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On Vector Bundles whose General Sections

Have All Projectively Equivalent Zero-Loci.

E. BALLICO (*)

The starting question of this paper (as in [3] and [4]) is the following
one: what can be said when all general «sections» (linear section or
hyperplane sections or zero-loci of sections of a given vector bundle
or ...) are «equivalent»? Here «equivalent» could have many different
means: same moduli or ...; in this paper (as in [3] and [4]) the «sections»
can be identified with subvarieties of a given variety P (usually a pro-
jective space or a Schubert cycle) and «equivalent» means «in the same
orbit for the action of Aut (P) (or of another suitable group PGL(x))».
Since a group acts naturally on the objects under study, it is natural to
use theorems on existence of quotients by actions plus the trivial fact
that a prevariety in the sense of Serre is a T1 topological space (here we
work always over an algebraically closed field K). On the subject we
want to stress an important theorem of Seshadri ([13]): the existence of
a so-called Seshadri covering for group actions with finite stabilizers
(see also [6] and papers quoted there for the precise statement and for
related applications). However in this paper almost always we need
much less (and probably always). In this note we use essentially two
tools. The first tool is the (elementary) general set up written in [4],
§ 1; for the second tool (i.e. monodromy arguments) see the first part of
§ 1. In § 2 we consider the main example considered in this paper: rank
2 vector bundles spanned (by 4 sections) on an integral surface, proving
the following result (the reader will find just after its statement a brief
reminder of the notions involved in the statement).

THEOREM 0.1. Let X be an integrals projective surface (over an al-
gebraically closed base field K) and E a rank 2 vector bundle on X As-
sume the existence of a vector space W c H ° (X, E ) zuith dim (W) = 4, W
spanning E and such that the morphisms i from X to the Grassman-
nian G (2, 4) c P5 induced by (E, W) is an embedding. Set c : = C2 (E).

(*) Indirizzo dell’A.: Department of Mathematics University of Trento,
38050 Povo (TN), Italy.
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Assume that i(X) is ordinary and that there is s E W with zero-locus (s)o
zero dimensionaL and union of c - 2 smooth points of X (with reduced
structure) and a length 2 scheme supported by another smooth point
of X. Assume that all the general (s)o are reduced and projectively
equivalent. Then c ~ 28.

Here remember that a section s of the tautological quotient bundle
U on the Grassmannian G(2, 4) (the quadratic hypersurface of P5) with
0-locus (s)o of codimension 2 vanishes on a plane, II. Consider X as em-
bedded in G(2, 4) by the morphism induced by the 4 given sections of E
and the universal property of the Grassmannians (hence E will be the
restriction of U to X); in general II fl X will be a finite set by a Bertini
type theorem ([9]); the assumption of 0.1 means that, varying s (i.e. 10
we get projectively equivalent (under Aut (P~) finite subsets of a plane.
To motivate the restriction «dim (W) = 4», remember that a lemma of
Serre (essentially [1], Th. 2 at page 426) gives that if E is spanned by
its global sections, there is a subspace W c H° (X, E) with dim (W) ~
~ (rank (E) + dim (X)) and spanning E. An integral subvariety V of a
projective space P is called ordinary if it is reflexive (see [10] for this
notion) and it has a hypersurface in the dual projective space P* as dual
variety V*; every variety is reflexive if char (K) = 0. Note also that if
C2 (E) is very low, say c2 (E) ~ 3 and almost always if c2 (E) = 4, then all
general (s)o must be projectively equivalent (since any 3 distinct points
on a line are projectively equivalent and the same is true for 4 points in
a plane if no 3 of them are collinear); pairs (X, E) with very low c2 (E)
can often be classified (see the references in [2]), and hence may be con-
sidered «few» and «known».

Using only the general set up, it is very easy to show that, under as-
sumptions weaker than the ones of 0.1, the triple (X, E, T~ has very
strange properties. To prove exactly 0.1 we find useful to use some mo-
nodromy argument (in the style of [7], (or see [8], chapter 3; in positive
characteristic, see [5] and [12])) for sections of vector bundles. These
monodromy arguments are the second main tool of this paper; we think
that they an independent interest. We collect more than we need in § 1.
The very short proof of 0.1 written here in § 2 uses only in a very minor
way the general set up. We stress again that 0.1 is only a sample result;
similar results (neither weaker nor stronger than 0.1) could be proved
using much more ink and no new idea (only the general set up), and
without even mention the word «monodromy».

Then in § 3 we consider the case of a plane curve C, but assuming
only that all the general tangent lines to C intersect C in projectively
equivalent subsets (see 3.1 and 3.2). Usually, (and always if
char (K) = 0 by the properties of reflexive curves ([10]) and the general
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set up) this assumption is much weaker than the assumption that all
general lines of PI intersect C in projectively equivalent subsets. At
the end of the section we show that «in general» (see 3.3 and 3.4 for a
precise statement) the set line in has dimension two.

I want to thank Ciro Ciliberto for many stimulating conversa-
tions.

The author was partially supported by MURST and GNSAGA of
CNR (Italy).

1. - The general (elementary) set up of [4], § 1, applies in many si-
tuations not explicitely stated in [4]. In particular it applies verbatim
to sections of a vector bundle (the case stated in [4] being the case in
which the vector bundle has rank 1). We refer to reader to [4], § 1, for
that. We only note that [4], Remark 1.1, implies that, with the nota-
tions of 0.1, if all general (s)o are projectively equivalent and m e
e H ° (X, E) has dim ((m)° ) = 0 but (m)° is not projectively equivalent to a
general (s)° , then the stabilizer of (m)° is not finite.

In this section we fix the following notations. Let X be an integral
complete veriety (over K); set n : = dim (X); for any sheaf F on X, write

(or hi (F) instead of Hi (X, F) (or hi (X, F)) Let E be a rank n
vector bundle on X with E spanned by its global sections; let W c
c H° (E) be a vector space spanning E; dim (W). Let hw (or h (or
hE if W = H 0 (E))) be the morphism from X to the Grassmanian G =
: = G (n, w) of n-dimensional linear quotient spaces of K w induced by W.
Denote by hW (or h’) the composition of hw and the Plucker embedding
of G into a projective space, P. Let x): s(x) = 0
be the incidence correspondence; r’ is a Pw-n-1 bundle over X (hence
it is integral); set h c 1,’ : = I ([s], x): dim((s)o) = 0} (hence with projec-
tion 1, -~ P(W*) quasi-finite; the Galois group, M, of the projection
r -~ P(W*) will be called the monodromy group of the incidence cor-
respondence (or the monodromy group, for short).

DEFINITION 1.1. (a) W is called birational if h is birational.

(b) W is called ordinary if it is birational and h’(X) is an ordinary
variety of P in the sense of [10] (i.e. it is reflexive and with a hypersur-
face as dual variety h’ (X) * ).

(c) W is called strongly reflexive if it is ordinary, (s)o is reduced
for a general s E W and there is x E Xreg and t e W such that (t)o is 0-di-
mensional, supported on Xreg and reduced except for a length 2 sub-
scheme supported on x.

(d) W is called monodromic if it is birational and the monodromy
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group M of the incidence correspondence contains the alternating
group on cn (E) objects.

REMARK/DEFINITION 1.2. In [2] we defined an integer c(E); here
we recall the definition in the more general case of ((with
possibly W ~ H 0 (E)); the integer c(E, W) is by definition the maximal
integer t such that for a general S c X with card (S) = t, there is s e W
with ,S c (s)o and dim ((s)o) = 0; we have c(E, W ) ~ cn (E); c(E, W) &#x3E; 0 if
W spans E (by Bertini theorem ([19])). Note that the monodromy group
of W acts at least c(E, W)-transitively (since X is integral).

LEMMA 1.3. If W is strongly reflexive then the monodromy group
M is the full symmetric group on Cn (E) objects. In particular W is
monodromic.

PROOF. The path is clear, after [7]. It is sufficient to show that M is
doubly transitive and contains a double transposition. Take y : _ ([t], x)
as in the Definition 1.1(c). To find the double transposition it is suffi-
cient to check that 1’ is irreducible at y; indeed it is smooth because x E

E Xreg and r’ ~ X is a Now we will check that M is
double transitive. Fix s E W with dim ((s)o) = 0 and (s)o reduced; call s’
the corresponding section of the tautological quotient bundle, F, on G.
Fix {a, b, c} c (s)o with card ( ~ a, b, c}) = 3. It is easy to check that the
Schubert cycles a corresponding to the 0-loci of sections of F and con-
taining a can move b into c (see geometrically at least the case n = 2,
w = 4 needed in § 2); note that the case «n = 2 and w = 4» is one the
most difficult ones, since almost always we have c(E, W) = 1 if

dim(W)2dim(X).

DEFINITION 1.4. Assume the existence of an integers t such that
there is an open subset U of such that for every A E U there is
s E W with A c (s)o and such that the stabilizer (in the projective group
considered!) of A is finite; by definition if such a t exists, then
t ~ c(E, W) and every integer t’ with t ~ t ’ ~ c(E, W) has the same
property; if t(n, w) is the minimal such integer we will denote by
y(n, w) the cardinality of the corresponding stabilizer (for general A).

DEFINITION 1.5. W is said to have the property ($) if the non degen-
eracy condition described in the Definition 1.4 holds.

We have t(2, 4) = 4 and y(2, 4) = 4! = 24 (with respect to the ob-
vious choice of the projective group: 
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PROPOSITION 1.6. ! Assume W monodromic, satisfying the non de-
generacy condition ($) and that all general 0-loci of W are projectively
equivalent. Then cn (E) ~ t(n, w) + (t(n, w)!).

PROOF. Assume that the inequality fails. Fix a general s E W and
set A : _ (s)o ; fix B c A with card (B) = t(n, w) and 2 points a, b of A B B.
By the monodromy assumption r(c-2) is irreducible. Hence there is an
algebraic affine integral curve t in T(c) connecting a subset B’ contain-
ing B U {a} and a subset B" containing B U{b}; up to a covering of 1"
we may order the points in B (hence in B U ~a~ and B U b~ with a and
b as last elements). Consider a Seshadri covering Sh - 1); tak-
ing an irreducible component of the fiber product 
with we obtain that along 1" the corresponding subsets
with card (B) + 1 elements have the same image in the quotient of Sh
(in the case in which the Schubert cell is a projective space with its au-
tomorphism group (e.g. the case n = 2, w = 4 considered in § 2) this
means the constance along of the cross ratio). But since permutes B
and exchange a and b, we obtain card (ABB) ~ t(n, w)! , as wan-

ted.

We think that the definitions given in this section are useful. How-
ever these definition are not the only reasonable candidates. To decide
between competing nearby definitions, one need more experimental
work in higher dimensions and ranks than in the case n = 2, w = 4 con-
sidered in the next section. Furthermore, here we do not use y(n, w)
and the bound on cn (E) in 1.6 seems to be very bad.

2. - Using 1.6 now we may give in a few lines a proof of 0.1.

PROOF OF 0.1. By 1.6 and the fact that t(2, 4) = 4, it is sufficient to
check the non degeneracy condition ($). Assume it fails. Then the
0-locus of a general section is formed by c : = c2 (E) points, all except at
most one on a line. Hence by the monodromy assumption all such points
must be collinear. By assumption they are projectively equivalent as
points in a plane. Hence, varying the section, we find points which are
projectively equivalent as points on a line. Hence we reduce to another
group action. By the reflexivity assumption, we find some section with
as 0-locus a double point and c - 2 simple points; by semicontinuity
again this configuration must be contained in a line. Since c &#x3E; 3, this
unreduced configuration has finite stabilizer. Hence the contradiction
comes from the often quoted [4], Remark 1.1.
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We leave to the interested reader the task to extend the case
«n = 2, w = 4» considered here to the case «n = 2, w &#x3E; 4».

3. - Let C be a plane curve; let C * c p2* be its dual curve. A point
P E C will be called «very ordinary double point» if C has multiplicity 2
at P, with as tangent cone two distict lines each of them intersecting
with multiplicity 2 at P the corresponding branch of the formal comple-
tion of C at P (i.e. each of them with intersection multiplicity 3 with C
at P) and if each of these tangent lines intersect Csing only at P.

PROPOSITION 3.1. Let C be a plane integraL curve of degree d ~ 6
with k very ordinary double points as only singularities,. Assume that
all the general tangent Lines to C have projectively equivalent (for the
action of intersections with C. Then

PROOF. Note that by the often quoted [4], Remark 1.1 for every
P E csing each of the tangent lines to C at P intersects C at most at ano-
ther point; by our definition of very ordinary double point and the as-
sumption on C, indeed these lines must intersect C at a smooth point
and with intersection multiplicity d - 3. Since d ~ 6, we see that C has
at least 2k flexes (in the sense of [11]) each of them with weight at least
d - 5 (see [11], Definition at page 54). Since (1) is trivial if k = 0, we
may assume k &#x3E; 0. By the definition of (very) ordinary double point
and the fact that k &#x3E; 0, we may assume that a general tangent line to C
intersects C with multiplicity 2 at the point of tangency. By [111, § 3 (in
particular the last formula in the statement of Th. 9 at page 54 of [11])
the sum of the weights of the flexes of C is 3(2g - 2) + 3d, where g =
- - 2k + 1 + (d - 1) (d - 2)/2 is the geometric genus of C. Hence we
have (1). 0

REMARK 3.2. It is straightforward to apply verbatim the Proof of
3.1 to curves with other singularities.

Now we show that «in general» for a plane curve C we have
line in P~} = 2).

PROPOSITION 3.3. Let C c P2 be an integraL non degenerate curve
such that for every line L c p2 (c has cardinality at least 3 (i. e.
finite stabilizer as subset of L under the group Aut (L)). Then there is
no positive dimension family of lines T c p2* such that all fc n L: L E
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E T I are projectively equivalent and T is neither contained in the dual
curve C* nor formed by lines in a pencil through a singular point of C.
In particular, varying the line M in p2* the projective equivalence clas-
ses of the sets {c fl M} vary in a two dimensional famiLy.

PROOF. Assume by contradiction the existence of such T. Since by
assumption C is not a line, dim (C~) = 1. Hence there is a line tc E C* in
the closure of T. Since for a general L e 7B C n L is reduced and R n C
is not reduced but with finite stabilizer, we have a contradic-
tion. 0

REMARK 3.4. The assumption that card ((L n 3 for every
line L is satisfied in particular if C is a general curve of a given degree
d ~ 5 and in many other cases (general plane curve with a small num-
ber of nodes, ...). To prove this type of results for C general in a given
family, H, of plane curves, it is often very useful to know that on the
boundary of H there are suitable reducible curves (e.g. suitable union
of conics and cubics).
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