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An Application of Ramsey’s Theory
to Partition in Groups. - II.

Zvi ARAD - GIDEON EHRLICH - OrT0 H. KEGEL (*)

Introduction.

In 1916 1. Schur [Se] proved the following theorem, one of the ear-
liest results of Ramsey type:

THEOREM. In every finite coloring of the positive integers 7.* there
exists a monox solution to the equation x + y = 2.

In[AEKL] we applied Ramsey theory in order to generalize Schu-
r’s theorem to arbitrary groups, finite and infinite, and at the same ti-
me to weaken Schur’s assumptions.

Define a group G (or partial semigroup G) to have an n-partition; in
short, G is in the class nP, if there exists a partition of the set G into
subsets {1}, 4;, ..., A,, n = 2, (A; may be empty) such that if x, y € A,
x#Yy, 1<i<mn, then vy ¢ A;.

We proved in [AEKL] that infinite groups are not in nP, for any po-
sitive integer » = 2. Also finite groups of order greater than
R(2, 8,(1/2) (n® + 2)) are not in nP. In particular, we proved that for
n = 2 groups of order greater than 9 are not in 2P and that for n = 3
groups of order greater than 18 are not in 3P.

(*) Indirizzo degli AA.: Z. ARAD and G. EHRLICH: Department of Mathemat-
ics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel; O. H.
KEGEL: Mathematisches Institut, Albert-Ludwigs-Universitit, D-7800 Freiburg
i. Br., Germany.

This research was supported by a Grant from the G.LF., the German-Israeli
Foundation for Scientific Research and Development.
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The Ramsey numbers R(2, 8,(1/2) (n® + 2)) are large and it is an
open question how to compute them [Grl].

For a more complete background and more detailed information
see [AEKL].

The goal of this paper is to obtain the following main theorem:

MAIN THEOREM. An abelian group G is 4P if and only if G is iso-
morphic to one of the following:

a) A cyclic group C, of order k where either k<45 or
k=48.

b) A non-cyclic group of order < 40.

¢) A non-cyclic group of order 45, 48 or 49.
d) The non-cyclic group Cs X Cy X Cy X Cs.
e) The non-cyclic group Cs X Cy X Cs X Cj.

The list in the main theorem is shorter if we delete the assumption
x # ¥y in the definition of the class 4P.

If At) denotes the largest natural number % such that {1, ..., n} ¢ N
can be split into ¢ set, none of which contains a solution of x + y = 2,
then by [Gr2, p. 88], A1) =1, f(2) =4, f(3) =13, f(4) = 44. The evalu-
ation of f(5) appears to be a difficult computational problem [Gr2].

If f*(t) denotes the largest natural number 7 such that {1, ..., n} ¢
¢ N is in P, then we proved in [AEKL] that f*(1) = 2, f*(2) = 8 and
*@3) =23.

In this paper we find that f*(4) = 66 and f*(5) = 195. Our conjectu-
re is that f*(5) =195 and f*(n) =3[f *(n — 1) — 1] for n = 4.

The number of partitions of {1, ..., 66} ¢ IN into 4 subsets is known
as the Stirling number of the second kind S(66, 4); it is larger than 4%,
This relation shows that the present super computers need more than a
life-time to handle all 4 partitions of {1, ...,66}. We constructed a fast
algorithm and found all the possible partitions of {1,...,66} that are in
4P; there are 29931 of them. We found also that f*(4) = 66.

The evaluation of f*(4) = 66 enables us to prove that a cyclic group
C;, of order k is in 4P if and only if either k < 45 or k = 48. Consequen-
tly, the largest prime power dividing the order of a cyclic subgroup of a
4P-group is 43. This fact leads us to the proof of our main theo-
rem,

It bears mentioning that there is a significant difference between
the cases » = 3 and » = 4. This fact forces us to construct a new more
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delicate algorithm to deal with the case n = 4. This new algorithm is
useful also in dealing with related problems; therefore we describe it
here in full detail.

PROOF OF THE MAIN THEOREM. We use freely the following two sta-
tement about 4P-groups:

() If a proper subset of H of G is not in nP, then G is not in nP.

(#+) Proper subsets of nP-groups are in mP for some m < n.

In order to prove constructively that a given subset of a group G is
in nP we constructed the following algorithm.

THE ALGORITHM. In order to constructively decide whether or not
a group G of » elements has an r-partition for a given r, we apply the
backtrack method.

By a sub-partition of the group G we mean a partition of a subset of
the group elements to at most » mutually exclusive subsets, so that the-
re is no solution to the equation x+y =2, x # y within any of the
subsets.

By systematically generating some collection of sub-partitions we
will either get a partition—a sub-partition which is a partition of the
whole group—, or no partition and thus know that no partition
exists.

Given a random function the following is a definition of such a
collection:

Our collection is the set of nodes of a tree T. The root of T is the
empty sub-partition. Given a node SP, select randomly an x not yet in
SP and join ut in turn to each subset of SP if possible, in order to get
at most r children of SP.

Pay attention to the following facts:

a) All partitions of G are leaves of T no matter which random func-
tion was used.

b) It may happen that SP is a leaf—has no children—and SP is
not a partition of G. Almost all leaves are of this type.

¢) If |SP| < r then {x} may be added to it as a singleton.
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We can look for a partition by searching the above tree. We will ge-
nerate each new node when we visit it. The first come-in-mind method
is the «width first search» method. We start with visiting the 0 level of
the tree—the empty sub-partition. After visiting all sub-partitions of
some level k (sub-partitions of k& elements) we will visit the next le-
vel—all children of the previous ones (sub-partitions of k¥ +1 ele-
ments). This method requires saving all elements of the previous level
and, hence, consumes space that may grow exponentially with the dep-
th of the tree.

Another method is the «depth first search» method. We search the
tree by examining the root and then all the sub-trees rooted on it using
the same method. This method involves saving the parent of each node,
except for the root, and thus the amount of space it consumes seemed to
be about proportional to the depth of the tree.

Starting with the root, we search subtree rooted on a node by:

1) generating the node,
2) processing it (in our case checking it for being a solution),

3) searching in the same way all subtrees rooted on the node’s
childs.

This implies that if pk was the last element to enter a sub-partition
SP then after checking all nodes in a subtree rooted on SP we transfer
pk to some other subset of SP in order to get a new sub-partition SP’.
After pk was located in all subsets it was able to join, and all the appro-
priate subtrees were searched we omit pk and try to transfer the re-
maining last joined element to a new subset and so on. The process is
terminated after omitting the first joined element.

A general algorithm of the above backtrack algorithm is described
in[RND].

The backtrack time-complexity is mainly affected by the number of
nodes in the tree and by checking whether or not the new element may
Jjoin a subset. In order to condense the tree we look for possible prunin-
gs. Namely, we ignore a sub-tree rooted on some sub-partition whene-
ver we know that it does not contain a partition. We number the sub-
sets of a partition from 1 to at most » and save a Boolean matrix, CAN,
which for each element not in the current sub-partition and for each
subset of the current sub-partition, indicates whether or not the ele-
ment may join the subset. When an element « joins a subset A, we up-
date that matrix by setting all solutions z of: zx =y, 2y =, and
2y = 2; ¥y in A (we pre-prepare a matrix that gives the 3 appropriate 2’s
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for each x, y) and z not yet in the sub-partition, to «false». This by itself
does not save time, but for each z not in the sub-partition we save the
number of subsets it may join—its «degree». When the element x will
be removed from the subset A (in order to be added to some other sub-
set of its parent, or in order to switch one of its ancestor nodes for that
node’s brother), we will update the degrees and the Boolean values
changed because of adding x to A. No re-computations are done since
we save the needed information we got on adding .

PRUNING. Pruning a sub-tree rooted on the current sub- partition
SP means ignoring that sub-tree. That is, we move the last joined ele-
ment « to another subset in order to get a brother of SP or we return to
SP’s parent. The following property A is a sufficient reason for
pruning.

A: on joining x to the sub-partition SP, some z not in SP gets the de-
gree 0.

We will ensure that A will never even be about to occur since we will
use a stronger pruning rule.

Instead of selecting randomly the new joined x we will select just
one of the degree 1 elements if there are such elements not in our
sub-partition.

We keep the following property B as an invariant of our algori-
thm.

B: There are no 2-degree 1 elements outside the sub-partition such
that each of them can, and hence must, join the same subset but one
cannot join it if the other one does.

We claim: B is true when a new element x is about to join SP in or-
der to generate SP'.

If B is false then we prune the sub-tree rooted on SP’, since SP’
cannot be completed to a partition of G. Under these circumstances, A
cannot occur since if z is a degree-1 and x was selected to join SP, then
according to our method, x is a degree-1, B is true and hence A is
false.

Therefore, when joining x and updating the degree of some z we
check if it should become 1. If it should, and it must join some other
subset a’, we check if B is about to be violated as to that a'. If it will be
violated, then we prune the tree rooted on SP'.
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Saving intermediate states: Since the Algorithm consumes a lot of
time, for some cases days and for others much more, we save interme-
diate states of the algorithm each time we visit a node in some fixed le-
vel, for instance, 8 or 12.

The program was written in standard Pascal, and runs on a variety
of computers: SUNs, Vaxes, and the RISC machines IBM RS/6000 and
Decstation 5200, all under the UNIX opperating system. Each of the,
up to 10, computers was assigned the lowest priority (there were some
other users around).

Estimating running time:

The following two cases were checked on an IBM PC AT 18 mhz,
Turbo Pascal 6.0.

3-Partitioning of C15: 83 partitions were found in 0.17 seconds.

4-Partitioning of C48: 2301 partitions were found in 37.5 hours.
7984 nodes at level 10 were visited.

This means that 7984 sub-partitions of 10 elements were generated du-
ring the whole process. This number is roughly the number of level 10
nodes we found for every other case of a 4-partitioning.

By measuring the time some level 10 nodes are generated a very
rough estimation for the total needed time is known.

Subtrees rooted on nodes of the same level may be of very different
size.

In the above C48 case some such subtrees were searched in less than
a second, others in half an hour.

If G=C; X Cy X Cy X ... then the smaller the size of the groups
C;, the longer is the time needed for checking it. Checking the case
Cy X Cy X Cy X Cy X Cy X Cy, seemed to require several years on the
RISC machines which are about 100 times faster than the IBM PC
AT.

In case the running time seemed to be long we let several compu-
ters work in parallel. Each of them starts from some node and stops
on arriving to some other node. E.g. the input file describes a sub-
partition of 6 elements and the program halts when the 4th element
to join the sub-partition, P[4], moves to another subset in order to
generate a new sub-partition of 4 elements. That new sub-partition
defines the node another computer already got as his input.
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Program Outline.

REMARK. Comments clarifying the program are given within curly
brackets { }.
Constants
Some parameters of the program:
Should it work on groups or integers 1..n.
How many subsets should be in the partition.
Is z+x =y allowed when «, y belongs to the same subset.
Is one partition enough, or do we want all partitions.

Data-structures (variables):
A file, GROUP-FILE, defining the group and the state of the program.
N: integer; {group size}
UNFIT: array [0..n,0..z,1..3] of integer;
{The first layer of UNFIT, UNFIT[**1] represents the group
table.
UNFIT [i,4,t1 =k, t =2, 3 > either i*k=j or jxk=1
k = 0 means: ignore this entry.}
r-Partition of k¥ < n elements out of all » group elements.
We keep it in 2 forms:
1: (k, P, SETOF)
P: a permutation of the integers l..n.
SETOF': a characteristic vector, defines for each Pli], i<k
to which of the r sets of the partition it belongs.
2: r stacks.
CAN: array [0..n, 1..r] of boolean;
{shows for each element not in the partition and each set whe-
ther the element may join the set}.
topl: Integer; {defines the set of all degree-1 elements not yet in
the partition.
Plk+1]...P[topl] are all degree-1 elements not yet in the
sub-partition.
elements of P are swapped in order to keep this arrangment
of P}.
For each element P[k] enters the sub partition we keep a set of all
pairs (wrong,t) such that CAN[wrong,t] is turned to false because
Plk] entered the sub-partition.
We keep those sets on a long enough array. Each set occupies one
new segment of the array.
procedure elmntgen;
{Generating a sequence of all group elements, each element is re-
presented by an array of nofecoord integers 0 < grpelmnt|k, i] < or-
der[i].}
procedure bltunfit;
{Building the table UNFIT}



64 Z. Arad - G. Ehrlich - 0. H. Kegel

procedure showpartition;
{output the r-partition of the group}
procedure savedata;
{Some base data enbales us to recover the program state, in case of a
computer shut-down. Besides the description of the group and some
parameters, it saves the current sub-partition.}
procedure getdata:
{Gets what was saved by savedata and use if for initiating varia-
bles}
procedure check;
{Checks if the current state is legal: .
p is a pemeutation,
ip is its inverse,
no 3 elements «, ¥ z located in the same subset solve x * y = 2,
If each of the defree-1 elements «, ¥ must join the same subset ¢,
then x and y can join it together
begin {main program}
getdata;
elmntgen;
bltunfit;
check;
{OUTER-LOOP}

{INNER-LOOP} {pk is an element about to enter the subset ¢}.
{Search the subtree rooted on the new sub-parti-
tion}.

add pk to subset ¢: update the two partitions representations.

update array SETOF: SETOF[pk] < t;

update STACKIt]: top[t] < toplt] + 1; STACKIL, toplt]] « pk;

if k = backing-level then savedata;

if k = n then showpartition (and HALT if you like).

{Preventing wrong elements from joining the set .}

for stackti « all elements already in set ¢
begin
for wrong < UNFIT[pk, stacktii] i = 1,2,3
begin
if CAN[wrong,t], wrong was able to join set ¢,
and wrong is not in the sub-partition then
begin
if now wrong can join just set ¢t then
if (another element that must join # and still
another such element or one that is already
in ¢t prevents wrong from joining tt)
then pk can’t join set ¢ — goto BACKING
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else
{wrong becomes a degree-1 element.}
Add wrong to the degree-1 elements segment
that follows the & location at P.
{Prevent wrong from joining set t.}
CANJ[wrong,t] « false;
add (wrong,t) to the set of denied elements.
end; {preventing wrong elements}

ke—k+1;

Pk « Plk];

t < a new set that pk can join {CAN[pk,t] = true}

Repeat INNER-LOOP

{END INNER-LOOP}
{BACKING}

k « highest i < k s.t. P[i] has to be located in some new set ¢,
{While decreasing k to find the new k, remove each P[k]
from its old set (only the stack has to be updated).
All elements that were denied joining some set by some
element that now was removed from the sub-partition
should be allowed again to join the appropriate set.}

If k=0 then the algorithm terminated — print a note and

HALT.

pk < plk];

t < a new set that pk can join {CAN[pk,t] = true}

repeat OUTER-LOOP

{END OUTER-LOOP}
end program.

The algorithm’s Pascal code will be sent to the interested reader
upon request.

Let us denote our algorithm by AL.

By AL the partial semigroup {1, ...,66} c N has exactly 29931 4P-
partitions. All the 4P- partitions are extension of the following four
subsets:

A:1,2,4,8,11,22,25.
A,:3,5,6, 17,19, 21, 23, 51, 52, 64, 65.
As: 9, 10, 12, 13, 14, 15, 17, 18, 20, 54, 55, 61, 62.

Ay 24, 26, 27, 28, 29, 30, 33, 41, 42, 47, 49.
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For example one of the 4P-partitions is:
Af: 1,2 4, 8 11, 22, 25, 37, 40, 43, 50, 53, 56, 63, 66 .
A% 3,5,6,17, 19, 21, 23, 34, 35, 36, 51, 52, 64, 65.
A9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 54, 55, 57, 58, 59, 60, 61, 62.
AfF: 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49.

The partial semigroup T = {1,2,..,67} ¢ N is not in 4P as AL sho-
ws. Consequently, f*(4) = 66. In each of the 29931 4P-partitions, there
exists a subset all of whose elements are larger than 23.

LEMMA 1. If G is a 4P-group then G is finite.

PrOOF. As mentioned in the introduction, this Lemma was proved
in [AEKL].

LEMMA 2. Ifa group G is isomorphic to one of the groups in the li-
st of the main theorem a)-e), then G is a 4P-group.

Proor. Examples of 4P-partitions of groups from the list of the
main theorem a)-¢) can be found in Appendix A. We found these parti-
tions by AL. We leave to the reader to find examples of 4P-partitions
of abelian non-cyclic groups of order < 28.

LEMMA 3. Cyclic groups G are in AP if and only if G = C;,, where
either k < 45 or k = 48.

Proor. By Lemma 1 and 2 if G is isomorphic to C, with either
k <45 or k =48 then G is in 4P.

Using AL we found that C,, for k = 46, 47 and 49 < k < 67 are not in
4P. If k = 67 then C; is not in 4P since f*(4) = 66. Thus Lemma 3
holds.

Let us denote the abelian group C,, X ... X C,, by (n,, ..., n). By
AL and Lemma 12 we found that the groups in the list of Lemma 4 are
not in 4P.

LEMMA 4. The following abelian non-cyclic groups are nmot in
4P.

a) C, X C, where p is a prime such that 11 < p < 43.
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b) The groups of this table:

Order Groups
44 =22-11 2,2,11)
50 = 2-5° 2,5,5)
52 =22-13 2,2,13)
54 =238 @,3,3)
56 =287 2,2,2,7 (2,47
60 =2%-3-5 2,2,3,5)
63 =327 3,3,7
64 = 26 22,16) (2,32) (2,48 @68 (2,22,8)
22,2,2,4) (2,2,4,4) 4,4,4) (4,16)
68 = 2217 2,2,17)
72 =28.32 2223,3) 2,3,3,4) @3,3,8) 22,29 2,4,9
75 = 3-5° 3,5,5)
76 = 2%-19 2,2,19)
80 =2'-5 22,45 22225 445 2598
81=3* 3,3,9 3,270 99
84 =2%2.3-7 22,37
88 =2%-11 222,11) (2,4,11)
96 = 25-3 222223 2223,4 @238 (2316)
@,3,4,9)
98 =272 2,77
99 = 32-11 3,3,11)
100 = 22-5? has a subgroup of order 50 either cyclic or non-cyclic
117 = 32-13 @3,3,13)
125 = 58 5,5,5)  (5,5%)
185 =335 3,3,3,5) 3,59
147 =372 3,7,7
162 =2-3* 2,3,8,3,3)
175 = 5.7 5,57
245 =57 5,7,7
343 =17 7,77

LEMMA 5. The set ©(G) of prime divisors of a 4P-group is included
in T=1{2 8,5,7, 11, 18, 17, 19, 23, 29, 31, 37, 41, 43}.

Proor. This is an immediate consequence of (++) and Lemma 3.

LEMMA 6. If G is an abelian 4P-group such that p® | |G|, p a pri-
me, then p € {2,3,5,7}.

PrOOF. Lemmas 3 and 4 yield Lemma 6.
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LEMMA 7. If G is an abelian 4P-group then
@) - {2,3,5}] < 1.

PROOF. Assume that |=(G) — {2,8,5}| =2 then G contains a cyclic
mP-subgroup for m < n and of order = 49; this contradicts Lemma 3.
Thus |=(G) - {2,8,5}| <1.

LEmMmA 8. If G is an abelian mon-cyclic 4P-group then either
|G| |2°8%57t? or |G| |2%8%57-p.

Proor. Lemmas 4 and 7 imply Lemma 8.

LEMMA 9. If G is an abelian 4P-group and for the prime p,
pl1Gl, p =23, then G =G,.

Proor. Lemmas 3 and 6 imply our Lemma.

LEMMA 10. If G is an abelian AP-group, with a partition to 4 sub-
sets A, B, C, D, then each subset of the partition contains at most 16
involutions.

Proor. W.lo.g. assume that A contains 17 involutions {z, yi, ...
cs Y16} CA.

By assumption {xy;,...,¥6} NA=0. Wlo.g. assume that
|{xy1, ..., 16} NB| 26 and {xy,,...,xys}cB. By assumption
{¥192, Y193, ---» Y1¥s} N (AU B) =@ and w.lo.g. we can assume that
{¥1Y2, 193, 194} cC. Furthermore {y,y:, ys¥s} N(AUBUC) =0
and consequently {¥sys, 294} ¢ D. Therefore y3y,¢ (AU BU CU D),
a contradiction.

LEMMA 11. Ifthe 2-group G is in an elementary abelian AP-group
then |G| < 64. Furthermore if |G| =64 then w.log. |A|=|B|=
= |C| =16 and |D| = 15.

ProoF. Lemma 11 is an immediate corollary of Lemma 10.

LEMMA 12. The abelian group G = Cy X Cy X Cy X Cy X Cy X C3 is
not a 4P-group.

ProoF. The group G contains 31 involutions 2, ..., &3, 2 elements
9 and 62 of order 3, 62 elements of order 6, a9, ..., 3,6, ;62 ..., ¥3 6%
and the unit 1.

Let A, B, C, D be a partition of G to 4 subsets. W.lo.g. A contains
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at least 22 nonidentity elements of order 2 and 6 denoted by x,, ..., ;,
Y10, ..., ¥;0, 2,62, ..., 2,6%, where x;, y;, 2, are involutions, i +j + k =
>22 and 0<2,j,k<22

As in Lemma 1 we can construct an element aeGanda¢ AUBU
U CU D, a contradiction.

LEMMA 13. The following abelian groups are mot in AP.

a) C3 X C3 X C3 X C3 X Cy,
b) Cy X Cy X C3 X Cy X Cy,
C) CZXC2X02XC2X02><CZ.

ProOF. a) If G=C3%x C3 X C3 X Cy X C3 then w.lo.g. A contains at
least 61 elements ux, ..., ¥5;. By assumption the 60 distinct elements
Xy %o, ..., L1205 ¢ A.  Thus |(xy, ..., )| =121 and consequently
(%1, ..., ) = G. Wlo.g. assume that (x,, ..., xs) =G. Hence G =
= (x;) X ... X (%g). Using AL and the fact that the generators of G
2, ..., vgeA we found that G=C3 X C3 X C3 X C3 X C3 is not in 4P.
Thus a) holds.

b) If G =Cy X Cy X Cy3 X Cyg X C3 then w.lo.g. A contains at least
27 elements. If |A| > 27 then the same arguments as in a) imply that
G = (x;) X ... X (x5) where x,, ..., x5 € A and then AL yields that C, X
X Cy X C3 X C3 X Cy is not in 4P. Therefore we may assume that |A| =
= |B| = |C| =27 and |D| = 26.

If A= {x, ..., 2} and (xy, ..., Zz) = G then the same arguments
as in a) together with AL imply that G is not in 4P. Therefore we may
assume that A = {x,, ..., Zx;} and (&, ..., ¥x)c G. Since the distinct
elements x,%;, ..., £;X; ¢ A we have |(x, ..., ¥x)| =54 and w.lo.g.

(21, @3, X3, 24) = Cy X C3 X C3 X C3.  Consequently, (x;) X (xz) X (23) X
X{(xy)=Ce X C3xCy3xC3, |A|l=|B|=|C|=|D|+1=27 and
Xy, %2, X3, &4 € A. These last three results and AL imply that G is not in
4P and thus b) holds.

¢) Assume that G=02XCZX02>(02XCZXCZ is in 4P. Then
by Lemma 11 |A|=|B|=|C|=|D|+1=16. Denote A=
={wy, ..., ¥} and ye BUCUD. If y # x,;Vi, j < 16, i # j, then the
2-elementary abelian group G is a 4P-group also for the partition
AU{y}, B~{y}, C-{y} and D~ {y}. But |AU {g}| =17 con-
tradicts Lemma 10. Therefore for every y e BUC U D there exist
i, J, 1#j, 1<4i, j<16 such that y =x;x;. Thus (x;, ..., 216) =G
and w.lo.g. (x;) X ... X (xg) = G. Since ;, ..., ¥g€ A the 15 elements
x;xj¢ A, where 1 <14, j<6, i#j. At least 5 of these elements are
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wlog. in B. Let X={a,x,|m ne{l,...,6}}cB be the set of
these 5 elements.

CasE 1. Xc{xnx,|m, ne{l,2, 8, 4}}.

Clearly X ¢ {x;,, @, X3, X124, XzX3, Xo4, X324} N B and consequen-
tly G is not in 4P.

CASE 2. Xc{xnx,|m, ne{l,28,4,5}}

Assume that the index m shows up in 4 pairs. W.l.o.g. assume
m=1.

Then {x,x,, *; %3, &, 24, 25} CX and since G is in 4P, we obtain
|X| = 4, a contradiction.

Assume now that the index m shows up in pairs. W.l.o.g. assume
that {xlwg, X, %3, x1x4} QX and X125 ¢ X.

Therefore |X N {xyx5, X35, €425} | = 2. W.lo.g. assume that X =
= {@, %z, @1 %3, X1 24, T2 %5, T35} CB.

Therefore we have:

(i) Ly oony xeeA;
(i) X = {w 2, %1 %3, 1 %4, X225, X35 } C B;
(iii) |A| =|B| =|C| =|D| +1=16.

AL and (i), (ii), (iii) imply that G is not a 4P group, a contradic-
tion.

Thus we may assume that both indexes m and » show up only in 2
pairs.

Therefore we have (i), (i) and wlo.g. X = {x;x,, 2,3, X224,
%45, £325}. Then AL implies that G is not a 4P-group, a contradic-
tion.

CasE 8. X={xn,x,|m ne{l,28,4,5,6}}.

Assume that the index m shows up in 5 pairs. W.l.o.g. assume
m=1.

Therefore we have (i), (ili) and X = {x; %z, &, &3, &, T4, Ty X5, L1 %6}
Then AL implies that G is not in 4P, a contradiction.

Assume now that the index m shows up in 4 pairs. W.l.o.g. assume
m = 1.

Therefore we have (i), (iii) and X = {22, @, X3, ; %4, %, 25, T, X6},
where ie{2,8,4,56}. Hence AL implies that G is not in 4P, a
contradiction.
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Assume now that the index m shows up in 8 pairs. W.lo.g.
assume that m = 1.
Wlo.g. we have 2 cases:

() X = {® 15, ¥ 3, X, X4, X2X5, T2%6} (1 and 2 appear in 3 pairs)
(#x) X = {@y%5, 2, %3, T, X4, X2 X5, XT3%} (only 1 appear in 3 pairs).

In both cases the combination of AL and (i), (iii) imply that G is not in
4P, a contradiction.

Therefore we may assume that both indexes m and n appear at most
in 2 pairs.

Wlo.g. we obtain that X = {x,x,, 2,3, 222, X325, X4%}. Thus
AL, (i) and (i) imply that G is not in 4P, a final contradiction.

Consequently, Lemma 13 holds.

PROOF OF THE MAIN THEOREM. Assume that G is an abelian 4P-
group of the main theorem type.

If G is also of Lemma 8 type then Lemmas 2, 3, 4, 11 and 13 imply
that <2, y<2 <4, a<b.

The detailed information of our lemmas force G to be isomorphic to a
group from the list which appears in the main theorem a)-e).

REMARKS. Our set is {1,2,..,n} ¢ N with the addition +.

We found by computing the following facts:
1) f*(2) = 8 and there exists only one solution for 2P.
A: 1248
B: 3561
2) f*@3) = 23 and there exist only 3 solutions for 3P.
I A 1248111622

356719 21 23
910 12 13 14 15 17 18 20

356719 21 23

B
C:
aIn: A: 1248111722
B
C: 9101213 14 15 16 18 20
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(mI): A: 12481122

B: 3567192123
C: 91012 13 14 15 16 17 18 20

Each solution of n = 3 is an extension of a solution for » = 2. In par-
ticular, the first element of the third subset C is 9 = f*(2) +1.

3) f*(4) = 66 and there exist exactly 29931 solutions for 4P.

Let k = f*(n). Define R(i,j); i,j <k iff for each n- partition of
1...k, i belongs to the same subset that j does.

DEFINITION. The root of nP is the collection of the equivalence
classes of size >1 of R ordered according to their minimal ele-
ments.

EXAMPLES.
(1) The root of 2P is

A: 1248
B: 3561
(2) The root of 3P is
A: 12481122
B: 3567192123
C: 9101213 14 15 18 20
(3) The root of 4P is
A: 1248112225
B: 356171921 23 51 52 64 65
C: 91012 13 14 15 17 18 20 54 55 61 62
D: 24 26 27 28 29 30 33 41 42 47 49

CONJECTURES. @) The root for nP is an extension of the root for
n-1P.

b) A solution of nP is an extension of a solution for (n — 1) P. In
particular, the smallest number in the n-th subset of an nP solution is
f*m—1)+1.

¢) f*(n)=8[f*(in—1)—1] for n =4 (or f*(n) =21%4-3""3+15
for n = 3).
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The conjectures are true for 3P and 4P. Calculations show that the-
re exist 3P solutions which cannot be extended to 4P solutions.

In fact the mentioned 3P solution (I) can be extended to 8238 4P sol-
utions. The 3P solution (II) cannot be extended to 4P solutions. The 3P
solution (IIT) can be extended to 21693 4P solutions. The total number
of 4P solutions is 29931.

EvALUATION OF f*(5). If we start from an arbitrary 4P solution
and try to extend the solution to 5P solution there is a chance that this
4P solution cannot be extended to the 5P solution.

Therefore we prefer to start from the root of 4P. We will assume
that the above-mentioned conjecture a) is true.

The numbers:

16, 31, 32, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 48,
50, 53, 56, 57, 58, 59, 60, 63, 66

are not in the root.

If we put 16 in the subset A of the root then we know that there
exist 8238 extensions to 5P solutions.

If we put 16 in B we have 0 extensions. If we put 16 in C we have
21693 extensions to 5P solutions. According to our conjecture b) the
smallest number in D is 24; thus if we put 16 in D we have 0 extensions.
Thus statistically the best possibility is to put 16 in C.

Computing brings us to the ideal 4P solution:

A: root, 50,63
B: root, 53, 66
C: root, 16, 56, 57, 58, 59, 60

D: root, 31, 32, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 48

For exampLE. If we put 31 in (4, B, C, D), the possible extensions
are (3456, 0,0, 18237), respectively. Therefore we decided to put 31
in D.

Extension of this ideal solution and using other ideas brought us to
the partition which illustrates that f*(5) = 195. Our conjecture c) is
that f*(5) = 195.
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APPENDIX A

4P-groups of small orders.

Cyeclic groups of order < 15 are 3P-groups by [AEKL] and conse-
quently they are 4P-groups.

Cyclic groups C;, of order k, where k is either 48 or 16 < k < 45 are
4P-groups as shown in the following list:

n =16 n=17
12610 14 12611 14
45178 45815
39111315 3712 16
12 9 10 13
n=18 n=19
1261115 1269 13 17
45713 14 457814
38910 310 11 15 16
12 16 17 12 18
n =20 n =21
12611 14 18 1261114 19
45815 4581516
379131719 3791318
10 12 16 10 12 17 20
n =22 n =23
12611 14 1269141721
4581516 17 458 15 18
710 12 18 21 371112 16 20
391319 20 10 13 19 22
n=24 n =25
12581215 19 22 125815
3791113 17 21 23 910 11 12 13 14 16 17
46 18 20 3718 23 24
10 14 16 46 19 20 21 22
n =26 n =27
1258111518 21 24 125811152225
379131719 23 25 46791718 20
4 6 20 22 310 12 19 24 26
10 12 14 16 13 14 16 21 23
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=28

1258121519 26

910 11 13 14 16 17 18

3 20 25 27

46721 22 23 24

=30

1258111518 22 25 28
3791317 19 21 23 27 29
6 10 12 20

414 16 24 26

=32

125811152124 27 30
912 13 14 16 17 18 19 20
310 22 29 31

46723 25 26 28

=34

12581115 22 29 32
467917 25 27 28 30

3 10 19 24 26 31 33

12 13 14 16 18 20 21 23

= 36

1258111518 21 25 28 31 34
46791719 27 29 30 32
310 12 24 26 33 35

13 14 16 20 22 23

=37

125811152225 29 32 35
4791217 20 28 30 33 36
3 10 18 19 26 27 34

6 13 14 16 21 23 24 31
=38

1258111527 30 33 36
4679171929 31 32 34
3 10 12 21 26 28 35 37

13 14 16 18 20 22 23 24 25

8 11 15 18 21 24 27
912 17 20 22 25
419 26 28

2

12 15 19 22 26 29
416 17 27

18 20 28 30

23 24 25

11
02

= 0O = 00

8 11 15 18 22 25 28 31
16 17 20 24 27
19 30 32

221 23 26 29

- O

0

25811 15 24 27 30 33
914 16 17 18 19 21 29
320 22 32 34

10 12 23 25 26 28 31

[ =
ES
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6 11 15 18 23 30 35 39

12 14 16 25 27 29 36 38 40
013 17 19 22 24 28 31 33

9 20 21 26 32 34 37

- U1 DN

-3

11519 23 27 31 37 40
18 20 22 24 29 34 39 41
12 14 17 25 28 30 32 33
21 26 35 36 38

15 20 23 28 31 34 41

14 16 17 26 27 29 37 38 39
122 24 33 35 36

8 25 30 32 40 42

58 11 15 29 33 36 39 42
9 12 17 22 27 32 35 37 40 43
4 18 19 25 26 30 34 41
6 20 21 23 24 28 31 38

—
bt
[o—y
(VM
—
>
[VV]
Pk
[
N
[V
>
[N
=]
1=
—
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n =48
12691419 22 26 29 34 39 42 46
3451517 23 24 25 31 33 43 44 45
7 8 10 12 21 27 36 38 40 41
11 13 16 18 20 28 30 32 35 37 47

Abelian non-cyclic groups of order < 28 are 4P-groups. We leave to
the reader as an exercise to find examples of 4P-partitions for these
groups.

The following 4P-partitions illustrate why the last 19 groups from
the list of the main theorem are 4P-groups.

Let us denote the generators of Cm; X ... X Cm;, by , 4, 2, 7, 8, ...
respectively. Then 4P partitions of the following groups are illustrated
as follows:

Cy X Cy X Cy X Cy X Cy

size of group = 48

s s r 2z 2rs ys? yz x xzs wyr wyzrs

rs rs? 2s 28% yzs yzs® xz wzs? xyer xyzrs®

2r 2rs? y ys yr yrs yrs® wy xys xys® wyz wyzs wyzs®
yzr yzrs yzrs® xs ws® xr wrs wrs® wzr xers xzrs® ayrs wyrs?

Cy X Cy X Cy X Cy

size of group = 40

rrt z 2rd yar yert xzr xerixyer ayert

r2 3 2r yer? yer® ar? xr® oyr? oyrd

ar? ot oy yr yr? yrd yrt x a2

yz xr xrt xzr? xerd xy cyr xyr® xyz xyer? cyerd

Cy X Cy X Cy

size of group = 36

222 2" y y2® y2® x x2® x2® ay2® oy’
2% 2% 2% 2% yz y2f w2 w2® wyz wy2®

28 y2? y2t y2" wy xye® ayz®

y2b x2® xzt x2® x2" xyet xy2®

size of group = 54
wz 2y you y? y?2lu x x2®u xyiu xy?e® x® x’zu xlyu xlyz
zu 2%u yu yz2u y2u y2ou xz? wy wy?azu iz xiy2du xiy?
yz y22% xu wzu vyu wyz wyz? wyzeiu x?22u xiy2? xiyiu
22y%z ply2s?
y2? y?z xz xyzu vyziu xy? wy?z®u x?2% x?y xiyau x?yZzu xPy?2iu
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C3 X Cy X C3 X Cg

size of group = 81

uu? z 22 y y2?u? y? y22u x x22u’ wyu vyz vyleu® xy?2%u x? xizu
wlyzu® zlyztu xiyiu’ wly’e’

u 2u? 2%u 2%u? yu yu? y?u y2u? wu veu xyz? wyz?u® xyiu cyiazu
w2u? x222u? xyu? xy?u? x%y2z x?y2zu

yz yeu Y22 yziu y?z y2zu? y22? y2z2%u’ wu? oy wyu® xyzu xyu xy
o?u xy o%y? oiyiu wiyiou® xlyiziul

yeu? y2z2u wz weu? x2? w2lu wyzu? xyiu? wy?z wxy?z2? ay?22u’? xiz
z2zu? x22% x22%u x2yu xlyz xlyeu xiyz? x?yiz%u

2

C3 X C3 X Cy X Cy

size of group = 36

rzy yar y? x woyr vyz 22 xier 22y%r 22y

2r yz y%z y2er xz xer xyzr vyiz xy’ar x?z xPyz xlyer xy3er
yr y’r oy wy? z’y @’y?

or xyir a?r xiyr

CyX C3x Cy

size of group = 36

222 y y? x ay’z x? xlyz x2y222 w3yt

yz y2? y2z y22% xy wyz xyz? x%z x22% xiy
wz 2% x%y x?y2? x%y? x%y?z x® 3z 2322
oy ay?e? oty xyz

2 x3y2z x3y2z2

Cy X Cy X Cy

size of group = 32

2y y?® x xydz v2y?z x%y® 2% 23y2

vz y® y®z wy® oyPz oly® ody® xiylz

yiz vy wyz x? 1%z x%yz x2ydz ©3y® x3ydz
2z xy® x%y x%z2 xiy

2,3

Cyx Cy
size of group = 32

y y2 x x2 x3y3 .174 x5 3

y x5y

y3 xy2 x2y2 x3y2 x4y x4y3 x5y2 xGyZ x7y2
xy xy-?a x3 x4y2 x5 x7 x7y x7y3
ny x2y3 wBy 275?/3 xG 506,7/

Cis X Cy

size of group = 32

y x 23y x%y «® 212 xBy
oy @3 2t xby 210 yu'® £y
©? x%y 2° xoy x! xly xly o
oy 2° &7 27y 20 % 210 xy

14
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Cy X Cy

size of group = 36

Y y2 y5 xy xy4 x’y” x2 x2y3 x2y6 x3y2 x3y5 1332/8
yi ?/6 yS x :c?‘y“ :‘8?3,!/3 \
y* YT wy® wy® ay® 2yt oy
xy3 xyG x2y x2y2 x2y5 x2y7 x2y8 x3 x3y3 $3y6

4 7

Cs X Cy X C,

size of group = 32

zy x xyz 2 23z vlyz %y «b

yz xy x3y x3yz x®yz &7 x'y

vz 2%z 22y x%yz v°2 x%2 2%y xPyz 272
x® xt oty x® 2"yz

Cy X Cy X Cy X Cy

size of group = 32

rzy yrx xer xyz x2 xiyr

2r yz xyzr x2z x%2r xlyz x® xdyer
yr xr xz x2r xlyr xlyer x3r 232
xy xyr xiy x3zr xdy xiyz

Cy X Cy X Cy X Cy X Cy
size of group = 32

S T 28 2r Y Yrs Xz Xzrs XY XTYrS
YS Yr XS Tr XTYS TYr TYZ TYZS LYRT TYZTS
X 2TS Yz Y2S YRr YIAYS & 2rs X2S XZT

rs

C3 X Cy X Cy

size of group = 45
2 2% y y? x xyz xy?2? 1% xlyz® x?y?zt
3 2 2,3

23 2% yz y22 w2? xy ay 22y x?y?
y2? y2d y22® Y28 wm2d wye? wyed oyl x%2? olye? alye? xlylsd
yzt y22* wz w2t wyzt xyiz wy’zt xiz x%2t wlye viyzt xly22

CyX Cy X Cy X Cy

size of group = 48

2 2

rré zy ar? xz xyer x? xlyer? x%r 23y xiyer?

zr zr? yz yer yar? ar xer x?z wiyz wlyer x3r? wlar?

yr yr? xzr? axy ayr ayr? syer? xy adzr xdyr o3yr? xdyer
w wyz xr x2r? x?zr x2r? xlyr xiyr? o3 x32 2%yz

79
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CiXCyX Cq
size of group = 48

22% y y? @ oyr oyt af xlye® wlytz wdylz wdydel
vz 42 y® 4z yi2® wy wye® iz x%2® wdyd x%y%2

%z y22® ay® wy’z wy® aylz ayda? @by xdyz woye? oty wdytel
vz 222 2%y xlyz x2y? x?yz x%y22? xiy® x%y322 x® xd2 4322
C;x Cq

size of group = 49

R O MR R AR R

VeV, VA E el Gl ol Z Ty TV oY,

Yy 'y xy Yy 7Y Y Yy Yy Yy ry

22y® 22y 2d x%y? dy® xdyS ot aty? xiyt xiy xby? Syt
Csx CZX Cs

size of group = 48

z 22 y x xyz? 232
yz y2° wz x%z 2%
xz?

2 23y xt 252 2%y 27 2"yz
y viyz vlyz? x% x522 x%2% 1722
zyz x2 xlyz x?yz? x%2 x3yz? x'z x'2? xPyz 8 7z 2"yl

4

xy 1222 22y x3yz x%y2? x5z xSy xbyz xCy2? xTy

The partial semigroup {1,...,195} ¢ N has a 5P-partition, and con-

sequently, f*(5) = 195 as illustrated here:

A:

B:

12481122 25 50 63 68 136 149 154 159 168 177 182 189
192 195
3

56719 21 23 51 52 53 64 65 66 137 138 139 150 151 152 163
164 165 179 180 181 193 194

910 12 13 14 15 16 17 18 20 54 55 56 57 58 59 60 61 62 140
141 142 143 144 145 146 147 148 183 184 185 186 187 188
190 191

24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 153 155 156 157 158 160 161 162 166 167 169
170 171 172 173 174 175 176 178

67 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
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