computers: SUNs, Vaxes, and the RISC machines IBM RS/6000 and
Decstation 5200, all under the UNIX opperating system. Each of the,
up to 10, computers was assigned the lowest priority (there were some
other users around).

Estimating running time:
The following two cases were checked on an IBM PC AT 18 mhz,

Turbo Pascal 6.0.

3-Partitioning of C15: 83 partitions were found in 0.17 seconds.

4-Partitioning of C48: 2301 partitions were found in 37.5 hours.
7984 nodes at level 10 were visited.

This means that 7984 sub-partitions of 10 elements were generated du-
ring the whole process. This number is roughly the number of level 10
nodes we found for every other case of a 4-partitioning.

By measuring the time some level 10 nodes are generated a very
rough estimation for the total needed time is known.

Subtrees rooted on nodes of the same level may be of very different
size.

In the above C48 case some such subtrees were searched in less than
a second, others in half an hour.

If G = C1 x C2 x C3 x ... then the smaller the size of the groups
Ci , the longer is the time needed for checking it. Checking the case
C2 x C2 x C2 x C2 x C2 x C2 seemed to require several years on the
RISC machines which are about 100 times faster than the IBM PC
AT.

In case the running time seemed to be long we let several compu-
ters work in parallel. Each of them starts from some node and stops
on arriving to some other node. E.g. the input file describes a sub-
partition of 6 elements and the program halts when the 4th element
to join the sub-partition, P[4], moves to another subset in order to
generate a new sub-partition of 4 elements. That new sub-partition
defines the node another computer already got as his input.

63

Program Outline.

REMARK. Comments clarifying the program are given within curly
brackets { ~ .
Constants

Some parameters of the program:
Should it work on groups or integers l..n.
How many subsets should be in the partition.
Is x * x = y allowed when x, y belongs to the same subset.
Is one partition enough, or do we want all partitions.

Data-structures (variables):
A file, GROUP-FILE, defining the group and the state of the program.
N: integer; {group size}
UNFIT: array [O..n, O..n,1..3] of integer;

{The first layer of UNFIT, UNFIT[*,*,1] represents the group
table.

UNFIT [i, j, t] = k, t = 2, 3 -~ either i * k = j or j * k = i
k = 0 means: ignore this entry.}

r-Partition of k ~ n elements out of all n group elements.
We keep it in 2 forms:

1: (k, P, SETOF)
P: a permutation of the integers l..n.
SETOF: a characteristic vector, defines for each P[i], i ~ k

to which of the r sets of the partition it belongs.
2: r stacks.

CAN: array [0..~ 1..~] of boolean;
{ shows for each element not in the partition and each set whe-
ther the element may join the set}.

topl: Integer; {defines the set of all degree-1 elements not yet in
the partition.
P[k + 1]...P[topl] are all degree-1 elements not yet in the
sub-partition.
elements of P are swapped in order to keep this arrangment
of Pl.

For each element P[k] enters the sub partition we keep a set of all
pairs (wrong,t) such that CAN[wrong,t] is turned to false because
P[k] entered the sub-partition.
We keep those sets on a long enough array. Each set occupies one
new segment of the array.

procedure elmntgen;
{ Generating a sequence of all group elements, each element is re-
presented by an array of nofcoord integers 0 grpelmntlk, il or-

der[i].}
procedure bltunfit;

{Building the table UNFIT}

64

procedure showpartition;
{output the r-partition of the group}

procedure savedata;
{ Some base data enbales us to recover the program state, in case of a
computer shut-down. Besides the description of the group and some
parameters, it saves the current sub-partition. }

procedure getdata:
{ Gets what was saved by savedata and use if for initiating varia-
bles }

procedure check;
{Checks if the current state is legal: .

p is a pemeutation,
ip is its inverse,
no 3 elements x, y z located in the same subset solve x * y = z,
If each of the defree-1 elements x, y must join the same subset t,
then x and y can join it together

begin { main program }
getdata;
elmntgen;
bltunfit;
check;

{OUTER-LOOP}
{INNER-LOOP} {pk is an element about to enter the subset t}.

{ Search the subtree rooted on the new sub-parti-
tion}.

add pk to subset t: update the two partitions representations.
update array SETOF: SETOF[pk] E- t;
update STACK[t]: top[t] - top[t] + 1; STACK[t, top[t]] - pk;
if k = backing-level then savedata;
if k = n then showpartition (and HALT if you like).
{Preventing wrong elements from joining the set t. }

for stackti ~ all elements already in set t
begin

for wrong - UNFIT[pk, stackti,i] i = 1,2,3
begin

if CAN[wrong,t], wrong was able to join set t,
and wrong is not in the sub-partition then

begin
if now wrong can join just set tt then
if (another element that must j oin tt and still

another such element or one that is already
in tt prevents wrong from joining tt)
then pk can’t join set t - goto BACKING

65

else

{wrong becomes a degree-1 element. }
Add wrong to the degree-1 elements segment
that follows the k location at P.

{Prevent wrong from joining set t. }
CAN[wrong,t] ~ false;
add (wrong,t) to the set of denied elements.

end; {preventing wrong elements}
k~-k + 1;
Pk ~ P[k];
t +- a new set that pk can join {CAN[pk, t] = true }
Repeat INNER-LOOP

{END INNER-LOOP}
{BACKING}

k ~ highest i ~ k s.t. P[il has to be located in some new set t,
{While decreasing k to find the new k, remove each P[k]
from its old set (only the stack has to be updated).
All elements that were denied joining some set by some
element that now was removed from the sub-partition
should be allowed again to join the appropriate set.}

If k = 0 then the algorithm terminated - print a note and
HALT.

pk ~
t ~ a new set that pk can j oin ~ CAN[pk,t] = true }
repeat OUTER-LOOP

{END OUTER-LOOP}
end program.

The algorithm’s Pascal code will be sent to the interested reader
upon request.

Let us denote our algorithm by AL.
By AL the partial semigroup {1, ...,66} c N has exactly 29931 4P-

partitions. All the 4P- partitions are extension of the following four
subsets:

66

For example one of the 4P-partitions is:

The partial semigroup T = 11, 2,...,671 c N is not in 4P as AL sho-
ws. Consequently, f *(4) = 66. In each of the 29931 4P-partitions, there
exists a subset all of whose elements are larger than 23.

LEMMA 1. If G is a 4P-group then G is finite..

PROOF. As mentioned in the introduction, this Lemma was proved
in [AEKL].

LEMMA 2. If a group G is isomorphic to one of the groups in the li-
st of the main theorem a)-e), then G is a 4P-group.

PROOF. Examples of 4P-partitions of groups from the list of the
main theorem a)-e) can be found in Appendix A. We found these parti-
tions by AL. We leave to the reader to find examples of 4P-partitions
of abelian non-cyclic groups of order - 28.

LEMMA 3. Cyclic groups G are in 4Poif and only if G = Ck , where
either k ~ 45 or k = 48.

PROOF. By Lemma 1 and 2 if G is isomorphic to Ck with either
k ~ 45 or k = 48 then G is in 4P.

Using AL we found that Ck for k = 46, 47 and 49 ~ k 67 are not in
4P. If k > 67 then Ck is not in 4P since f*(4) = 66. Thus Lemma 3
holds.

Let us denote the abelian group Cni x ... X Cnk by (nl , ..., nk). By
AL and Lemma 12 we found that the groups in the list of Lemma 4 are
not in 4P.

LEMMA 4. The following abelian non-cyclic groups are not in
4P.

a) Cp x Cp, where p is a prime such that 11 ~ p ~ 43.

67

b) The groups of this table:

LEMMA 5. The set of prime divisors of a 4P-group is included
in T = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 431.

PROOF. This is an immediate consequence of (**) and Lemma 3.

LEMMA 6. If G is an abelian 4P-group such I G I p a pri-
me, then p E {2, 3, 5, 7 1.

PROOF. Lemmas 3 and 4 yield Lemma 6.

68

LEMMA 7. If G is an abelian 4P-group then

PROOF. Assume that 17r(G) - {2, 3, 5} I ~ 2 then G contains a cyclic
mP-subgroup for m ~ n and of order > 49; this contradicts Lemma 3.
Thus 17r(G) - 12,3,511 - 1.

LEMMA 8. If G is an abelian non-cyclic 4P-group then either
(G ~ [12a3f35Yta or

PROOF. Lemmas 4 and 7 imply Lemma 8.

LEMMA 9. If G is an abelian 4P-group and for the prime p,
~G!, p~23, then G = Gp .

PROOF. Lemmas 3 and 6 imply our Lemma.

LEMMA 10. If G is an abelian 4P-group, with a partition to 4 sub-
sets A, B, C, D, then each subset of the partition contains at most 16
involutions.

PROOF. W.l.o.g. assume that A contains 17 involutions Ix, yl , ...

Y161 CA.
By assumption Y161 n A = ~. W.l.o.g. assume that

and By assumption
(A U B) = 0 and w.l.o.g. we can assume that
Furthermore

and consequently {y2y3, y2y4} c D. Therefore (A U B U C U D),
a contradiction.

LEMMA 11. If the 2-group G is in an elementary abelian 4P-group
then ~G! ~64. Furthermore if 64 then w. L. o.g. I A I =

PROOF. Lemma 11 is an immediate corollary of Lemma 10.

LEMMA 12. The abelian group is
not a 4P-group.

PROOF. The group G contains 31 involutions ..., X319 2 elements
0 and 62 of order 3, 62 elements of order 6, zi 0, ... , x31 e, xl 62, ..., x3182
and the unit 1.

Let A, B, C, D be a partition of G to 4 subsets. W.l.o.g. A contains

69

at least 22 nonidentity elements of order 2 and 6 denoted by xl , ..., xi ,

yl e, ..., y j 6, Z, 02, ..., Zk 62, where xi, Yj zk are involutions, i + j + k a
-> 22 and O~i,j,k~22. -

As in Lemma 1 we can construct an element a E G and a E A U B U
U C U D, a contradiction.

LEMMA 1 i. The following groups are not 4P.

PROOF. a) If G = C3 x C3 x C3 x C3 x Cg then w.l.o.g. A contains at
least 61 elements xl , ..., xsl . By assumption the 60 distinct elements
Xl x2, ..., xl A. Thus (xl , ..., I ~ 121 and consequently
(xl , ..., X61) = G. W.l.o.g. assume that (xl , ..., X6) = G. Hence G =
= (Xl) x ... x (xs). Using AL and the fact that the generators of G

..., xs E A we found that G = C3 x C3 x C3 x C3 x C3 is not in 4P.
Thus a) holds.

b) If G = C2 x C2 x C3 x C3 x C3 then w.l.o.g. A contains at least
27 elements. If [A I > 27 then the same arguments as in a) imply that
G = (xi) x ... x (x5) where xl, ..., x5 e A and then AL yields that C2 x
x C2 x C3 x C3 x C3 is not in 4P. Therefore we may assume that I A
= lei =27 and ~D~ = 26.

If A = {xl, ..., x27} and (xi, ..., X27) = G then the same arguments
as in a) together with AL imply that G is not in 4P. Therefore we may
assume that A = {.Ci, x27 } and (Xl, - - -, x27) c G. Since the distinct
elements we have ~i~ ...~27}! = 54 and w.l.o.g.

These last three results and AL imply that G is not in
4P and thus b) holds.

c) Assume that G = C2 x C2 x C2 x C2 x C2 x C2 is in 4P. Then

by Lemma 11 Denote A =

-{x1, ...,xls} 16, i then the

2-elementary abelian group G is a 4P-group also for the partition
A U lyl, B - ~ y}, C - ~ y} and con-

tradicts Lemma 10. Therefore for every y e B U C U D there exist

i, j, 1 ~ i, j ~ 16 such that Thus ~xl , ..., xls) = G
and w.l.o.g. x ... x (X6) = G. Since Xl, - - -, X6 E A the 15 elements

where 1 ~ i, j ~ 6, At least 5 of these elements are

70

w.l.o.g. in B. Let be the set of
these 5 elements.

B and consequen-

Assume that the index m shows up in 4 pairs. W.l.o.g. assume
m=1.

Then IX1 X2, X1Xg, xl x4, c X and since G is in 4P, we obtain
I X I = 4, a contradiction.

Assume now that the index m shows up in pairs. W.l.o.g. assume
that IX1 X2, Xl X3, x, z4) c X and Xl X5 f1. X.

Therefore I = 2. W.l.o.g. assume that X =

Therefore we have:

AL and (i), (ii), (iii) imply that G is not a 4P group, a contradic-
tion.

Thus we may assume that both indexes m and n show up only in 2
pairs.

Therefore we have (i), (iii) and w.l.o.g. X = IX1 X2, Xl X3, X2 X4,
Then AL implies that G is not a 4P-group, a contradic-

tion.

Assume that the index m shows up in 5 pairs. W.l.o.g. assume
m= 1.

Therefore we have (i), (iii) and X = xl x3, X1X4, Xl X59 Xl X6 I-
Then AL implies that G is not in 4P, a contradiction.

Assume now that the index m shows up in 4 pairs. W.I.o.g. assume
m = 1.

Therefore we have (i), (iii) and X = Xl X3 xl x4, X1XS, x1 xs ~, 9
where i E {2,3,4,5}. Hence AL implies that G is not in 4P, a

contradiction.

71

Assume now that the index m shows up in 3 pairs. W.l.o.g.
assume that m = 1.

W.l.o.g. we have 2 cases:

(1 and 2 appear in 3 pairs)

(only 1 appear in 3 pairs).

In both cases the combination of AL and (i), (iii) imply that G is not in
4P, a contradiction.

Therefore we may assume that both indexes m and n appear at most
in 2 pairs.

W.I.o.g. we obtain that X = Thus

AL, (i) and (ii) imply that G is not in 4P, a final contradiction.
Consequently, Lemma 13 holds.

PROOF OF THE MAIN THEOREM. Assume that G is an abelian 4P-

group of the main theorem type.

If G is also of Lemma 8 type then Lemmas 2, 3, 4, 11 and 13 imply
that ~~2, y - 2, [3 ~ 4, oc - 5.,

The detailed information of our lemmas force G to be isomorphic to a
group from the list which appears in the main theorem a)-e).

REMARKS. Our set is {l,2,...,7z}cN with the addition + .

We found by computing the following facts:

1) f * (2) = 8 and there exists only one solution for 2P.

2) f *(3) = 23 and there exist only 3 solutions for 3P.

72

Each solution of n = 3 is an extension of a solution for n = 2. In par-
ticular, the first element of the third subset C is 9 = f *(2) + 1.

3) f *(4) = 66 and there exist exactly 29931 solutions for 4P.

Let k = f*(n). Define R(i, j); i, j ~ k iff for each n- partition of
1 ... k, i belongs to the same subset that j does.

DEFINITION. The root of nP is the collection of the equivalence
classes of size > 1 of R ordered according to their minimal ele-
ments.

EXAMPLES.

(1) The root of 2P is

(2) The root of 3P is

(3) The root of 4P is

CONJECTURES. a) The root for nP is an extension of the root for
(n -1) P.

b) A solution of nP is an extension of a solution for (n -1) P. In
particular, the smallest number in the n-th subset of an nP solution is

73

The conjectures are true for 3P and 4P. Calculations show that the-
re exist 3P solutions which cannot be extended to 4P solutions.

In fact the mentioned 3P solution (I) can be extended to 8238 4P sol-
utions. The 3P solution (II) cannot be extended to 4P solutions. The 3P
solution (III) can be extended to 21693 4P solutions. The total number
of 4P solutions is 29931.

EVALUATION OF f *(5). If we start from an arbitrary 4P solution
and try to extend the solution to 5P solution there is a chance that this
4P solution cannot be extended to the 5P solution.

Therefore we prefer to start from the root of 4P. We will assume
that the above-mentioned conjecture a) is true.

The numbers:

are not in the root.
If we put 16 in the subset A of the root then we know that there

exist 8238 extensions to 5P solutions.
If we put 16 in B we have 0 extensions. If we put 16 in C we have

21693 extensions to 5P solutions. According to our conjecture b) the
smallest number in D is 24; thus if we put 16 in D we have 0 extensions.
Thus statistically the best possibility is to put 16 in C.

Computing brings us to the ideal 4P solution:

FOR EXAMPLE. If we put 31 in (A, B, C, D), the possible extensions
are (3456, 0, 0, 18237), respectively. Therefore we decided to put 31
in D.

Extension of this ideal solution and using other ideas brought us to
the partition which illustrates that f * (5) > 195. Our conjecture c) is
that f *(5) = 195.

74

APPENDIX A

4P-groups of small orders.

Cyclic groups of order 15 are 3P-groups by [AEKL] and conse-
quently they are 4P-groups.

Cyclic groups Ck of order k, where 1~ is either 48 or 16 £ k £ 45 are
4P-groups as shown in the following list:

75

76

77

Abelian non-cyclic groups of order - 28 are 4P-groups. We leave to
the reader as an exercise to find examples of 4P-partitions for these
groups.

The following 4P-partitions illustrate why the last 19 groups from
the list of the main theorem are 4P-groups.

Let us denote the generators of Cm1 x ... x Cmk by x, y, z, r, s, ...

respectively. Then 4P partitions of the following groups are illustrated
as follows:

78

79

80

The partial semigroup {1,.... 195} c N has a 5P-partition, and con-
sequently, f *(5) ~ 195 as illustrated here:

81

REFERENCES

[AEKL] Z. ARAD - G. EHRLICH - O. H. KEGEL - J. LENNOX, An application of
Ramsey’s theory to partitions in groups, I, Rend. Sem. Sem. Mat.
Univ. Padova, 84 (1990), pp. 143-157.

[Gr1] R. L. GRAHAM, Rudiments of Ramsey theory, Conference Board of
the Mathematical Sciences, Regional Conference Series in Mathe-
matics, 45 (1981).

[Gr2] R. L. GRAHAM - B. L. ROTHSCHILD - J. H. SPENCER, Ramsey Theory,
Wiley-Interscience Series in Discrete Math. (1977), pp. 106-112.

[RND] E. REINGOLD - J. NIEVERGELT - N. DEO, Combinatorial Algorithms,
Prentice Hall (1977), pp. 106-112.

[Sc] I. SCHUR, Über die Kongruenz xm + ym congruent 2m (modp), Iber
Deutsche Math. Verein., 25 (1916), pp. 114-116.

Manoscritto pervenuto in redazione 1’1 settembre 1991 e, in forma re-
visionata il 12 dicembre 1991.

