Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

Marco Manetti

Normal projective surfaces with $\rho=1, P_{-1} \geqslant 5$
Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 195-205
http://www.numdam.org/item?id=RSMUP_1993__89__195_0
© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Normal Projective Surfaces with $\rho=1, P_{-1} \geqslant 5$.

Marco Manetti (*)

0 . Introduction.

One of the most interesting problems in the study of normal surfaces is to classify normal surfaces X with $\rho(X)=1$ and $-K_{X}$ ample (cf. [Sa2], Problem 3.3).

The study of such surfaces arises naturally when we study normal degenerations of rational surfaces and in particular normal degenerations of \mathbb{P}^{2} ([Ma], [Ba1], [Ba2]).

A first partial result for these surfaces is obtained by putting together a theorem of Sakai with one of Badescu.

Theorem A (Sakai-Badescu). Let X be a normal projective surface with $\rho=1, P_{n}=0 \forall n>0$ and let $u: Y \rightarrow X$ be its minimal resolution. Then $H^{1}\left(\mathcal{O}_{X}\right)=0$ ond one of the following possibilities holds:

1) Y is a rational surface and the singularities of X are rational.
2) Y is a ruled surface with irregularity $q>0, X$ contains exactly one nonrational singularity at x, the geometric genus of (X, x) is q, the exceptional divisor of u over x is given by a section of the canonical fibration $p: Y \rightarrow B$ (B smooth curve of genus q) plus possibly components of degenerate fibres of p.

In both cases we have no information about the structure and number of rational singularities of X. Here we prove, using elementary algebraic geometry, a structure theorem for surfaces belonging to class 1) of Theorem A having $P_{-1} \geqslant 5$. Our results give in particular the following:

Theorem B. Let X be a normal projective surface with $\rho(X)=1$,
(*) Indirizzo dell'A.: Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy.
$P_{-1}(X) \geqslant 5$ with at most rational singularities. Then X has at most one non cyclic singularity and, if all the singularities are cyclic then X has at most three singular points.

We remark that the result we prove also gives information about the minimal resolution of X. Finally in $\S 4$ we study the particular case where the surface X is a normal degeneration of \mathbb{P}^{2} (from [Ma] follows that $\rho(X)=1$ and $P_{-1}(X) \geqslant 10$), and we prove in particular (Corollary 12) that if X has at most rational singularities then X has at most 4 singular points.

Notation. For every normal surface X and every Weil divisor D on X we denote:
$\mathcal{O}_{X}(D)=$ sheaf of meromorphic functions f such that $(f)+D \geqslant 0$.
$h^{i}(D)=\operatorname{dim}_{\mathbb{C}} H^{i}\left(X, \mathcal{O}_{X}(D)\right) \quad i \geqslant 0$.
$K_{X} \quad=$ canonical divisor for X.
$\theta_{X} \quad=$ tangent sheaf of X, defined as the dual of the sheaf Ω_{X}^{1} of Kähler differentials.
$q(X)=h^{1}\left(\mathcal{O}_{X}\right)$ irregularity of X.
$p_{g}(X)=h^{2}\left(\mathcal{O}_{X}\right)$ geometric genus of X.
$P_{n}(X)=h^{0}\left(n K_{X}\right) n$-th plurigenus of X.
$N S(X)=\left(\operatorname{Pic}(X) / \operatorname{Pic}^{0}(X)\right) \oplus \mathbb{Q}$ Neron-Severi group of X.
$\rho(X)=\operatorname{dim}_{\mathbb{Q}} N S(X)$ Picard number.
$A(-1)$-curve in a surface is a smooth rational curve E such that $E^{2}=-1$.

If $\delta: Y \rightarrow X$ is a proper birational morphism from a smooth surface Y to a normal surface X we shall call exceptional divisor of δ the set $D \subset Y$ given by irreducible curves contracted by δ.

Aknowledgement. I would like to thank F. Catanese for drawing my attention to the surface which we consider here and for many valuable discussions.

1. Curves with negative self intersection in a rational surface.

Let S be a smooth rational surface, then S does not contain any irreducible curve with negative self intersection if and only if $S=\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$. From now on, by abuse of notation we shall
denote by a rational surface a rational surface different from $\mathbb{P}^{2}, \mathbb{P}^{1} \times$ $\times \mathbb{P}^{1}$.

Let S be a such a rational surface, then there exists an integer $d \geqslant 1$ and a birational morphism $\mu: S \rightarrow \mathbb{F}_{d}$ such that μ is an isomorphism in a neighbourhood of the section σ_{∞} with self intersection $-d$ (cf. for example [Be]). We note that μ is the composition of $\rho(S)-2$ blowingsup.

Let $p: S \rightarrow \mathbb{P}^{1}$ be the fibration obtained by composing μ with the natural projection $\pi: \mathbb{F}_{d} \rightarrow \mathbb{P}^{1}$.
(*) In order to simplify the presentation of next proofs we introduce some technical notation.

In the situation above let $r=\rho(S)-2$, let h be the number of degenerate fibres of p and let e be the number of (-1)-curves contained in the fibres of p. We note that $e \geqslant h$ and $r=\sum_{\text {fibres of } p}\left(b_{2}(f)-1\right)$.

Definition 1. In the notation above, a smooth irreducible curve $C \subset S$ is said to be μ-transversal or simply transversal if $C \cdot f>0$ where f is a fibres of p.

THEOREM 1. Let S be a rational surface, $\mu: S \rightarrow \mathbb{F}_{d}$ a birational morphism which is an isomorphism in a neighbourhood of σ_{∞} and $C \subset S$ a transversal curve $\neq \sigma_{\infty}$.

If $h^{0}\left(-K_{S}\right)+\min \{d, 3\} \geqslant 8$ then $C^{2} \geqslant-1$.
We prove this theorem later on. Let X be a smooth surface, $x \in X$ and $\tilde{X} \xrightarrow{f} X$ the blowing up of X at x. We have an exact sequence of sheaves on X

$$
0 \rightarrow f_{*} \mathcal{O}_{\tilde{X}}\left(-K_{\tilde{X}}\right) \rightarrow \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow \Lambda^{2} T_{x} X \rightarrow 0
$$

In particular the vector space $H^{0}\left(-K_{\tilde{X}}\right)$ is naturally isomorphic to the space of sections of the anticanonical sheaf of X which vanish at x.

Corollary 2. Let S be a rational surface: if, in the notation above, $h^{0}\left(-K_{S}\right)+\min \{d, 3\} \geqslant 9$ and $C \in S$ is a transversal curve $\neq \sigma_{\infty}$, then $C^{2} \geqslant 0$.

Proof. The proof follows by considering the blowing up of S at a point of C.

Theorem 1 cannot be improved. Let in fact $S_{d}(d \geqslant 1)$ be a surface
obtained by blowing up the surface \mathbb{F}_{d} at $d+1$ generic points p_{0}, \ldots, p_{d}. These points lie on a section $\sigma_{0} \subset \mathbb{F}_{d}$ such that $\sigma_{0}^{2}=d$, let $C \subset S_{d}$ be the strict transform of σ_{0} : clearly $C^{2}=-1$, and, recalling that

$$
h^{0}\left(-K_{\mathrm{F}_{d}}\right)= \begin{cases}9 & 1 \leqslant d \leqslant 3 \\ d+6 & d \geqslant 3\end{cases}
$$

it follows that $h^{0}\left(-K_{S}\right)+\min \{d, 3\}=8$.
Lemma 3. In the previous notation let S be a rational surface and let f be a generic fibre of p. Then $h^{0}\left(-K_{S}-f-\sigma_{\infty}\right) \geqslant h^{0}\left(-K_{S}\right)+$ $+\min \{d, 3\}-5$.

Proof. We have two exact sequences of sheaves

1) $0 \rightarrow \mathcal{O}_{S}\left(-K_{S}-\sigma_{\infty}\right) \rightarrow \mathcal{O}_{S}\left(-K_{S}\right) \rightarrow \mathcal{O}_{\sigma_{\infty}}\left(-K_{S}\right) \rightarrow 0$,
2) $0 \rightarrow \mathcal{O}_{S}\left(-K_{S}-f-\sigma_{\infty}\right) \rightarrow \mathcal{O}_{S}\left(-K_{S}-\sigma_{\infty}\right) \rightarrow \mathcal{O}_{f}\left(-K_{S}-\sigma_{\infty}\right) \rightarrow 0$.

By the genus formula $-K_{S} \cdot \sigma_{\infty}=2+\sigma_{\infty}^{2}=2-d$, thus $h^{0}\left(\mathcal{O}_{\sigma_{\infty}}\left(-K_{S}\right)\right)=$ $=3-\min \{d, 3\}$.

The proof follows by considering cohomology exact sequences associated to 1) and 2).

Proof of Theorem 1. If $S=\mathbb{F}_{d}$ we already know that σ_{∞} is the only curve with negative self intersection, so we can assume that p has a degenerate fibre f_{0}.

If A is the irreducible component of f_{0} which intersects σ_{∞} then we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{S}\left(-K_{S}-f-\sigma_{\infty}-A\right) \rightarrow \mathcal{O}_{S}\left(-K_{S}-\sigma_{\infty}-f\right) \rightarrow \mathcal{O}_{A}\left(-K_{S}-\sigma_{\infty}-f\right) \rightarrow 0
$$

By the genus formula $\left(-K_{S}-f-\sigma_{\infty}\right) \cdot A=2+A^{2}-1 \leqslant 0$ and by Lemma $3 h^{0}\left(-K_{S}-f-\sigma_{\infty}-A\right) \geqslant 2$. Let $C \subset S$ be a transversal curve different from σ_{∞} with $C^{2} \leqslant-2$; for every $D \in\left|-K_{S}-f-\sigma_{\infty}-A\right|$ we have

$$
D \cdot C \leqslant 2+C^{2}-f \cdot C-\sigma_{\infty} \cdot C-A \cdot C<0
$$

thus $D=C+E$ for some effective divisor E.
Moreover $E \cdot f=E \cdot \sigma_{\infty}=0$, in fact, by genus formula $D \cdot f=1, D \cdot$ $\cdot \sigma_{\infty}=0$ and by hypothesis $C \cdot f>0, C \neq \sigma_{\infty} . E$ is contained in the exceptional locus of μ but yhis is not possible because $\operatorname{dim}|D|=\operatorname{dim}|E| \geqslant$ $\geqslant 1$.

REMARK 1. Looking at the proof of Theorem 1 we note that if there exist a degenerate fibre f_{0} such that the irreducible component A
which intersects σ_{∞} has self intersection $A^{2} \leqslant-2$ then Theorem 1 holds under the less restrictive assumption $h^{0}\left(-K_{S}\right)+\min \{d, 3\} \geqslant 7$. We also note that the condition $A^{2} \leqslant-2$ holds in particular if f_{0} contains exactly one (-1)-curve.

Remark 2. One can prove that Cor. 2 is still valid if we change the condition $h^{0}\left(-K_{S}\right)+\min \{d, 3\} \geqslant 9$ with $h^{0}\left(\theta_{S}\right) \geqslant 4$. We don't need this result so we don't prove it here.

Lemma 4. In the same notation of Lemma 3, if $h^{0}\left(-K_{S}\right)+$ $+\min \{d, 3\} \geqslant 6$ then there exists at most one transversal curve $C \neq \sigma_{\infty}$ with $C^{2} \leqslant-2$. If such a curve exists then $C \cdot f=1$.

Proof. By Lemma $3 h^{0}\left(-K_{S}-f-\sigma_{\infty}\right) \geqslant 1$, consider $D \in \mid-K_{S}-$ $-f-\sigma_{\infty} \mid$. By the genus formula

$$
D \cdot C \leqslant 2+C^{2}-C \cdot f-C \cdot \sigma_{\infty}<0
$$

thus $D=C+B$ where B is an effective divisor. We note that $B \cdot f=0$ and thus C is the only component of D such that $C \cdot f=D \cdot f=$ $=1$.

2. The weight of a rational surface.

Let $p: X \rightarrow B$ a holomorphic map from a surface X to a smooth curve B. We shall say that p is a rational fibration with section (r.f.w.s. for short) if:

1) The generic fibre of p is a smooth rational curve.
2) It's given a section $s: B \rightarrow X$.

Without loss of generality we can obviously assume that $B \subset X$ and s is the embedding of B in X.

Definition 2. A r.f.w.s. $p: X \rightarrow B$ is minimal if every fibre contains no (-1)-curves disjoint from B.

Proposition 5. In a minimal r.f.w.s $p: X \rightarrow B$ every fibre is smooth rational.

Proof. The proof is essentially the same as Lemma III. 8 of [Be].

Definition 3. The weight $w(S)$ of a rational surface $S \neq \mathbb{P}^{2}$ is the greatest integer n such that there exists a birational morphism $\mu: S \rightarrow \mathbb{F}_{n}$.

We note that $w(S) \leqslant h^{1}\left(\theta_{\mathbb{F}_{w(S)}}\right)+1 \leqslant h^{1}\left(\theta_{S}\right)+1$.
Let \mathcal{C} be the set of irreducible curves $C \subset S$ such that there exists a smooth rational curve $f \subset S$ with $f^{2}=0, C \cdot f=1$.

THEOREM 6. In the notation above $w(S)=\max \left\{-C^{2} \mid C \in \mathcal{C}\right\}$.
PRoof. \leqslant is trivial.
Conversely let $C \in \mathcal{C}$ such that $C^{2}<0$, we have to show that $-C^{2} \leqslant$ $\leqslant w(S)$. Let f be a smooth rational curve such that $f^{2}=0, f \cdot C=1$, then it's very easy to prove that the linear system $|f|$ is a base point free pencil. The associated morphism $p: S \rightarrow \mathbb{P}^{1}$ is a rational fibration with section C.

The conclusion follows from Proposition 5 by considering the surface S^{\prime} obtained by contracting all (-1)-curves contained in the degenerate fibres of p which are disjoint from C.

3. Normal projective surfaces with $\rho=1, P_{-1} \geqslant 5$.

We first observe that in this case, since X is normal projective, $P_{n}(X)=0$ for every $n>0$.

Lemma 7 (Sakai). Let X be a normal projective surface with $\rho(X)=1, P_{n}(X)=0$ for every $n>0$. Then $q(X)=0$.

Proof. A proof of this lemma follows from the results of [Sa1] §4, for the reader's convenience we write here a direct proof. Let $\delta: Y \rightarrow X$ be the minimal resolution of X; since for every integer n the sheaf $\mathcal{O}_{X}\left(n K_{X}\right)$ is reflexive we have $P_{n}(Y) \leqslant P_{n}(X)$. In particular all the positive plurigenus of Y vanish and, by Enriques criterion, Y is a ruled surface.

By Serre duality $H^{2}\left(\mathcal{O}_{X}\right)=0$ and by the Leray spectral sequence we get $q(Y)=q(X)+h(X)$ where, by definition, $h(X)=h^{0}\left(R^{1} \delta_{*} \mathcal{O}_{Y}\right)$. Let's assume $h(X)<q(Y)$ and let $p: Y \rightarrow B$ be the canonical ruled fibration onto a smooth curve B of genus $g=q(Y)$.

If D is an irreducible component of the exceptional divisor of δ then, by a general result (cf. [B-P-V], p. 74), $g(D) \leqslant h(X)$ and thus p is constant on D. We can thus factorize p to a ruled fibration $p^{\prime}: X \rightarrow B$, but this is impossible by the assumpion $\rho(X)=1$.

Theorem 8 (Badescu). Let X be a normal projective surface such that $q(X)=P_{n}(X)=0$ for every $n>0$ and let $\delta: Y \rightarrow X$ be its minimal resolution. Then either

1) The singularities of X are rational and Y is a rational surface, or
2) Y is a muled surface of irregularity $q>0, X$ has precisely one non-rational singularity x of geometric genus q, the fibre of δ over x is composed by a section of the canonical ruled fibration $p: Y \rightarrow B$ and (possibly) by components of the degenerate fibres of p, the fibre of δ over a rational singularity of X is contained in a degenerate fibre of p.

Proof ([Ba], Th. 2.3).
Our goal is to give a structure theorem for surfaces X belonging to class 1) of Theorem 8 under the more restrictive assumption that $\rho(X)=1, P_{-1}(X) \geqslant 5$.

Definition 4. A normal projective surface $X \neq \mathbb{P}^{2}$ belongs to class (A) if:

A1) $\rho(X)=1, P_{n}(X)=0 \forall n \geqslant 1$ and X has at most rational singularities,

A2) If $\delta: S \rightarrow X$ is the minimal resolution then S is a rational surface of weight $d \geqslant 2$.

A3) There exists a birational morphism $\mu: S \rightarrow \mathbb{F}_{d}$ such that the irreducible curves contracted by δ are exactly σ_{∞} and the components with self intersection $\leqslant-2$ of degenerate fibres of $p=\pi \circ \mu: S \rightarrow$ $\rightarrow \mathbb{P}^{1}$.

Let's denote, for every normal projective surface X with minimal resolution $\delta: Y \rightarrow X$, by $s(X)$ the number of singular points of X and by $b(X)=\max _{x \in X}\left\{b_{2}\left(\delta^{-1}(x)\right)\right\}$.

Proposition 9. If X belongs to class (A) then:

1) $s(X) \leqslant b(X)$.
2) X has at most one non cyclic singularity.
3) If every singularity of X is cyclic then $s(X) \leqslant 3$.

Proof. Let $D \subset S$ be the exceptional divisor of δ, since the singularities of X are rational $\rho(S)=1+b_{2}(D)$, this forces every degenerate fibre of p to contain exactly one (-1)-curve, in fact by easy considerations about ρ we have, in the notation (*) of Section $1, r+h=$
$=b_{2}\left(\overline{D \backslash \sigma_{\infty}}\right)+e$ and then $e=h$. In particular the components of degenerate fibres which intersect σ_{∞} belong to D.

It's easy to see that if f_{0} is a degenerate fibre, $E \subset f_{0}$ the (-1)-curve and $A \subset f_{0}$ the component intersecting σ_{∞} then $\overline{f_{0} \backslash E}$ has at most two connected component and the possible component that doesn't contain A is a string.

Thus it holds $s(X) \leqslant h+1 \leqslant b(X)$ and, if (X, x) is a noncyclic singularity, then $\delta^{-1}(x)$ must be the connected component D^{\prime} of D which contains σ_{∞}. This prove 1) and 2).
3) follows from the fact that D^{\prime} is a string iff $h \leqslant 2$.

The main result that we prove is the following:
Theorem 10. Let X be a normal projective surface with $\rho(X)=1$, $P_{-1}(X) \geqslant 5$ with at most rational singularities. Then X belong to class (A).

Proof. Let $\delta: S \rightarrow X$ be the minimal resolution and let $D \subset S$ be the exceptional curve of $\delta . S$ is a rational surface of weight $d \geqslant 1$ and, according to (3.9.2.) $P_{-1}(S)=P_{-1}(X) \geqslant 5$.

We first note that, by Lemma 4, for every $\mu: S \rightarrow \mathbb{F}_{d}$ there exists at most one transversal curve $C \subset D$ different from σ_{∞} and then $e \leqslant h+1$.

We first show by contradiction that $d \geqslant 2$. In fact if we assume $d=1$ and $\mu: S \rightarrow \mathbb{F}_{d}$ is a birational morphism then $\rho(S)=1+b_{2}(D)$ and there exists a transversal curve $C \subset D, C \neq \sigma_{\infty}$ with $C^{2} \leqslant-2$. By Lemma $4 C \cdot f=1$ and by Theorem $6, d \geqslant-C^{2} \geqslant 2$.

If $P_{-1}(S)+\min \{d, 3\} \geqslant 8$ then for every birational morphism $\mu: S \rightarrow \mathbb{F}_{d}$ the curves on S with self intersection $\leqslant-2$ are σ_{∞} and some components of degenerate fibres. In this case the conclusion follows from easy considerations about the Picard number of S. This proves the theorem if $d \geqslant 3$ or $P_{-1} \geqslant 6$. It remain to consider the case $d=2$, $P_{-1}(S)=5$. If, for some $\mu: S \rightarrow \mathbb{F}_{d} S$ contains a degenerate fibre f_{0} such that $A^{2} \leqslant-2$ where $A \subset f_{0}$ is the irreducible component which intersects σ_{∞} then the proof follows by Remark 1.

The remaining case is the following: $d=2, P_{-1}(S)=5$, for every birational morphism $\mu: S \rightarrow \mathbb{F}_{2}$ the composite fibration $p=\pi^{\circ} \mu$ has only one degenerate fibre f_{0} and $A^{2}=-1$ where $A \subset f_{0}$ is the component which intersects σ_{∞}. We prove that this case doesn't occur.

Let $\mu: S \rightarrow \mathbb{F}_{2}$ be a fixed morphism and write μ as a composition of blowings-up

$$
S=S_{r} \xrightarrow{\mu_{r}} S_{r-1} \rightarrow \ldots S_{2} \xrightarrow{\mu_{2}} S_{1} \xrightarrow{\mu_{1}} S_{0}=\mathbb{F}_{2} .
$$

We note that $P_{-1}(S)=P_{-1}\left(\mathbb{F}_{2}\right)-4$ thus $r \geqslant 4$. Let $p_{i} \in S_{i-1}$ be the base point of the blow up $\mu_{i} . p_{i}$ is exactly the image of the critical set of composite map $S \rightarrow S_{i-1}$. If $i \leqslant j$ let $E_{i} \subset S_{j}$ be the strict transform of the exceptional curve of μ_{i}. We have $E_{i}^{2}=-1$ and $E_{i}^{2} \leqslant-2$ on S if $i<r$, in particular $p_{i} \in E_{i-1} \backslash A \forall i>1$.

Let's consider the surface Y obtained by contracting the curve σ_{∞} in \mathbb{F}_{2}. It is a well known fact that $Y \subset \mathbb{P}^{3}$ is the cone over a smooth conic in \mathbb{P}^{2}.

We can consider the point $p_{2} \in E_{1} \backslash A$ as a tangent vector $v \in T_{p_{1}} Y$, let $\psi: Y--\rightarrow \mathbb{P}^{1}$ be the projection of center the projective line L generated by v. Observe that L does not contain the vertex of Y and then the generic fibre of ψ is a smooth hyperplane section of Y.

By elimination of indeterminacy we get a fibration $S_{2} \rightarrow E_{2}$ which has $\sigma_{\infty} \cup A \cup E_{1}$ as unique degenerate fibre and then a fibration $\tau: S \rightarrow$ $\rightarrow E_{2}$. The inclusion of E_{2} in S gives a section for τ, in particular $E_{2}^{2} \geqslant-$ $-w(S)$ which implies $E_{2}^{2}=-2$.

By hypothesis τ has at most one degenerate fibre, then $p_{3} \in E_{1} \cap$ $\cap E_{2}$, in particular $E_{2}^{2}=-2$ in S_{3} and $p_{4} \in E_{3} \backslash E_{2}$ otherwise $E_{2}^{2}<-2$ in S, therefore E_{3} is the component of the degenerate fibre that intersects E_{2} and $E_{3}^{2} \leqslant-2$ contrary to the assumption.

Remark 3. It's no difficult to construct a normal projective surface X with $\rho=1, P_{-1}=4$ and with three rational double points of type A_{2}, hence by Proposition $9 X$ doesn't belong to class A.

4. The case of normal degenerations of \mathbb{P}^{2}.

Let $X \subset \mathbb{P}^{n}$ be a normal projective surface with $q=p_{g}=0, P_{-1}>0$ with at most rational singularities.

Lemma 11. In the notation above $H^{2}\left(\theta_{X}\right)=H^{2}\left(\mathcal{O}_{X}\right)=H^{1}\left(\mathcal{O}_{X}(1)\right)=$ $=0$.

Proof. The minimal resolution $\delta: S \rightarrow X$ is a rational surface, in particular $H^{2}\left(\mathcal{O}_{S}\right)=H^{1}\left(\mathcal{O}_{S}\right)=H^{0}\left(\Omega_{2}^{1}\right)=0$. Let $C \subset X$ be a smooth hyperplane section, then $C \cdot K_{X}<0$ and from exact cohomology sequence associated to

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(1) \rightarrow \mathcal{O}_{C}(1) \rightarrow 0
$$

we get immediately $H^{1}\left(\mathcal{O}_{X}(1)\right)=0$.
If $H^{2}\left(\theta_{X}\right)^{\vee}=\operatorname{Hom}\left(\theta_{X}, K_{X}\right) \neq 0$ then, since both θ and K are reflexive sheaves $\operatorname{Hom}\left(\theta_{X}, K_{X}\right)=\operatorname{Hom}\left(\theta_{U}, K_{U}\right)$ where $U \subset X$ is the open set of
regular points. Moreover K_{U} is an invertible sheaf and the composition bilinear map

$$
\operatorname{Hom}\left(\theta_{U}, K_{U}\right) \times \operatorname{Hom}\left(K_{U}, \mathcal{O}_{U}\right) \rightarrow \operatorname{Hom}\left(\theta_{U}, \mathcal{O}_{U}\right)
$$

is nondegenerate, thus $\operatorname{Hom}\left(\theta_{U}, \mathcal{O}_{U}\right) \neq 0$. This is a contradiction since, according to ([Pi], p. 176) Hom $\left(\theta_{U}, \mathcal{O}_{U}\right)=H^{0}\left(\Omega_{U}^{1}\right)=H^{0}\left(\Omega_{S}^{1}\right)=0$.

Let x_{1}, \ldots, x_{r} be the singular points of X : then there exist by restriction the following natural morphisms of germs of analytic spaces

$$
\operatorname{Hilb}_{\mathbf{P}^{n}}(X) \xrightarrow{\alpha} \operatorname{Def}_{X} \xrightarrow{\beta} \prod_{i=1}^{r} \operatorname{Def}_{\left(X, x_{1}\right)}
$$

where $\operatorname{Hilb}_{\mathbb{P}^{n}}(X)$ is the Hilbert scheme of \mathbb{P}^{n} at $X, \operatorname{Def}_{X}\left(\right.$ resp.: $\left.\operatorname{Def}_{\left(X, x_{i}\right)}\right)$ is the base of the semiuniversal deformation of X (resp.: $\left(X, x_{i}\right)$).

By Lemma 11 and standard deformation theory, the morphisms α and β are smooth, in particular every deformation of the singularities of X can be globalized to an embedded deformation of X. We note that the dimension of the fibres of β is precisely $h^{1}\left(\theta_{X}\right)$.

Given smoothing of the singularities (X, x_{i}) they can be globalized to a global smoothing of X, since rational singularities are smoothable, then X is smoothable to a rational surface.

This applies in particular to surfaces with $\rho=1, P_{-1} \geqslant 5$ with at most rational singularities, for these surfaces is not difficult to prove that if the singularities admits a \mathbb{Q}-Gorenstein smoothing then they are degenerations of Del Pezzo surfaces.

We don't kwow any normal projective surface with $\rho=1, P_{-1} \geqslant 5$ with at most rational singularities such that $h^{1}(\theta) \neq 0$, we think that such a surface doesn't exist.

From now on we shall restrict for simplicity to normal projective degenerations of \mathbb{P}^{2}. Let $f: Y \rightarrow \Delta$ be a flat projective family of normal surfaces such that $Y_{t} \simeq \mathbb{P}^{2}$ for every $t \neq 0$.

In [Ma] is proved that $\rho\left(Y_{0}\right)=1, P_{-1}(X) \geqslant 10, q\left(Y_{0}\right)=0, h^{0}\left(\theta_{Y_{0}}\right) \geqslant 8$ and if the singularities are quotient then $h^{1}(\theta)=0$.

Let's suppose that Y_{0} has at most rational singularities and let $y_{1}, \ldots, y_{s} \in Y_{0}$ be its singular points. We note that f is a smoothing of each $\left(Y_{0}, y_{i}\right)$. Denote by $D \subset \prod_{i=1}^{s} \operatorname{Def}_{\left(Y_{0}, y_{i}\right)}$ the product of smoothing components which contain f and write $H=\alpha^{-1} \beta^{-1} D$.

The projective plane is rigid, thus every smooth surface corresponding to a point of H is isomorphic to \mathbb{P}^{2}. In particular for every $k \leqslant s$ if Y_{0}^{k} is the surface obtained from Y_{0} by smoothing only the sin-
gularities $\left(Y_{0}, y_{i}\right)$ for $i=1, \ldots, k$ then Y_{0}^{k} is a normal projective degeneration of \mathbb{P}^{2}.

Corollary 12. Let Y_{0} be a normal projective degeneration of \mathbb{P}^{2} with at most rational singularities, then Y_{0} belong to class (A) and has at most four singular points.

Proof. The proof follows from the previous results by considering the surface obtained from Y_{0} by smoothing only the possible noncyclic singular point.

For a deeper study of normal degenerations of \mathbb{P}^{2} see [Ma].
Remark 4. If Y_{0} has a nonrational singularity then in general $H^{2}\left(\theta_{Y_{0}}\right) \neq 0$ and the above construction doesn't work.

REFERENCES

[A1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math., 84 (1962), pp. 485-496.
[A2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), pp. 129-136.
[Ba1] L. Badescu, Normal projective degenerations of rational and ruled surfaces, J. Reine Angew. Math., 367 (1986), pp. 76-89.
[Ba2] L. Badescu, Local properties of the degenerations of rational surfaces, Rev. Roumaine Math. Pures Appl., 31 (1986), pp. 471-477.
[B-P-V] W. Barth - C. Peters - A. van der Ven, Compact Complex Surfaces, Springer-Verlag, Ergebnisse 4 (1984).
[Be] A. Beauvilee, Complex Algebraic Surfaces, London Math. Soc., LNS, 68 (1983).
[Ma] M. Manetti, Normal degeneration of the complex projective plane, J. Reine Angew. Math., 419 (1991), pp. 89-118.
[Pi] H. Pinkham, Singularités rationnelles des surfaces (avec un appendice), Lectures Notes in Math., 777, Springer-Verlag (1980), pp. 147-178.
[Sa1] F. Sakai, The structure of normal surfaces, Duke Math. J., 52 (1985), pp. 627-648.
[Sa2] F. Sakal, Classification of normal surfaces, Proc. Symp. in Pure Math., 46, part 1 (1987) A.M.S., pp. 451-465.
[Wa] J. Wahl, Smoothings of normal surface singularities, Topology, 20 (1981), pp. 219-246.

Manoscritto pervenuto in redazione il 24 marzo 1992.

