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Normal Projective Surfaces with p = 1, P-1 ~ 5.

MARCO MANETTI(*)

0. Introduction.

One of the most interesting problems in the study of normal sur-
faces is to classify normal surfaces X with p(X) = 1 and -Kx ample
(cf. [Sa2], Problem 3.3).

The study of such surfaces arises naturally when we study normal
degenerations of rational surfaces and in particular normal degenera-
tions of p2 ([Ma], [Bal], [Ba2]).
A first partial result for these surfaces is obtained by putting to-

gether a theorem of Sakai with one of Badescu.

THEOREM A (Sakai-Badescu). Let X be a normal projective sur-
face with p = 1, Pn = 0 Vn &#x3E; 0 and Let u: Y -~ X be its minimal resolu-
tion. Then = 0 ond one of the following possibilities holds:

1) Y is a rational surface and the singularities of X are
rational.

2) Y is a ruled surface with irregularity q &#x3E; 0, X contains exact-
ly one nonrational singularity at x, the geometric genus of (X, x) is q,
the exceptional divisor of u over x is given by a section of the canonical
fibration p: Y ~ B (B smooth curve of genus q) plus possibly compo-
nents of degenerate fibres of p.

In both cases we have no information about the structure and num-
ber of rational singularities of X. Here we prove, using elementary al-
gebraic geometry, a structure theorem for surfaces belonging to class
1) of Theorem A having P-1 * 5. Our results give in particular the
following:

THEOREM B. Let X be a normal projective surface urith p(X) = 1,

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza Cavalieri 7, 56126
Pisa, Italy.
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P _ 1 (X ) &#x3E; 5 with at most rational singularities. Then X has at most
one non cyclic singularity if all the singularities are cyclic then X
has at most three singular points

We remark that the result we prove also gives information about
the minimal resolution of X. Finally in § 4 we study the particular case
where the surface X is a normal degeneration of p2 (from [Ma] follows
that p(X) = 1 and P_ 1 {X ) &#x3E; 10), and we prove in particular (Corollary
12) that if X has at most rational singularities then X has at most 4 sin-
gular points.

NOTATION. For every normal surface X and every Weil divisor D
on X we denote: ’

nx (D) - sheaf of meromorphic functions f such that ( f ) + D &#x3E; 0.

hi(D) = dimCHi(X, Ox(D)) i&#x3E;0.
Kx = canonical divisor for X.

0x = tangent sheaf of X, defined as the dual of the sheaf Qk of
Kahler differentials.

q(X) = irregularity of X. 
’

h 2 (dX) geometric genus of X.

Pn (X ) n-th plurigenus of X.

NS(X) (Pic (X )/Pic° (X )) E9 Q Neron-Severi group of X.
p(X) = Picard number.

A ( - l)-curve in a surface is a smooth rational curve E such that
E2 = -1.

If 8: Y - X is a proper birational morphism from a smooth surface Y
to a normal surface X we shall call exceptional divisor of 6 the set D c Y
given by irreducible curves contracted by 8.

Acknowledgement. I would like to thank F. Catanese for drawing
my attention to the surface which we consider here and for many valu-
able discussions.

1. Curves with negative self intersection in a rational surface.

Let S be a smooth rational surface, then S does not contain

any irreducible curve with negative self intersection if and only
if S = P2, P’ x From now on, by abuse of notation we shall
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denote by a rational surface a rational surface different from p2, I~1 X
x 1h1.

Let S be a such a rational surface, then there exists an integer d ~ 1
and a birational morphism ~u: S --~ I~d such that g is an isomorphism in a
neighbourhood of the section with self intersection - d (cf. for

example [Be]). We note that g is the composition of p(,S) - 2 blowings-
up.

Let p: S - I~1 be the fibration obtained by composing IA with the
natural projection 7r: I~d ~ 1~1.

( * ) In order to simplify the presentation of next proofs we introduce
some technical notation.

In the situation above let r = p (,S ) - 2, let h be the number of degen-
erate fibres of p and let e be the number of (- l)-curves contained in
the fibres of p. We note that e ~ h and r = E (b2 ( f ) - 1).

fibres of p

DEFINITION 1. In the notation above, a smooth irreducible curve
C c S is said to be g-transversal or simply transversal if C ~ f &#x3E; 0 where f
is a fibres of p.

THEOREM 1. Let S be a rational surface, ,u: S ~ Fd a birational
morphisms which is an isomorphism in a neighbourhood of 7. and
C c S a transversal curve ;t 7..

then C2 ~ -1.

We prove this theorem later on. Let X be a smooth surface, x E X
and X .4 X the blowing up of X at x. We have an exact sequence of
sheaves on X

In particular the vector space is naturally isomorphic to
the space of sections of the anticanonical sheaf of X which vanish
at x.

COROLLARY 2. Let S be a rational surface: if, in the notation
above, h ° ( - I~S ) + min {d, 3} ~ 9 and C E S is a transversal 9

then C 2 ~ 0.

PROOF. The proof follows by considering the blowing up of S at a
point of C.

Theorem 1 cannot be improved. Let in fact Sd (d ; 1) be a surface
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obtained by blowing up the surface IFd at d + 1 generic points po , ... , 
These points lie on a section such that 0’8 = d, be the
strict transform of ~o : clearly C2 = -1, and, recalling that

it follows that h°(-KS) + min {d, 3} = 8.

LEMMA 3. In the previous notation let S be a rational surface and
let f be a generic fibre of p. Then h°(-KS - f - Q~) ~ h°(-KS) +
+min~d,3}-5.

PROOF. We have two exact sequences of sheaves

By the genus = 2 + o-oo = 2 - d, thus h ° (n~~ ( - KS)) _
= 3 - min {d, 3}.

The proof follows by considering cohomology exact sequences asso-
ciated to 1) and 2).

PROOF OF THEOREM 1. If S = we already know that is the

only curve with negative self intersection, so we can assume that p has
a degenerate fibre fo .

If A is the irreducible component of fo which intersects then we
have an exact sequence

By the genus formula ( - Ks - f - a 00 ) . A = 2 + A" - 1 ~ 0 and by Lem-
ma 3 /~(-~ "/" a. - A) ~ 2. Let CcS be a transversal curve dif-
ferent from ~ with C~ ~ -2; for every I we
have

thus D = C + E for some effective divisor E.
Moreover E.f = E. a 00 = 0, in fact, by genus formula D ~ f = 1, Do

. a 00 = 0 and by hypothesis C ~ f &#x3E; 0, C ~ E is contained in the excep-
tional locus of p. but yhis is not possible because dim dim 
&#x3E; 1.

REMARK 1. Looking at the proof of Theorem 1 we note that if
there exist a degenerate fibre fo such that the irreducible component A
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which intersects has self intersection A 2 ~ - 2 then Theorem 1 holds
under the less restrictive assumption /~(-~)+min{d,3}~7. We
also note that the condition A 2 ~ - 2 holds in particular if to contains
exactly one ( - l)-curve.

REMARK 2. One can prove that Cor. 2 is still valid if we change the
condition h ° ( - KS) + min ~d, ~ ~ ~ 9 with h ° (ss) ; 4. We don’t need this
result so we don’t prove it here.

LEMMA 4. In the same notation of Lemma 3, if h ° ( - KS) +
+ min {d, 3} ~ 6 then there exists at most one transversal curve 
with C2 ~ - 2. If such a curve exists then C.f = 1.

PROOF. By Lemma 3 coo) &#x3E; 1, consider Del - KS -
- f - . By the genus formula

thus D = C + B where B is an effective divisor. We note that B ~ f = 0
and thus C is the only component of D such that C of = D of =
=1.

2. The weight of a rational surface.

Let p: X ~ B a holomorphic map from a surface X to a smooth curve
B. We shall say that p is a rational fibration with section (r.£w.s. for
short) if:

1) The generic fibre of p is a smooth rational curve.

2) It’s given a section s: B ~ X.

Without loss of generality we can obviously assume that B c X and s
is the embedding of B in X.

DEFINITION 2. A r.f.w.s. p: X ~ B is minimal if every fibre con-
tains no ( - l)-curves disjoint from B.

PROPOSITION 5. In a minimal r.f.w.s p: X ~ B every fibre is
smooth rational

PROOF. The proof is essentially the same as Lemma 111.8
of [Be].
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DEFINITION 3. The weight w(S) of a rational surface p2 is the
greatest integer n such that there exists a birational morphism
~UC: ~7 -~ 1C’ n .

We note that w (,S )  + 1 ~ + 1.
Let e be the set of irreducible curves C c S such that there exists a

smooth rational curve f c S with f 2 = 0, C ~ f = 1.

THEOREM 6. In the notaction above 

PROOF.  is trivial.

Conversely let such that C2  0, we have to show that - C2 
 w(S). Let f be a smooth rational curve such that f2 = 0, f.C = 1, then
it’s very easy to prove that the linear system I is a base point free
pencil. The associated morphism p: S - P1 is a rational fibration with
section C.

The conclusion follows from Proposition 5 by considering the sur-
face S’ obtained by contracting all ( - 1 )-curves contained in the degen-
erate fibres of p which are disjoint from C.

3. Normal projective surfaces with p = 1, P-1 % 5.

We first observe that in this case, since X is normal projective,
Pn (X ) = 0 for every n &#x3E; 0.

LEMMA 7 (Sakai). Let X be a normal projective surface with
p (X) = 1, Pn (X ) = 0 for every n &#x3E; 0. Then q(X) = 0.

PROOF. A proof of this lemma follows from the results of [Sal] §4,
for the reader’s convenience we write here a direct proof. Let ~: Y - X
be the minimal resolution of X; since for every integer n the sheaf

is reflexive we have Pn (X ). In particular all the posi-
tive plurigenus of Y vanish and, by Enriques criterion, Y is a ruled
surface.

By Serre duality = 0 and by the Leray spectral sequence we
get q (Y) = q(X) + h(X) where, by definition, h(X) = Let’s
assume h(X)  q (Y) and let p: Y -~ B be the canonical ruled fibration
onto a smooth curve B of genus g = q(Y).

If D is an irreducible component of the exceptional divisor of 8 then,
by a general result (cf. [B-P-V], p. 74), g (D) ~ h(X) and thus p is con-
stant on D. We can thus factorize p to a ruled fibration p’ : X - B, but
this is impossible by the assumpion p(X) = 1.
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THEOREM 8 (Badescu). Let X be a normal projective surface such
that q(X) = Pn (X) = 0 for every n &#x3E; 0 and let a: Y - X be its minimal
resolution. Then either

1) The singularities of X are rational and Y is a rational sur-
face, or

2) Y i s o, n-iled s’urface of irregularity q &#x3E; 0, X has precisely one
non-rational singularity x of geometric genus q, the fibre of e over x
is composed by a section of the canonical ruled fibration p: Y- B
and (possibly) by components of the degenerate fibres of p, the fibre of e
over a rational singularity of X is contained in a degenerate fibre
of p.

PROOF ([Ba], Th. 2.3).

Our goal is to give a structure theorem for surfaces X belonging to
class 1) of Theorem 8 under the more restrictive assumption that
p(X)=1, P_1(X)~5.

DEFINITION 4. A normal projective surface X ;e 1~2 belongs to class
(A) if:

A 1 ) p (X) = 1, Pn (X) = 0 1 and X has at most rational

singularities,
A2) If a: S - X is the minimal resolution then ,S is a rational sur-

face of weight d ~ 2.

A3) There exists a birational morphism p.: S - JF d such that the
irreducible curves contracted by d are exactly a 00 and the components
with self intersections 2 of degenerate fibres of p = 7r°fJ.: S -
~p1.

Let’s denote, for every normal projective surface X with minimal
resolution a: Y - X, by s(X) the number of singular points of X and by
b(X) = max {b2

xr=X

PROPOSITION 9. If X belongs to class (A) then:

1) s(X) ~ b(X).

2) X has at most one non cyclic singularity.
3) If every singularity of X is cyclic then s(X) ~ 3.

PROOF. Let D c S be the exceptional divisor of a, since the singu-
larities of X are rational p (S) = 1 + b2 (D), this forces every degenerate
fibre of p to contain exactly one ( - 1 )-curve, in fact by easy considera-
tions about p we have, in the notation ( * ) of Section 1, r + h =
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= b2 (D ~ + e and then e = h. In particular the components of degen-
erate fibres which intersect belong to D.

It’s easy to see that if fo is a degenerate fibre, E cfo the ( - 1 )-curve
and A c fo the component intersecting cr 00 then fo ~E has at most two
connected component and the possible component that doesn’t contain
A is a string.

Thus it holds h + 1 ~ b(X) and, if (X, x) is a noncyclic singu-
larity, then 6-1 (x) must be the connected component D’ of D which con-
tains cr 00. This prove 1) and 2).

3) follows from the fact that D’ is a string iff h K 2.

The main result that we prove is the following:

THEOREM 10. Let X be a normal projective surface with p(X) = 1,
P_1(X) &#x3E; 5 with at most rational singularities. Then X belong to class
(A).

PROOF. Let ~: S -~ X be the minimal resolution and let D c S be the

exceptional curve of ~. S is a rational surface of weight d ~ 1 and, ac-
cording to (3.9.2.) P _ 1 (S ) = P _ 1 (X ) ~ 5.
We first note that, by Lemma 4, for every ,u: S - IFd there exists at

most one transversal curve C c D different from doc and then
eh+1.
We first show by contradiction that d ~ 2. In fact if we assume

d = 1 and ,u: S 2013&#x3E; IFd is a birational morphism then p (S ) = 1 + b2 (D) and
there exists a transversal curve C c D, C ~ cr 00 with C2 ~ - 2. By Lem-
ma 4 C ~ f = 1 and by Theorem 6, d ; - C2 &#x3E; 2.

If then for every birational morphism
~u: S ~ IFd the curves on S with self intersection - - 2 are cr 00 and some
components of degenerate fibres. In this case the conclusion follows
from easy considerations about the Picard number of S. This proves the
theorem if d ; 3 or P-1 % 6. It remain to consider the case d = 2,
P -1 (S ) = 5. If, for some ,u: S -~ IFd S contains a degenerate fibre fo such
that A2-2 where A c fo is the irreducible component which inter-
sects a. then the proof follows by Remark 1.

The remaining case is the following: d = 2, P- i (S ) = 5, for every bi-
rational morphism g: the composite fibration p = has only
one degenerate fibre fo and A 2 = -1 where A c fo is the component
which intersects We prove that this case doesn’t occur.

Let ,u: S -~ I~2 be a fixed morphism and write g as a composition of
blowings-up
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We note that P-1 (S ) = P _ 1 (F~) - 4 thus r &#x3E; 4. Let pi E be the base

point of the blow up pi is exactly the image of the critical set of com-
posite map S -~ Si _ 1. If i ~ j let Ei c Sj be the strict transform of the ex-
ceptional curve of lAi. We have E 2 = -1 and E 2 ~ - 2 on ,S if i  r, in
particular pi E Ei _ 1 ~ A Vi &#x3E; 1.

Let’s consider the surface Y obtained by contracting the curve (j 00 in
It is a well known fact that Y c p3 is the cone over a smooth conic

in P 2.
We can consider the point as a tangent vector v E Tpl Y,

let Y: Y - - - - P1 be the projection of center the projective line L
generated by v. Observe that L does not contain the vertex of Y and
then the generic fibre of ~ is a smooth hyperplane section of Y.

By elimination of indeterminacy we get a fibration S2 ~ E2 which
U A U Ei as unique degenerate fibre and then a fibration r: S -

-+ E2. The inclusion of E2 in S gives a section for r, in particular E22 &#x3E; -
- w (S ) which implies E2 = -2.

By hypothesis T has at most one degenerate fibre, then P3 E E1 n
n E2, in particular E22 in S3 and p4 E E3BE2 otherwise E22  -2 in
S, therefore E3 is the component of the degenerate fibre that intersects
E2 and E3 ~ - 2 contrary to the assumption.

REMARK 3. It’s no difficult to construct a normal projective sur-
face X with p = 1, P _ 1 = 4 and with three rational double points of type
A2 , hence by Proposition 9 X doesn’t belong to class A.

4. The case of normal degenerations of I~2.

Let X c P’ be a normal projective surface with q = pg = 0, P_1 &#x3E; 0
with at most rational singularities.

LEMMA 11. In the notation above = = H (ox (1)) =
- 0.

PROOF. The minimal resolution is a rational surface, in

particular H2 (Os) = H1 (ns) = H 0 = 0. Let C c X be a smooth hy-
perplane section, then C ~ Kx  0 and from exact cohomology sequence
associated to

we get immediately H 1 (ox(1)) = 0.
If H2 (0x)V = Hom (0x, 0 then, since both 0 and are reflexive

sheaves Hom (0x, Kx) = Hom (ou, Ku) where U c X is the open set of
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regular points. Moreover Ku is an invertible sheaf and the composition
bilinear map

is nondegenerate, thus Hom (9u) * 0. This is a contradiction since,
according to ([Pi], p. 176) Ou) = = HO(D1) = 0. m

Let xl , ..., xr be the singular points of X: then there exist by re-
striction the following natural morphisms of germs of analytic
spaces

where is the Hilbert scheme of Pn at ~, Defx (resp.: x~~)
is the base of the semiuniversal deformation of X (resp.: (X, xi)).

By Lemma 11 and standard deformation theory, the morphisms a
and f3 are smooth, in particular every deformation of the singularities of
X can be globalized to an embedded deformation of X. We note that the
dimension of the fibres of B is precisely h 1 (Ox).

Given smoothing of the singularities (X, xZ) they can be globalized to
a global smoothing of X, since rational singularities are smoothable,
then X is smoothable to a rational surface.

This applies in particular to surfaces with p = 1, P _ 1 ~ 5 with at
most rational singularities, for these surfaces is not difficult to prove
that if the singularities admits a Q-Gorenstein smoothing then they are
degenerations of Del Pezzo surfaces.
We don’t kwow any normal projective surface with p = 1, P _ 1 ~ 5

with at most rational singularities such that h 1 (6) ~ 0, we think that
such a surface doesn’t exist.

From now on we shall restrict for simplicity to normal projective
degenerations of I~2 . Let f : Y - 4 be a flat projective family of normal
surfaces such that Yt = I~2 for every 0.

In [Ma] is proved that p (Y°) = 1, P_ 1 (X ) ~ 10, q(YO) = 0, 8
and if the singularities are quotient then h 1 (6) = 0.

Let’s suppose that Yo has at most rational singularities and let

yl , ..., Y 8 e Y° be its singular points. We note that f is a smoothing of
8

each (Y° , yi). Denote by D c Ðl Def(Yo. Yi) the product of smoothing com-
i=1 

’ ’

ponents which contain f and write 
The projective plane is rigid, thus every smooth surface corre-

sponding to a point of H is isomorphic to IL~2. In particular for every
k 5 s if Yo is the surface obtained from Yo by smoothing only the sin-
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gularities (Yo, yi ) for i = then Yo is a normal projective degen-
eration of I~2.

COROLLARY 12. Let Yo be a normal projective degeneration of p2
with at most rational singularities, then Yo belong to class (A) and has
at moist four singular points.

PROOF. The proof follows from the previous results by considering
the surface obtained from Yo by smoothing only the possible noncyclic
singular point.

For a deeper study of normal degenerations of p2 see [Ma].

REMARK 4. If Yo has a nonrational singularity then in general
H 2 (eyo ) ~ 0 and the above construction doesn’t work.
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