## Rendiconti

 del
## SEminario Matematico

 della Università di Padova
## C. DAVID

## $T_{3}$-systems of finite simple groups

Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 19-27
[http://www.numdam.org/item?id=RSMUP_1993_89_19_0](http://www.numdam.org/item?id=RSMUP_1993_89_19_0)
© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

Article numérisé dans le cadre du programme

# $T_{3}$-Systems of Finite Simple Groups. 

C. DAVID ${ }^{(*)}$

## 1. Introduction.

We present here some further evidence in support of the following conjecture, first formulated by Wiegold in the seventies.

Conjecture. Every finite non-abelian simple group has exactly one $T_{3}$-system.

Gilman [5] has shown that the conjecture holds for the simple groups $\operatorname{PSL}(2, p)$ with $p$ prime, (indeed it was this result that prompted the conjecture), while Evans [4] has done it for certain Suzuki groups. In both cases the action of the automorphism group on the $G$-defining subgroups is alternating or symmetric, and this too seems likely to reflect a general truth.

The Suzuki groups and the $\operatorname{PSL}(2, p)$ are easier to cope with than the alternating groups, no doubt because of the much greater diversity of subgroups in alternating groups. Since $A_{5} \simeq P S L(2,5)$, Gilman's result provides the answer, while $A_{6}$ is so small that a simple calculation is sufficient. The aim of this note is to sketch a proof of the following result.

Theorem. The alternating group $A_{7}$ has just one $T_{3}$-system, and the action of Aut $F_{3}$ on the $A_{7}$ defining subgroups is alternating or symmetric.

The methods are elementary throughout. I see no way of establishing the conjecture for the general alternating group $A_{n}$.
${ }^{(*)}$ Indirizzo dell'A.: School of Mathematics, University of Wales, College of Cardiff, Senghennydd Road, Cardiff CF2 4AG.

## 2. $T_{3}$-systems and a result of Evans.

Let $F_{n}$ be a free group of finite rank $n$, and let $G$ be any group. We say that $N$ is a $G$-defining subgroup of $F_{n}$ if $N \triangleleft F_{n}$ and $F_{n} / N \simeq G$. Denote the set of all $G$-defining subgroups of $F_{n}$ by $\Sigma(G, n)$ and notice that $\Sigma(G, n)$ is not empty if and only if $G$ can be generated by $n$ elements.

For each $\sigma \in \operatorname{Aut} F_{n}$ and $N \in \Sigma(G, n)$ we clearly have $F_{n} / N \sigma \simeq G$ so that $N \sigma \in \Sigma(G, n)$. In this way we obtain an action of Aut $F_{n}$ on $\Sigma(G, n)$, the orbits of which are called the $T_{n}$-systems of $G$. ([5] and [3]).

When we investigate $T$-systems of a specific group $G$, it is found to be rather difficult to work directly with the action of Aut $F_{n}$ on $\Sigma(G, n)$. B. H. Neumann and H. Neumann [7] introduced the notion of generating $G$-vectors which enabled them to define an equivalent action of Aut $F_{n}$ which is more manageable. The details with respect to $T_{3}$ are now given following the argument indicated in [4].

Let $G$ be a 3-generator group. A generating $G$-vector of length 3 is defined to be an ordered triple ( $g_{1}, g_{2}, g_{3}$ ) where $\left\langle g_{1}, g_{2}, g_{3}\right\rangle=G$. The set of all generating $G$-vectors of length 3 is denoted by $V(G, 3)$.

Fix a set of free generators $x_{1}, x_{2}, x_{3}$ for $F_{3}$ and let $E$ be the set of epimorphisms from $F_{3}$ to $G$. Define an action of Aut $F_{3} \times \operatorname{Aut} G$ on $E$ by

$$
\begin{equation*}
\rho(\sigma, \alpha)=\sigma^{-1} \rho \alpha \tag{2.1}
\end{equation*}
$$

where $\rho \in E$ and $(\sigma, \alpha) \in \operatorname{Aut} F_{3} \times \operatorname{Aut} G$.
We can identify Aut $F_{3}$ and Aut $G$ with their copies in Aut $F_{3} \times \operatorname{Aut} G$ and speak of the action of $\operatorname{Aut} F_{3}$ or Aut $G$ on $E$. We clearly have
(2.2) $\rho_{1}$ and $\rho_{2}$ lie in the same AutG-orbit of $E$ if and only if $\operatorname{ker} \rho_{1}=\operatorname{ker} \rho_{2}$.

Suppose that $\operatorname{ker} \rho=N$. Then $\operatorname{ker} \rho \alpha=N$ too, and so we can associate $N$ with the Aut $G$-orbit of $E$ that contains $\rho$, viz. $\{\rho \alpha: \alpha \in \operatorname{Aut} G\}$. Notice that for all $\sigma \in \operatorname{Aut} F_{3}$ we have $\operatorname{ker}(\rho(\sigma, 1))=\operatorname{ker}\left(\sigma^{-1} \rho\right)=N \sigma$. Hence $N \sigma$ is associated with the Aut $G$-orbit of $E$ containing $\rho(\sigma, 1)$. Moreover, $N \in \Sigma(G, 3)$ if and only if $N=\operatorname{ker} \rho$ for some $\rho \in E$. Therefore
(2.3) The action of Aut $F_{3}$ on $\Sigma(G, 3)$ is equivalent to its action on the Aut G-orbits of $E$.

The map $\pi: E \rightarrow V(G, 3)$ given by
(2.4) $\quad \rho \pi=\left(x_{1} \rho, x_{2} \rho, x_{\left.3_{\rho}\right)}\right.$ is a bijection. Furthermore, $\pi$ enables us to carry over the action of Aut $F_{3} \times$ Aut $G$ on $E$ to an action on $V(G, 3)$.

This is given by

$$
\begin{equation*}
\rho \pi(\sigma, \alpha)=\sigma^{-1} \rho \alpha \pi . \tag{2.5}
\end{equation*}
$$

The action of Aut $F_{3} \times \operatorname{Aut} G$ on $V(G, 3)$ given by (2.5) is equivalent to its action on $E$. Therefore the action of Aut $F_{3}$ on the Aut $G$-orbits of $V(G, 3)$ is equivalent to its action on the Aut $G$-orbits of $E$. Combining this last remark with (2.3) gives the following fundamental result.
(2.6) The action of Aut $F_{3}$ on the Aut G-orbits of $V(G, 3)$ is equivalent to its action on $\Sigma(G, 3)$.

Let us now examine in greater detail the actions of Aut $F_{3}$ and Aut $G$ on $V(G, 3)$. Here we again identify Aut $F_{3}$ and Aut G with their copies in Aut $F_{3} \times$ Aut $G$.

Suppose throughout that $\left(g_{1}, g_{2}, g_{3}\right)$ is a typical element of $V(G, 3)$. By (2.4) there exists $\rho \in E$ with $\left(g_{1}, g_{2}, g_{3}\right)=\rho \pi=\left(x_{1} \rho, x_{2} \rho, x_{3} \rho\right)$. The action of Aut $G$ on $V(G, 3)$ is now easily given explicitly; by (2.5) we have $\left(g_{1}, g_{2}, g_{3}\right)(1, \alpha)=\rho \pi(1, \alpha)=\left(x_{1} \rho \alpha, x_{2} \rho \alpha, x_{3} \rho \alpha\right)=\left(g_{1} \alpha, g_{2} \alpha, g_{3} \alpha\right)$. Moreover since $\left\langle g_{1}, g_{2}, g_{3}\right\rangle=G$ we have $\left(g_{1}, g_{2}, g_{3}\right)=\left(g_{1} \alpha, g_{2} \alpha, g_{3} \alpha\right)$. if and only if $\alpha=1$. Hence
(2.7) The action of Aut $G$ on $V(G, 3)$ is given by $\alpha:\left(g_{1}, g_{2}, g_{3}\right) \rightarrow$ $\rightarrow\left(g_{1} \alpha, g_{2} \alpha, g_{3} \alpha\right)$ for all $\alpha \in$ Aut $G$ and all $\left(g_{1}, g_{2}, g_{3}\right) \in V(G, 3)$.

We next consider the action of Aut $F_{3}$ on $V(G, 3)$. For all $\sigma \in \operatorname{Aut} F_{3}$ we have $\left(g_{1}, g_{2}, g_{3}\right)(\sigma, 1)=\rho \pi(\sigma, 1)=\sigma^{-1} \rho \pi=\left(x_{1} \sigma \rho, x_{2} \sigma \rho, x_{3} \sigma \rho\right)$ from (2.5). Suppose that

$$
\left\{\begin{array}{l}
x_{1} \sigma^{-1}=w_{1}\left(x_{1}, x_{2}, x_{3}\right)  \tag{2.8}\\
x_{2} \sigma^{-1}=w_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
x_{3} \sigma^{-1}=w_{3}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right.
$$

where $w_{1}\left(x_{1}, x_{2}, x_{3}\right)$ is a word in $\left(x_{1}, x_{2}, x_{3}\right)$. Now

$$
\begin{aligned}
\left(x_{1} \sigma^{-1} \rho, x_{2} \sigma^{-1} \rho, x_{3} \sigma^{-1} \rho\right) & =\left(w_{1} \rho, w_{2} \rho, w_{3} \rho\right)= \\
& =\left(w_{1}\left(g_{1}, g_{2}, g_{3}\right), w_{2}\left(g_{1}, g_{2}, g_{3}\right), w_{3}\left(g_{1}, g_{2}, g_{3}\right)\right)
\end{aligned}
$$

where $\sigma \in \operatorname{Aut} F_{3}$ and $w_{1}, w_{2}, w_{3}$ are given by (2.8). Therefore
(2.9) The action of Aut $F_{3}$ on $V(G, 3)$ is given by
$\sigma:\left(g_{1}, g_{2}, g_{3}\right) \rightarrow\left(w_{1}\left(g_{1}, g_{2}, g_{3}\right), w_{2}\left(g_{1}, g_{2}, g_{3}\right), w_{3}\left(g_{1}, g_{2}, g_{3}\right)\right)$
where $\sigma \in \operatorname{Aut} F_{3}$ and $w_{1}, w_{2}, w_{3}$ are given by (2.8).
We continue, using the following result, a convenient reference for which is [6] Chapter 3.
(2.10) Aut $F_{3}$ is generated by the automorphisms given below, where $1 \leqslant i, k \leqslant 3, \quad i \neq k$ and unmentioned generators of $F_{3}$ are fixed.

$$
\begin{aligned}
& P(i, k): x_{i} \rightarrow x_{k}, \quad x_{k} \rightarrow x_{i}, \\
& \sigma(i): x_{i} \rightarrow x_{i}^{-1}, \\
& L(i, k): x_{i} \rightarrow x_{k} x_{i}, \\
& R(i, k): x_{i} \rightarrow x_{i} x_{k} .
\end{aligned}
$$

These are called the elementary automorphisms of $F_{3}$. Their effect on $\left(g_{1}, g_{2}, g_{3}\right) \in V(G, 3)$ is to interchange any two entries, invert any entry or multiply any entry by any other on the left or right. This is seen with the aid of (2.9).

As Aut $F_{3}$ is generated by elementary automorphisms, the above remark has an important consequence, namely
(2.11) Two elements of $V(G, 3)$ lie in the same Aut $F_{3^{-}}$-orbit if and only if one can be transformed into the other by a finite sequence of the following operations:

- Interchanging two entries:
e.g. $\left(g_{1}, g_{2}, g_{3}\right) \rightarrow\left(g_{1}, g_{2}, g_{3}\right)$.
- Inverting an entry:
e.g. $\left(g_{1}, g_{2}, g_{3}\right) \rightarrow\left(g_{1}^{-1}, g_{2}, g_{3}\right)$.
- Multiplying one entry on the left by another:
e.g. $\left(g_{1}, g_{2}, g_{3}\right) \rightarrow\left(g_{2} g_{1}, g_{2}, g_{3}\right)$.
- Multiplying one entry on the right by another:
e.g. $\left(g_{1}, g_{2}, g_{3}\right) \rightarrow\left(g_{1} g_{2}, g_{2}, g_{3}\right)$.

We say that two elements of $V(G, 3)$ are equivalent if they lie in the same Aut $F_{3}$-orbit.

An important property of $A_{7}$ in our context is that it has spread 2 in the sense of Brenner and Wiegold ([1] and [2]). This means that for any pair $x, y$ of non-trivial elements of $A_{7}$, there is a third element $z$ such that $\langle x, z\rangle=\langle y, z\rangle=A_{7}$. The connection with $T_{3}$-systems is the following simple but important result of Evans [4].
(2.12) Let $G$ be any group of spread 2. Then all redundant generating triple are equivalent.

A redundant generating triple $\left(g_{1}, g_{2}, g_{3}\right)$ is one where one of $g_{1}, g_{2}, g_{3}$ can be omitted and the remaining two elements still generate the group. Thus our strategy will be to show that every generating triple for $A_{7}$ is equivalent to a redundant triple.

## 3. $T_{3}$-systems of $A_{7}$.

The 2520 elements of $A_{7}$ are classified into distinct types of permutations. We shall use the representation of these permutations as products of disjoint cycles, omitting cycles of length one. If an element is a product of disjoint cycles of lengths $r_{1}, r_{2}, \ldots, r_{k}$ where $r_{1}>1$ the we say it is of type $r_{1}, r_{2}, \ldots, r_{k}$. The table below gives the number of elements of each type in $A_{7}$ and also in each of the maximal subgroups of $A_{7}$ which are isomorphic to $\operatorname{PSL}(2,7)$.

| Type | 7 | 5 | 4,2 | 3,3 | $3,2,2$ | 3 | 2,2 | Ident. | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| $A_{7}$ | 720 | 504 | 630 | 280 | 210 | 70 | 105 | 1 | 2520 |
| $P S L(2,7)$ | 48 | 0 | 42 | 56 | 0 | 0 | 21 | 1 | 168 |

There are 15 maximal subgroups of $A_{7}$ which are isomorphic to $\operatorname{PSL}(2,7)$. Each element of type 7 of $A_{7}$ is in one and only one of these maximal subgroups. This property is also true for each element of type 4,2 of $A_{7}$.

In order to show that every generating $G$-vector $\left(g_{1}, g_{2}, g_{3}\right)$, is equivalent to a redundant vector we systematically look at all possible cases.

Case 1. If one of the elements of the triple is of type 7 , say $g_{1}$ then as we remarked above, it is one and only one of the $\operatorname{PSL}(2,7)$ contained in $A_{7}$; call this group $B$.

If $g_{2} \in B$ then $\left\langle g_{1}, g_{2}\right\rangle \subseteq B$ while if $g_{2} \notin B$ then $\left\langle g_{1}, g_{2}\right)=A_{7}$ as $B$ is a maximal subgroup. The same holds for $g_{3}$.

As $\left(g_{1}, g_{2}, g_{3}\right)$ is a generating set for $A_{7}$, one of $g_{2}, g_{3}$ is not an element of $B$ and will generate $A_{7}$ with $g_{1}$. Thus any generating triple containing an element of type 7 is equivalent to a redundant triple.

Case 2. Suppose that $g_{1}$ is of type 5 , without loss of generality, (12345) say. If $\left\langle g_{1}, g_{2}\right\rangle$ is transitive over the set $\{1,2,3,4,5,6,7\}$ then $\left\langle g_{1}, g_{2}\right\rangle=A_{7}$.

So we look at the cases when $\left\langle g_{1}, g_{2}\right\rangle$ and $\left\langle g_{1}, g_{3}\right.$ ) are non transitive but of course, $g_{2}$ and $g_{3}$ between them must move 6 and 7 . We need to consider two cases.
i) $\quad g_{1}=(12345), g_{2}=(\ldots)(67), g_{3}=(\ldots 6)(\ldots)(7)$. Then $6 g_{3}=i$ with $i \neq 6$ and $i \neq 7$ and $7 g_{3}=7$ so $6 g_{2} g_{3}=7$ and $7 g_{2} g_{3}=i$.

This means that $g_{2} g_{3}=(\ldots 67 i \ldots)(\ldots)$ and hence $\left\langle g_{1}, g_{2} g_{3}\right\rangle$ is transitive and so must be $A_{7}$.
ii) $\quad g_{1}=(12345)$, and let $g_{2}$ move 6 but not 7 and $g_{3}$ move 7 but not 6 . Then $g_{2} g_{3}$ will move 6 and 7 and then $\left\langle g_{1}, g_{2} g_{3}\right\rangle$ is again transitive and so is $A_{7}$.

Thus if the generating triple contains an element of type 5 it is equivalent to a redundant triple.

The further cases, with $g_{1}, g_{2}$ and $g_{3}$ taking all possible types, are shown in the following table, which indicates the length of the calculation required.

We investigate the cases $3,4,5,6$ and 7 , using the following consideration.
i) There is a need for transitivity over $\{1,2,3,4,5,6,7\}$.
ii) Any triple equivalent to a triple with an element of type 7 or of type 5 is no problem.
iii) Two elements generating a transitive subgroup of $A_{7}$, in which one is of type 3 will generate $A_{7}$ ([7], p. 34).
iv) Two elements generating a transitive subgroup of $A_{7}$ and each of type 4,2 in different $\operatorname{PSL}(2,7)$ subgroups will generated $A_{7}$.

The investigation leads to the conclusion that if the generating triple contains an element of type 4,2 it is equivalent to a redundant triple.

|  |  |  |  |
| :---: | :--- | :--- | :--- |
| Case | $g_{1}$ type | $g_{2}$ type | $g_{3}$ type |
| 3 | 4,2 | 4,2 | 4,2 or 3 or 3,3 or $3,2,2$ or 2,2 |
| 4 | 4,2 | 3 | 3 or 3,3 or $3,2,2$ or 2,2 |
| 5 | 4,2 | 3,3 | 3,3 or $3,2,2$ or 2,2 |
| 6 | 4,2 | $3,2,2$ | $3,2,2$ or 2,2 |
| 7 | 4,2 | 2,2 | 2,2 |
| 8 | 3 | 3 | 3 or 3,3 or $3,2,2$ or 2,2 |
| 9 | 3 | 3,3 | 3,3 or $3,2,2$ or 2,2 |
| 10 | 3 | $3,2,2$ | 3,2 or 2,2 |
| 11 | 3 | 2,2 | 2,2 |
| 12 | 3,3 | 3,3 | 3,3 or $3,2,2$ or 2,2 |
| 13 | 3,3 | $3,2,2$ | 3,2 or 2,2 |
| 14 | 3,3 | 2,2 | 2,2 |
| 15 | $3,2,2$ | $3,2,2$ | $3,2,2$ or 2,2 |
| 16 | $3,2,2$ | 2,2 | 2,2 |
| 17 | 2,2 | 2,2 | 2,2 |

We provide here a proof of some of Case 3 to demonstrate the methods used. The complete proofs of the assertions made here involve a great deal of simple but tedious calculation.

CASE 3. Let $g_{1}, g_{2}$ and $g_{3}$ be each of type 4,2 and each in a different $\operatorname{PSL}(2,7)$-subgroup of $A_{7}$. As an example we consider the following case.

$$
\begin{aligned}
& g_{1}=(3567)(12) \in\langle(1234567),(23)(47)\rangle, \\
& f_{2} \in\langle(2314567),(13)(47)\rangle, \\
& g_{3} \in\langle(2431567),(43)(17)\rangle .
\end{aligned}
$$

If $\left\langle g_{1}, g_{2}\right\rangle$ is transitive over $\{1,2,3,4,5,6,7\}$ there is no problem. We also find for the remaining elements $g_{2}$ that $g_{1} g_{2}$ or $g_{1} g_{2}{ }^{-1}$ or $g_{1} g_{2}^{2}$ is of type 7 or type 5 except for $g_{2}=(2537)(16)$ or (1567)(23) and their inverses.

If $\left\langle g_{1}, g_{3}\right\rangle$ is transitive over $\{1,2,3,4,5,6,7\}$ there is no problem. We also find for the remaining elements $g_{3}$ that $g_{1} g_{3}$ or $g_{1} g_{3}{ }^{-1}$ is of type 7
or type 5 expect for $g_{3}=(3657)(12)$ or (3567)(14) or (3576)(24) and their inverses.

For these elements or their inverses, $g_{2} g_{3}$ or $g_{2} g_{3}^{-1}$ is of type 7 or type 5.

We see that for the selected $g_{1}$ and the subgroups concerned, all the triples are equivalent to redundant triples. This is found to be true whichever of the 14 maximal subgroups are chosen to contain elements $g_{2}$ and $g_{3}$. Thus any generating triple containing three elements of type 4,2 each in a different $\operatorname{PSL}(2,7)$ maximal subgroup is equivalent to a redundant triple.

We now consider the case with $g_{1}, g_{2}$ each of type 4,2 and each in a different $P S L(2,7)$-subgroup of $A_{7}$ with $g_{3}$ any element of type 3 . We consider the following case.

$$
\begin{aligned}
& \left.g_{1}=(3567)(12) \in(1234567),(23)(47)\right\rangle, \\
& g_{2} \in\langle(2314567),(13)(47)\rangle . \\
& g_{3}=\text { any element of type } 3 \text { in } A_{7},
\end{aligned}
$$

When we consider the products of $g_{1} g_{2}$ and $g_{1} g_{3}$ we find problems only occur when $g_{2}=(2537)(16)$ or (1567)(23) and $g_{3}=(124)$ or (345) or (346) or (347) or (456) or (457).

For these elements we find that either an equivalent triple can be obtained with one element, a product of $g_{1}, g_{2}$ and $g_{3}$, which is of type 7 or of type 5 , or the triple is not a generating triple.

We again see that for the selected $g_{1}$ and the subgroups concerned, all the triples are equivalent to redundant triples. This is found to be true whichever of the maximal subgroups are chosen to contain element $g_{2}$. Thus any generating triple containing two elements of type 4,2 each in a different $P S L(2,7)$ maximal subgroup with the third element of type 3 is equivalent to a redundant triple.

Case 3, when completed, and then cases $4,5,6$ and 7 all lead to the same conclusion that the generating triples concerned are all equivalent to a redundant triple.

The information obtained from cases 1 to 7 is used in the other cases in the order as shown in the table and with each case leading to a redundant triple.

The final conclusion is that all the generating $G$-vectors are equivalent to redundant vectors and consequently $A_{7}$ has only one $T_{3}$-system.

A further result of Evans [4] can now be used to complete the proof.
(3.1) Let $G$ be a nonabelian finite simple group with $d(G)=k$. Suppose that $G=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle$ where $g_{k}^{2}=1$. Then Aut $F_{k+1}$ acts as a symmetric or alternating group on at least one of its orbits on $\Sigma(G, k+1)$.

The alternating group $A_{7}$ may be generated by $\left\langle g_{1}, g_{2}\right\rangle$ where $g_{1}$ is an element of type 7 and $g_{2}$ is an element of type 2,2 which is not in the $\operatorname{PSL}(2,7)$ maximal sub-group containing $g_{1}$. For example we have $A_{7}=$ $=\langle(1234567),(12)(45)\rangle$. We conclude that the action of Aut $F_{3}$ on the $A_{7}$ defining subgroups is alternating or symmetric.

## REFERENCES

[1] J. L. Brenner - J. Wiegold, Two-generator groups I, Michigan Math. J., 22 (1975), pp. 53- 64.
[2] J. L. Brenner - J. Wiegold, Two-generator groups II, Bull. Austral. Math. Soc., 22 (1980), pp. 113-124.
[3] M. J. Dunwoody, On T-systems of groups, J. Austral. Math. Soc., 3 (1963), pp. 172-179.
[4] M. J. Evans, Problems concerning generating sets for groups, Ph.D. Thesis, University of Wales (1985).
[5] R. Gilman, Finite quotients of the automorphism group of a free group, Canad. J. Math., 29, no. 3 (1977), pp. 541-551.
[6] W. Magnus - A. Karrass - D. Solitar, Combinatorial Group Theory, Interscience, New York (1966).
[7] B. H. Neumann - H. Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen, Math. Nachr., 4 (1951), pp. 106-125.
[8] H. Wielandt, Finite permutation groups, Lectures, University of Tübingen (1954/55); English trans., Academic Press, New York (1964).

Manoscritto pervenuto in redazione il 19 luglio 1991.

