Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

Z. Y. DUAN

Extensions of abelian by hyper-(cyclic or finite) groups (II)

Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 113-126
http://www.numdam.org/item?id=RSMUP_1993__89__113_0
© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{2}$

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

Extensions of Abelian by Hyper-(Cyclic or Finite) Groups (II).

Z. Y. Duan ${ }^{*}$)

Abstract

If G is a hypercyclic (or hyperfinite and locally soluble) group and A a noetherian $\mathbb{Z} G$-module with no nonzero cyclic (or finite) $\mathbb{Z} G$-factors then Zaicev proved that any extension E of A by G splits conjugately over A. For G being a hyper-(cyclic or finite) locally soluble group, if A is a periodic artinian $\mathbb{Z} G$-module with no nonzero finite $\mathbb{Z} G$-factors, then we have shown that any extension E of A by G splits conjugately over A, too. Here we consider the noetherian case and prove the splitting theorem which generalizes that of Zaicev for G being a hyperfinite and locally soluble group.

In [1], we have proved: if G is a hyper-(cyclic or finite) locally soluble group and if A is a periodic artinian $\mathbb{Z} G$-module with no nonzero finite $\mathbb{Z} G$-factors, then any extension E of A by G splits conjugately over A. Now we continue the work and are going to prove the same result for A being noetherian.

The following lemma generalizes the corresponding one in Zaicev's paper [6] and is very important in our later proof.

Lemma 1. Let H be a normal hyper-(cyclically or finitely) embedded subgroup of a group G, and let A be a nonzero noetherian $\mathbb{Z} G$-module. If $C_{A}(H)=0$, then there is a subgroup K of H and a nonzero $\mathbb{Z} G$ submodule B of A such that K is normal in $G, C_{B}(K)=0$, and K induces in B a cyclic or finite group of automorphisms.

Proof. Suppose the lemma is false. Using the noetherian condition we may assume that the lemma is true in all proper $\mathbb{Z} G$-module A. We may also assume that G acts faithfully on A.
${ }^{(*)}$ Indirizzo dell'A.: Department of Mathematics, Southwest Teachers University, Beibei, ChongQing, 630715, P. R. China.

There is a cyclic or finite subgroup $F \leqslant H$ with F being normal in G. If $C_{A}(F)=0$ then the lemma is true taking F, A for K, B.

Consider the second possibility $C_{A}(F) \neq 0$. We let A_{1} be the $\mathbb{Z} G$ submodule $C_{A}(F)$ and let $H_{1}=C_{H}(F)$. Then H_{1} is normal in G and $\left|H / H_{1}\right|<\infty$.
(1) Suppose that the centralizer $A_{2} / A_{1}=C_{A / A_{1}}(H)$ is nonzero, i.e., $A_{2} \neq A_{1}$. Consider the $\mathbb{Z} H_{1}$-isomorphism $A_{2} / C_{A_{2}}(f) \cong{ }_{Z H_{1}} A_{2}(f-1)$, where $f \in F$. Since $A_{1} \leqslant C_{A_{2}}(f)$ and A_{2} / A_{1} is H_{1}-trivial, we have that $A_{2}(f-1)$ is H_{1}-trivial for any $f \in F$. It follows that

$$
\left[A_{2}, F\right]=\sum_{f \in F} A_{2}(f-1)
$$

is H_{1}-trivial and so H induces a finite group of automorphisms on $\left[A_{2}, F\right]$. Since $A_{2} \neq A_{1}$ the $\mathbb{Z} G$-submodule $\left[A_{2}, F\right] \neq 0$ and $C_{\left[A_{2}, F\right]}(H)=0$ since $C_{A}(H)=0$. Therefore the lemma is true with $K=H, B=$ $=\left[A_{2}, F\right]$.
(2) Suppose now that $A_{2}=A_{1}$, i.e., $C_{A / A_{1}}\left(H_{1}\right)=0$. Then the $\mathbb{Z} G$ module A / A_{1} and the normal subgroup H_{1} satisfy the hypotheses of the lemma and so there is a subgroup K_{1} of H_{1} and nonzero $\mathbb{Z} G$-submodule B_{1} / A_{1} of A / A_{1} such that K_{1} is normal in $G, C_{B_{1} / A_{1}}\left(K_{1}\right)=0$, and K_{1} induces in B_{1} / A_{1} a cyclic or finite group of automorphisms.

Put $G_{1}=C_{G}(F)$; clearly $H_{1}=H \cap G_{1},\left|G / G_{1}\right|<\infty$.
(a) We consider firstly the case that $K_{1} / C_{K_{1}}\left(B_{1} / A_{1}\right)$ is cyclic.

Let $B_{2}=\left[B_{1}, F\right]$ and let $K_{0}=C_{K_{1}}\left(B_{1} / A_{1}\right)$. Since $A_{1}=C_{A}(F)$, so

$$
\left[K_{0}, B_{1}, F\right]=\left[\left[K_{0}, B_{1}\right], F\right] \leqslant\left[A_{1}, F\right]=0 ;
$$

also by $K_{0} \leqslant K_{1} \leqslant H_{1}=C_{H}(F)$, we have

$$
\left[F, K_{0}, B_{1}\right]=\left[\left[F, K_{0}\right], B_{1}\right]=\left[1, B_{1}\right]=0 .
$$

Thus by the three subgroup lemma,

$$
\left[B_{2}, K_{0}\right]=\left[\left[B_{1}, F\right], K_{0}\right]=\left[B_{1}, F, K_{0}\right]=0 .
$$

Therefore $B_{2} \leqslant C_{A}\left(K_{0}\right)$ and we then can view the noetherian $\mathbb{Z} G$-module B_{2} as a noetherian $\mathbb{Z}\left(G / K_{o}\right)$-module. Applying Lemma 3 in [5] to the cyclic normal subgroup K_{1} / K_{0} of G / K_{0}, there is an integer m such that

$$
B_{2}(k-1)^{m} \cap C_{B_{2}}(k)=0,
$$

where k is an element such that $K_{1}=K_{0}\langle k\rangle$.
If $B_{2}(k-1)^{m}=0$, then

$$
\begin{aligned}
0=B_{2}(k-1)^{m}= & \left(\sum_{f \in F} B_{1}(f-1)\right)(k-1)^{m}=\sum_{f \in F} B_{1}\left((f-1)(k-1)^{m}\right)= \\
& =\sum_{f \in F} B_{1}\left((k-1)^{m}(f-1)\right)=\sum_{f \in F}\left(B_{1}(k-1)^{m}\right)(f-1) .
\end{aligned}
$$

That is, $B_{1}(k-1)^{m} \leqslant C_{A}(F)=A_{1}$. But this is contrary to

$$
C_{B_{1} / A_{1}}(k)=C_{B_{1} / A_{1}}(K)=0
$$

So we have $B_{2}(k-1)^{m}$ and then the lemma is true by taking $B=$ $=B_{2}(k-1)^{m}$ and $K=K_{1}$.
(b) Secondly, we consider the case that $K_{1} / C_{K_{1}}\left(B_{1} / A_{1}\right)$ is finite. Choose in F a least set of elements $\left\{x_{1}, \ldots, x_{n}\right\}$ satisfying

$$
A_{1}=C_{B_{1}}(F)=C_{B_{1}}\left(x_{1}\right) \cap \ldots \cap C_{B_{1}}\left(x_{n}\right)
$$

and put $B_{2}=C_{B_{1}}\left(x_{1}\right) \cap \ldots \cap C_{B_{1}}\left(x_{n-1}\right)$ if $n>1$ and $B_{2}=B_{1}$ if $n=1$. Then

$$
\begin{equation*}
B_{2} \neq A_{1} \tag{1}
\end{equation*}
$$

and $C_{B_{2}}\left(x_{n}\right)=C_{B_{1}}\left(x_{1}\right) \cap \ldots \cap C_{B_{1}}\left(x_{n}\right)=A_{1}$. Consider the $\mathbb{Z} G_{1}$-isomorphism

$$
\begin{equation*}
B_{2} / A_{1}=B_{2} / C_{B_{2}}\left(x_{n}\right) \cong_{\mathbb{Z} G_{1}} B_{2}\left(x_{n}-1\right) \tag{2}
\end{equation*}
$$

Since $K_{1} \leqslant G_{1}, B_{2} \leqslant B_{1}$, and K_{1} indices a finite group of automorphisms on B_{1} / A_{1}, so K_{1} induces a finite group of automorphism on B_{2} / A_{1} and hence on $B_{2}\left(x_{n}-1\right)$. Since $C_{B_{1} / A_{1}}\left(K_{1}\right)=0$ we also have $C_{B_{2}\left(x_{n}-1\right)}\left(K_{1}\right)=0$.

Let $D=B_{2}\left(x_{n}-1\right)$. Then D is a $\mathbb{Z} G_{1}$-submodule of $B_{1}, C_{D}\left(K_{1}\right)=0$, and $\left|K_{1} / C_{K_{1}}(D)\right|<\infty$. Let \bar{D} be the $\mathbb{Z} G$-module generated by D, then $\bar{D}=\sum_{g \in T} D g$ is a finite sum of $\mathbb{Z} G_{1}$-submodules $D g$, where T is a transversal to G_{1} in G.

Note that since K_{1} is normal in $G, C_{D g}\left(K_{1}\right)=C_{D}\left(K_{1}\right) g=0$, and $C_{K_{1}}(D g)=g^{-1} C_{K_{1}}(D) g$. It follows that $\left|K_{1} / \bigcap_{g \in T} C_{K_{1}}(D g)\right|<\infty$ and so K_{1} induces a finite group of automorphisms in \bar{D}.

Now consider two cases.
(A) D contains an element of finite order.

Then D contains a maximal elementary abelian \mathfrak{p}-subgroup $D_{1}(\neq 0)$
and we let $\bar{D}_{1}=\sum_{g \in T} D_{1} g$. Let S be the K_{1}-socle of the $\mathbb{Z} G_{1}$-submodule D_{1}, i.e., the sum of all irreducible $\mathbb{Z} G_{1}$-submodules (these irreducible $\mathbb{Z} G_{1}$-submodules are all finite since K_{1} induces a finite group of automorphisms in D). Since D_{1} is a $\mathbb{Z} G_{1}$-submodule and K_{1} is normal in G so S is a $\mathbb{Z} G_{1}$-submodule and $\bar{S}=\sum_{g \in T} S g$ is a $\mathbb{Z} G$-submodule. Now $S g$ is a sum of irreducible $\mathbb{Z} K_{1}$-submodules and so \bar{S} is a sum of irreducible $\mathbb{Z} K_{1}$-submodules each being contained in some $S g$. Since $C_{D g}\left(K_{1}\right)=0$ it follows that $C_{\bar{S}}\left(K_{1}\right)=0$. Thus we can take K_{1} and \bar{S} satisfying the conclusion of the lemma.
(B) The group D is torsion-free.

Let $T(\bar{D})$ be the torsion part of \bar{D}. Since \bar{D} is a noetherian $\mathbb{Z} G$-module, $T(\bar{D})$ has a finite exponent. Therefore $n \bar{D} \cap T(\bar{D})=0$ for some n and $n \bar{D}$ is torsion-free.

We put $m=\left|K_{1} / C_{K_{1}}(\bar{D})\right|, C=C_{\bar{D}}\left(K_{1}\right)$ and show that

$$
\begin{equation*}
\left[m n \bar{D}, K_{1}\right] \cap C=0 . \tag{3}
\end{equation*}
$$

In fact, if $a \in\left[m n \bar{D}, K_{1}\right] \cap C$, then $a \in\left[m n \widetilde{D}, K_{1}\right] \cap C$, for some finitely generated K_{1}-admissible subgroup \tilde{D} of \bar{D}. Since $n \tilde{D} \cap C=$ $=C_{n \tilde{D}}\left(K_{1}\right), \tilde{D} \leqslant \bar{D}$, and $n \bar{D}$ is torsion-free, so $n \tilde{D} /(n \widetilde{D} \cap C)$ is torsionfree and then $n \widetilde{D}=(n \widetilde{D} \cap C) \oplus V$, where V is a free abelian subgroup. Applying Theorem 4.1 in [2], there is in $n \widetilde{D}$ a K_{1}-admissible subgroup W such that $(n \tilde{D} \cap C) \cap W=0$ and the factor group $n \tilde{D} /[(n \tilde{D} \cap C) \oplus$ $\oplus W]$ has a finite exponent, dividing m. Thus $m n \widetilde{D} \leqslant(n \tilde{D} \cap C) \oplus W$. It follows that $\left[m n \widetilde{D}, K_{1}\right] \leqslant W$ and so $\left[m n \widetilde{D}, K_{1}\right] \cap C=0$. Hence $a=0$ and (3) is proved.

Note now that $\left[m n \widetilde{D}, K_{1}\right] \neq 0$. In fact, if $\left[m n \widetilde{D}, K_{1}\right]=0$, then $m n \bar{D} \leqslant C_{\bar{D}}\left(K_{1}\right)=C$. Therefore $m n D \leqslant C$ and since D is torsion-free, $D \leqslant C$. This shows that D is a K_{1}-trivial $\mathbb{Z} G_{1}$-module and since $D=$ $=B_{2}\left(x_{n}-1\right)$ and is G_{1}-isomorphic to B_{2} / A_{1} by (2) we have B_{1} / A_{1} is also K_{1}-trivial. But $C_{B_{1} / A_{1}}\left(K_{1}\right)=0$ and so $B_{2}=A_{1}$ contrary to (1). Thus [$\left.m n \bar{D}, K_{1}\right] \neq 0$. Since $\left[m n \bar{D}, K_{1}\right]$ is a $\mathbb{Z} G$-submodule and K_{1} induces in it (as in \bar{D}) a finite group of automorphisms then it follows from (3) that the conditions of the lemma are satisfied by K_{1} and $\left[m n \bar{D}, K_{1}\right]$. The lemma is proved.

As in the hyperfinite case, we need:
Lemma 2. Let G be a hyper-(cyclic or finite) group, A a noetherian $\mathbb{Z} G$-module, and B a $\mathbb{Z} G$-submodule of A such that B is of finite index in A and B has no nonzero finite $\mathbb{Z} G$-factors, then
B has a complement in A, i.e., $A=B \oplus C$ for some finite $\mathbb{Z} G$ sobmodule C of A.

Proof. Suppose that B does not have a complement in A. By considering an appropriate factor-module of A we may assume that for every $\mathbb{Z} G$-submodule D of B with $D \neq 0, B / D$ has a complement in A / D.

Put $H=C_{G}(A / B)$, then, since G / H is finite and the irreducible $\mathbb{Z} G$ factors of B are all infinite, we have $\left.C_{B} H\right)=0$ so we can apply Lemma 1 to the subgroup H and the $\mathbb{Z} G$-module B. So there is a subgroup K of H and a nonzero $\mathbb{Z} G$-submodule D of B such that K is normal in G, $C_{D}(K)=0$ and K induces on D a cyclic or finite group of automorphisms, i.e., $K / C_{K}(D)$ is cyclic or finite.

We write A as a sum $A=B+A_{1}$ with $B \cap A_{1}=D$ and we will consider the $\mathbb{Z} G$-submodule A_{1} as a faithful $\mathbb{Z} G_{0}$-module, where $G_{0}=$ $=G / C_{G}\left(A_{1}\right)$. It is clear that D is a $\mathbb{Z} G_{0}$-submodule of A_{1} such that D is of finite index in A_{1} and D has no nonzero finite $\mathbb{Z} G_{0}$-factors. Also D has no complements in A_{1} for otherwise if $A_{1}=D \oplus C_{1}$ for some $\mathbb{Z} G_{0}$-submodule C_{1} of A_{1} then C_{1} can be viewed as a $\mathbb{Z} G$-submodule of A by $G_{0}=$ $=G / C_{G}\left(A_{1}\right)$ and then $A=B+A_{1}=B \oplus C_{1}$, a contradiction.

Since $C_{D}(K)=0$ and $D \leqslant A_{1}$, so K is not contained in $C_{G}\left(A_{1}\right)$. Let $K_{0}=\left(K C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right)$, then $K_{0} \neq 1$. Also, it is clear that $C_{D}\left(K_{0}\right)=0$ and K_{0} induces on the $\mathbb{Z} G_{0}$-submodule D of A_{1} a cyclic or finite group of automorphisms. We prove that $C_{K_{0}}(D)=1$. For suppose $C_{K_{0}}(D) \neq 1$ and let F_{0} be a nontrivial cyclic or finite normal subgroup of G_{0} contained in $C_{K_{0}}(D)$. If $x \in F_{0}$, then $D \leqslant C_{A_{1}}(x)$. Since $\left|A_{1} / D\right|=|A / B|<\infty$ and, as groups, $A_{1} / C_{A_{1}}(x) \cong A_{1}(x-1)$, we see that $A_{1}(x-1)$ is finite. Thus the $\mathbb{Z} G_{0}$-submodule $\left[A_{1}, F_{0}\right.$] is finite. Also

$$
\begin{aligned}
F_{0} \leqslant C_{K_{0}}(D) \leqslant K_{0}=\left(K C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right) \leqslant & \left(H C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right)= \\
& =\left(C_{G}(A / B) C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right),
\end{aligned}
$$

thus $\left[A_{1}, F_{0}\right] \leqslant B$, and then $\left[A_{1}, F_{0}\right] \leqslant D$. By D having no nonzero finite $\mathbb{Z} G_{0}$-factors, we have $\left[A_{1}, F_{0}\right]=0$ contrary to G_{0} acting faithfully on A_{1}. So $C_{K_{0}}(D)=1$ and hence K_{0} is cyclic or finite.

Now put

$$
\begin{array}{r}
G_{1}=C_{G_{0}}\left(K_{0}\right), \quad K_{0}=\left\langle x_{1}=1, x_{2}, \ldots, x_{m}\right\rangle, \quad C_{n}=C_{A_{1}}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right), \\
n=1,2, \ldots, m .
\end{array}
$$

We prove that $A_{1}=D+C_{n}, n=1,2, \ldots, m$.
It is clear that $A_{1}=D+C_{1}$. Suppose $A_{1}=D+C_{n}$ we prove $A_{1}=$
$=D+C_{n+1}$. Consider the isomorphism of $\mathbb{Z} G_{1}$-modules

$$
C_{n} / C_{n+1}=C_{n} / C_{C_{n}}\left(x_{n+1}\right) \cong_{Z G_{1}} C_{n}\left(x_{n+1}-1\right),
$$

where $C_{n}\left(x_{n+1}-1\right)$ may not be contained in C_{n} if K_{0} is nonabelian. Since

$$
\begin{aligned}
& x_{n+1} \in K_{0}=\left(K C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right) \leqslant\left(H C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right) \leqslant \\
& \leqslant\left(C_{G}(A / B) C_{G}\left(A_{1}\right)\right) / C_{G}\left(A_{1}\right),
\end{aligned}
$$

the $\mathbb{Z} G_{1}$-module $C_{n}\left(x_{n+1}-1\right)$ of A_{1} is contained in B and then in D. Since $\left|G_{0} / G_{1}\right|<\infty$ it follows from Proposition 2 in [4] that the irreducible $\mathbb{Z} G_{1}$-factors of D are all infinite, hence so are the factors of C_{n} / C_{n+1}. But

$$
C_{n} /\left(C_{n+1}+\left(D \cap C_{n}\right)\right) \cong_{Z G_{1}}\left(C_{n}+D\right) /\left(C_{n+1}+D\right),
$$

a factor module of the finite module A_{1} / D. Hence $C_{n}+D=C_{n+1}+D$ and so $A_{1}=C_{n+1}+D$. Thus $A_{1}=C_{n}+D$ for all $n=1,2, \ldots, m$. In particular, put $n=m, C_{m}=C_{A_{1}}\left(K_{0}\right)$ and $A_{1}=D+C_{A_{1}}\left(K_{0}\right)$. Since $C_{A_{1}}\left(K_{0}\right)$ is clearly a $\mathbb{Z} G_{0}$-submodule of A_{1} and since $D \cap C_{A_{1}}(K)=C_{D}(K)=0$ we have $A_{1}=D \oplus C_{A_{1}}(K)$, contrary to D having no complements in A_{1}. The proof is completed.

From the proof of Lemma 2, we have:
Lemma 3. Let G be a hyper-(cyclic or finite) group, A a noetherian $\mathbb{Z} G$-module, and B a $\mathbb{Z} G$-submodule of A such that, as group, A / B is a finite \mathfrak{p}-group for some prime \mathfrak{p} and the $\mathbb{Z} G$-submodule B contains no nonzero $\mathbb{Z} G$-factors being finite \mathfrak{p}-groups. Then B has a complement in A, i.e., $A=B \oplus C$ for some $\mathbb{Z} G$-submodule C of A.

Dual to Lemma 2, we have:
Lemma 4. Let G be a hyper-(cyclic or finite) group, A a $\mathbb{Z} G$-module, and B a finite $\mathbb{Z} G$-submodule of A such that all irreducible $\mathbb{Z} G$-factors of A / B are infinite. Then B has a complement on A, i.e., $A=B \oplus C$ for some $\mathbb{Z} G$-submodule C of A.

Proof. By Zorn's Lemma, A has a $\mathbb{Z} G$-submodule D maximal with respect to $B \cap D=0$. We show that $A=B \oplus D$. Suppose not, then by replacing A by A / D we may assume that for any nonzero $\mathbb{Z} G$-submodule C of $A, B \cap C \neq 0$. We also assume that G acts faithfully on A.

Put $H=C_{G}(B),|G / H|<\infty$ so there is a normal subgroup K of G contained in H such that K is either cyclic or finite. Put $H_{1}=C_{H}(K)$.

Since H_{1} is normal in G and $\left|G / H_{1}\right|<\infty$ it follows from Proposition 2 in [4] that the irreducible $\mathbb{Z} H_{1}$-factors of A / B are infinite. If $x \in K$, then $B \leqslant C_{A}(x)$ and so the irreducible $\mathbb{Z} H_{1}$-factors of $A / C_{A}(x)$ and hence $A(x-1)$ are infinite.

We prove that $[A, K] \cap B=0$. If not, then there is a minimal set of elements x_{1}, \ldots, x_{n} such that $B_{1}=B \cap \sum_{i=1}^{n} A\left(x_{i}-1\right) \neq 0$. Then

$$
\begin{aligned}
B_{1} \cong_{\mathbb{Z} H_{1}}\left(b_{1} \oplus \sum_{i=1}^{n-1} A\left(x_{i}-1\right)\right) & /\left(\sum_{i=1}^{n-1} A\left(x_{i}-1\right)\right)= \\
& =\left(\sum_{i=1}^{n} A\left(x_{i}-1\right)\right) /\left(\sum_{i=1}^{n-1} A\left(x_{i}-1\right)\right) \cong_{\mathbb{Z} H_{1}} \\
& \cong{ }_{\mathbb{Z} H_{1}} A\left(x_{i}-1\right) /\left(A\left(x_{n}-1\right) \cap \sum_{i=1}^{n-1} A\left(x_{i}-1\right)\right)
\end{aligned}
$$

This shows that $A\left(x_{n}-1\right)$ has a nonzero finite $\mathbb{Z} H_{1}$-factor contrary to the fact that the irreducible $\mathbb{Z} H_{1}$-factors of $A(x-1)$ are all infinite. Thus $[A, K] \cap B=0$ and hence $[A, K]=0$, contrary to G acting faithfully on A. So the result is true.

An immediate consequence of Lemma 4 is:
Corollary 5. Let G be a hyper-(cyclic or finite) group, and A a noetherian $\mathbb{Z} G$-module. Then A has a nonzero finite $\mathbb{Z} G$-factor if and only if A has a nonzero finite $\mathbb{Z} G$-image.

Proof. We only need to suppose that A has a finite $\mathbb{Z} G$-factor B / C, then using the noetherian condition we may assume that every irreducible $\mathbb{Z} G$-factor of A / B is infinite. Then applying Lemma 4 to A / C with the finite $\mathbb{Z} G$-submodule B / C we obtain a finite $\mathbb{Z} G$-image of A.

As before, we have:
Lemma 6. Let G be a hyper-(cyclic or finite) group, A a $\mathbb{Z} G$-module and B a $\mathbb{Z} G$-submodule of A. If as a group B is a finite \mathfrak{p}-group for some prime \mathfrak{p}, and if the factor module A / B contains no nonzero finite $\mathbb{Z} G$-factors being \mathfrak{p}-groups, then B has a complement in A, i.e., $A=B \oplus C$ for some $\mathbb{Z} G$-submodule C of A.

Corollary 7. Let G be a hyper-(cyclic or finite) group, and A a noetherian $\mathbb{Z} G$-module. Then A has a nonzero $\mathbb{Z} G$-image being
a finite \mathfrak{p}-group for some prime \mathfrak{p} if and only if A has such a nonzero $\mathbb{Z} G$ - factor.

Before we prove the main splitting theorem, we need to prove the following three results.

Lemma 8. Let G be a hyper-(cyclic or finite) group, B a $\mathbb{Z} G$-module, and A a noetherian $\mathbb{Z} G$-submodule of B such that all irreducible $\mathbb{Z} G$-factors of A are infinite. If B / A is torsion-free and G-trivial, then $B=A \oplus B_{1}$ for some $\mathbb{Z} G$-submodule B_{1} of B.

Proof. Suppose that A has no complements in B. Since A is noetherian, we may assume that for each nonzero $\mathbb{Z} G$-submodule C of $A, A / C$ has a complement in B / C.

In B, we choose a $\mathbb{Z} G$-submodule M maximal with respect to $A \cap M=0$. We show that if S is any $\mathbb{Z} G$-submodule such that $B=A+S$ then $M \leqslant S$.

Since $B / A \geqslant(A \oplus M) / A \cong_{\mathbb{Z} G} M$, we have M is a G-trivial $\mathbb{Z} G$-module and hence all of its irreducible $\mathbb{Z} G$-factors are finite. Also

$$
A /(A \cap S) \cong_{\mathbb{Z} G}(A+S) / S=B / S \geqslant(M+S) / S \cong_{\mathbb{Z} G} M /(M \cap S)
$$

Since A is noetherian and having no nonzero finite $\mathbb{Z} G$-factors, we must have $M=M \cap S$, i.e., $M \leqslant S$.

Consider the factor-module B / M. Every nonzero $\mathbb{Z} G$-submodule of B / M has nonzero intersection with $(A \oplus M) / M$. In particular, $(A \oplus M) / M$ has no complements in B / M. If V / M is a nonzero $\mathbb{Z} G$-submodule of $(A \oplus M) / M$ then $V=C \oplus M$, where $C=A \cap V$ is nonzero and so $B / C=A / C \oplus S_{1} / C$ for some $\mathbb{Z} G$-submodule S_{1} of B. As above, $M \leqslant S_{1}$ and so $(A \oplus M) \cap S_{1}=\left(A \cap S_{1}\right) \oplus M=C \oplus M=V$. Thus S_{1} / V is a complement to $(A \oplus M) / V$ in B / V.

By passing to the factor-module B / M we may assume that $M=1$ so that: (a) A has no complements in B but for any nonzero $\mathbb{Z} G$-submodule C of $A, A / C$ has a complement in B / C; (b) if N is a nonzero $\mathbb{Z} G$-submodule of B then $A \cap N \neq 0$.

We may assume that A is torsion-free. For otherwise, we may let $A[\mathfrak{p}]$ be the nonzero $\mathbb{Z} G$-submodule generated by all the elements of order \mathfrak{p}, where \mathfrak{p} is a prime. By $(a), B / A[\mathfrak{p}]=A / A[\mathfrak{p}] \oplus B_{1} / A[\mathfrak{p}]$. Since $B_{1} / A[\mathfrak{p}]\left(\cong_{\mathbb{Z} G} B / A\right)$ is torsion-free, $\mathfrak{p} B_{1} \neq 0$, then, by (b), $0 \neq A \cap$ $\cap \mathfrak{p} B_{1} \leqslant A[\mathfrak{p}] \cap B_{1}$. That is, B_{1} has elements of order \mathfrak{p}^{2}, contrary to $B_{1} / A[\mathfrak{p}]$ being torsion-free. So A is torsion-free and then B is torsionfree. Since A has no nonzero finite $\mathbb{Z} G$-factors, we have $C_{A}(G)=0$. By Lemma $1, G$ has a normal subgroup K and A has a nonzero $\mathbb{Z} G$-submodule A_{1} such that $C_{A_{1}}(K)=0$ and $K / C_{K}\left(A_{1}\right)$ is cyclic or finite. By (a),
$B / A_{1}=A / A_{1} \oplus B_{1} / A_{1}$. Consider the $\mathbb{Z} G$-module B_{1} and we prove that $B_{1}=A_{1} \oplus B_{2}$ for some $\mathbb{Z} G$-submodule B_{2} (and hence we get $B=A \oplus B_{2}$ as required).

Suppose $B_{1} \neq A_{1} \oplus B_{2}$ for any $\mathbb{Z} G$-submodule B_{2} and suppose that G acts faithfully on B_{1}, i.e., $C_{G}\left(B_{1}\right)=1$. It is clear that we still have that K is normal in $G, C_{A_{1}}(K)=0$, and $K / C_{K}\left(A_{1}\right)$ is cyclic or finite. If $C_{K}\left(A_{1}\right) \neq$ $\neq 1$, then, since $C_{K}\left(A_{1}\right)=K \cap C_{G}\left(A_{1}\right)$ is a normal subgroup of $G, C_{K}\left(A_{1}\right)$ contains a nontrivial cyclic or finite subgroup F being normal in G. Let $F=\left\langle f_{i}, \ldots, f_{n}\right\rangle$ and let $G_{1}=C_{G}(F)$, then $\left|G / G_{1}\right|<\infty$. By Proposition 2 in [4], the irreducible $\mathbb{Z} G_{1}$-factors of A_{1} are infinite. Since B_{1} / A_{1} is G trivial, it is also G_{1}-trivial. By $B_{1} / C_{B_{1}}\left(f_{i}\right) \cong_{Z_{G_{1}}} B_{1}\left(f_{i}-1\right) \leqslant A_{1}$ and $A_{1} \leqslant$ $\leqslant C_{B_{1}}\left(f_{i}\right)$, we must have $B_{1}\left(f_{i}-1\right)=0$, for all i. That is, $1 \neq F \leqslant C_{G}\left(B_{1}\right)$, contrary to G acting faithfully on B_{1}. So $C_{K}\left(A_{1}\right)=1$ and so K is a nontrivial cyclic or finite normal subgroup of G. Let $K=\left\langle k_{1}, \ldots, k_{t}\right\rangle$. Being similar with the above, we have $B_{1} / C_{B_{1}}\left(k_{i}\right) \cong_{\mathbb{Z G}_{2}} B_{1}\left(k_{i}-1\right) \leqslant A_{1}$ for all i, where $G_{2}=C_{G}(K)$. Thus $B_{1} /\left(A_{1}+C_{B_{1}}\left(k_{i}\right)\right)$ must be zero for all i. That is, $B_{1}=A_{1}+C_{B_{1}}\left(k_{i}\right)$ for any i. Let $C_{m}=C_{B_{1}}\left(\left\langle k_{1}, \ldots, k_{m}\right\rangle\right), m=1, \ldots, t$. Then we have $B_{1}=A_{1}+C_{1}$. Suppose that $B_{1}=A_{1}+C_{m}$; we prove that $B_{1}=A_{1}+C_{m+1}$.

Consider the $\mathbb{Z} G_{2}$-modules

$$
C_{m} / C_{m+1}=C_{m} / C_{C_{m}}\left(k_{m+1}\right) \cong_{\mathbb{Z} G_{2}} C_{m}\left(k_{m+1}-1\right)
$$

Since B_{1} / A_{1} is G-trivial, $C_{m}\left(k_{m+1}-1\right) \leqslant A_{1}$ and so $C_{m}\left(k_{m+1}-1\right)$ has no nonzero finite $\mathbb{Z} G_{2}$-factors; hence the irreducible $\mathbb{Z} G_{2}$-factors of C_{m} / C_{m+1} are all infinite. But

$$
C_{m} /\left(C_{m+1}+\left(A_{1} \cap C_{m}\right)\right) \cong_{\mathbb{Z} G_{2}}\left(C_{m}+A_{1}\right) /\left(C_{m+1}+A_{1}\right)
$$

a factor module of the G_{2}-trivial $\mathbb{Z} G_{2}$-module B_{1} / A_{1}. Hence $A_{1}+C_{m}=$ $=A_{1}+C_{m+1}$. That is, $B_{1}=A_{1}+C_{m+1}$. Therefore $B_{1}=A_{1}+C_{m}$ for all m. Put $m=n$, then $C_{n}=C_{B_{1}}(K)$ and $B_{1}=A_{1}+C_{B_{1}}(K)$, which implies that $C_{B_{1}}(K) \neq 0$. Hence, by (b) and $B / A_{1}=A / A_{1} \oplus B_{1} / A_{1}$, we have $C_{A_{1}}(K)=$ $=A_{1} \cap C_{B_{1}}(K)=A \cap C_{B_{1}}(K)=0$, a contradiction. So $B_{1}=A_{1} \oplus B_{2}$ for some $\mathbb{Z} G$-submodule B_{2} and hence the lemma is proved.

Corollary 9. Let G be a hyper-(cyclic or finite) group, B a $\mathbb{Z} G$ module, and A a noetherian $\mathbb{Z} G$-submodule of B such that all irreducible $\mathbb{Z} G$-factors of A are infinite. If B / A is an infinite cyclic group, the $B=A \oplus B_{1}$ for some $\mathbb{Z} G$-submodule B_{1} of B.

Proof. Let $G_{1}=C_{G}(B / A)$, then $\left|G / G_{1}\right| \leqslant 2$ and B / A is torsionfree and G_{1}-trivial. By Lemma $8, B=A \oplus B_{1}$ for some G_{1}-trivial $\mathbb{Z} G_{1^{-}}$
submodule B_{1} of B. For $g \in G$, if $B_{1} g \neq B_{1}$, then $B_{1} g$ is G_{1}-trivial and

$$
0 \neq B_{1} g /\left(B_{1} \cap B_{1} g\right) \cong_{Z G_{1}}\left(B_{1}+B_{1} g\right) / B_{1} \leqslant B / B_{1} \cong_{Z G_{1}} A .
$$

That is, A has a nonzero G_{1}-trivial $\mathbb{Z} G_{1}$-factor and then a nonzero finite irreducible $\mathbb{Z} G_{1}$-factor, which will imply that A has a nonzero finite irreducible $\mathbb{Z} G$-factor, a contradiction. So $b_{1} g=B_{1}$ for all $g \in G$. That is, B_{1} is a $\mathbb{Z} G$-submodule of B. The result is proved.

Lemma 10. Let E be an extension of the abelian group A by a hy-per-(cyclic or finite) group G such that A is a noetherian $\mathbb{Z} G$-module and all irreducible $\mathbb{Z} G$-factors of A are infinite. Then if C / A is a normal subgroup of E / A and $C \leqslant C_{E}(A)$, then $C=A \times N$, where N is a normal subgroup of E and is contained in every supplement to A in E.

Proof. Let N be a normal subgroup of E contained in C and maximal subject to $N \cap A=1$. By considering the factor group E / N we may suppose that $N=1$. Then E satisfies the following condition: if S is normal in $E, S \leqslant C$, and $S \neq 1$, then $S \cap A \neq 1$. We show that this implies that $A=C$.

Suppose that $A \neq C$. Since E / A is hyper-(cyclic or finite), there is a nontrivial finite subgroup $K / A \leqslant C / A$ such that K is normal in E or an infinite cyclic subgroup $L / A \leqslant C / A$ such that L is normal in E.

For K, by the hypothesis of the lemma, $K \leqslant C_{E}(A)$ and so K is a finite extension of its central subgroup A. Hence K^{\prime} is finite (Theorem 10.1.4 in [3]). It follows that $A \cap K^{\prime}$ is finite and so $A \cap K^{\prime}=1$ by A having no nonzero finite $\mathbb{Z} G$-factors. By the condition above, we have $K^{\prime}=1$ and so K is abelian. Apply Lemma 2 to the $\mathbb{Z}(E / K)$-module K and its submodule A, then $A=A \times K_{1}$ for some normal subgroup K_{1} of E, contrary to the condition above.

For L, by the hypothesis of the lemma, $L \leqslant C_{E}(A)$ and so L is a cyclic extension of its central subgroup A. Thus L is abelian. By Corollary $9, L=A \times L_{1}$ for some normal subgroup L_{1} of E, contrary to the condition above.

Thus we have proved that $C=A \times N$, where N is normal in E.
Now let E_{1} be a supplement to A in E so that $E=A E_{1}, C=A(C \cap$ $\cap E_{1}$) and $C \cap E_{1}$ is normal in $A E_{1}$. We have

$$
N\left(C \cap E_{1}\right) /\left(C \cap E_{1}\right) \leqslant C /\left(C \cap E_{1}\right)=A\left(C \cap E_{1}\right) /\left(C \cap E_{1}\right) .
$$

Since N is hyper-(cyclically of finitely) embedded in E and the irreducible $\mathbb{Z} G$-factors of A are all finite, we must have $N\left(C \cap E_{1}\right)$ / $\left(C \cap E_{1}\right)=1$, i.e., $N\left(C \cap E_{1}\right)=C=E_{1}$. Hence $N \leqslant E_{1}$ as required.

Now we prove the main result of this paper.
Theorem. Let G be a hyper-(cyclic or finite) locally soluble group and A a noetherian $\mathbb{Z} G$-module. If A has no nonzero finite $\mathbb{Z} G$-images, then the extension E of A by G splits conjugately over A and A has no nonzero finite $\mathbb{Z} G$-factors.

Proof. By Corollary $5, A$ has no nonzero finite $\mathbb{Z} G$-factors.
Suppose the theorem is false, then using the fact that A is a noetherian $\mathbb{Z} G$-module we may assume that: A has conjugate complements in E modulo any nontrivial E-invariant subgroup of A.

Since A has no nonzero finite $\mathbb{Z} G$-factors, $C_{A}(E)=1$. By Lemma 1 , E / A has a normal subgroup K / A and A has a nontrivial E-invariant subgroup A_{0} such that $C_{A_{0}}(K)=1$ and $K / C_{K}\left(A_{0}\right)$ is cyclic or finite.
(1) If $K / C_{K}\left(A_{0}\right)$ is finite, then we may choose K and A_{0} such that $K / C_{K}\left(A_{0}\right)$ is minimal and so $K / C_{K}\left(A_{0}\right)$ is a chief factor of E. (For if L is normal in E and $C_{K}\left(A_{0}\right)<L<K$ then if $C_{A_{0}}(L)=1$ we have L, A_{0} contrary to minimality of $\left|K / C_{K}\left(A_{0}\right)\right|$ and if $C_{A_{0}}(L) \neq 1$ then $K, C_{A_{0}}(L)$ is contrary to minimality of $\left|K / C_{K}\left(A_{0}\right)\right|$.) Hence $K / C_{K}\left(A_{0}\right)$ has order \mathfrak{p}^{k} for some prime \mathfrak{p} and integer $k \geqslant 1$. From $C_{A_{0}}(K)=1$ it follows that $A_{0}[p]=1$ and so $A_{0}^{p^{k}} \neq 1$.

By the assumption on A, we have E splits conjugately over A modulo $A_{0}^{\mathfrak{p}^{k}} \neq 1$.

Let E_{1} be a complement to A in E modulo $A_{0}^{\mathrm{p}^{k}} \neq 1: E=A E_{1}, A \cap$ $\cap E_{1}=A_{0}^{\mathfrak{p}^{k}} \neq 1$; put $E_{0}=A_{0} E_{1}, K_{0}=K \cap E_{0}$, and $C_{0}=C_{K_{0}}\left(A_{0}\right)$. By Lemma $10, C_{0}=A_{0} \times N$, where N is normal in E_{0} and is contained in E_{1}. Consider the factor group $\bar{E}_{0}=E_{0} / N$ and the subgroups \bar{K}_{0}, \bar{A}_{0}. Since

$$
\bar{K}_{0} / \bar{A}_{0}=\bar{K}_{0} / \bar{C}_{0} \cong K_{0} / C_{0} \cong K / C_{K}\left(A_{0}\right),
$$

we have $\left|\bar{K}_{0} / \bar{A}_{0}\right|=\underline{p}^{k}$. Corresponding to $C_{A_{0}}(K)=1$ we have $C_{\bar{A}_{0}}\left(\bar{K}_{0}\right)=\overline{1}$ and also $\bar{A}_{0} \cap \bar{E}_{1}=\bar{A}_{0^{p^{k}}}^{p^{k}}$. It follows, by applying Lemma 6 in [6] to \bar{E}_{0} and its subgroups \bar{K}_{0}, \bar{A}_{0}, that \bar{E}_{0} splits over $\bar{A}_{0}: \bar{E}_{0}=\bar{A}_{0} E_{2}$, $\bar{A}_{0} \cap \bar{E}_{0}=\overline{1}$. The complete preimage E_{2} of \bar{E}_{2} in E_{0} gives $E_{0}=A_{0} E_{2}$ and $A_{0} \cap E_{2}=1$. So that E_{2} is a complement to A in E. Let S_{1}, S_{2} be any two complements to A in E. Then, since E splits conjugately over A modulo $A_{0}^{\mathfrak{p}^{k}}$, we have S_{1} and S_{2} are conjugate modulo $A_{0}^{\mathfrak{p}^{k^{k}}}$ and we may assume that $A_{0}^{p^{k}} S_{1}=A_{0}^{\mathfrak{p}^{k}} S_{2}$. Put $E_{0}=A_{0} S_{1}=A_{0} S_{2}, K_{0}=K \cap E_{0}$, and $C_{0}=$ $=C_{K_{0}}\left(A_{0}\right)$. By Lemma $10, C_{0}=A_{0} \times N$, where N is normal in E_{0} and is contained in every supplement to A_{0} in E_{0}; in particular, $N \leqslant S_{1} \cap S_{2}$. Consider the factor group $\bar{E}_{0}=E_{0} / N$ and its subgroups \bar{K}_{0}, \bar{A}_{0}. Since $\bar{K}_{0} / \bar{A}_{0} \cong K / C_{K}\left(A_{0}\right)$, so $\bar{K}_{0} / \bar{A}_{0}$ is a group of order \mathfrak{p}^{k}, and also $C_{\bar{A}_{0}}\left(\bar{K}_{0}\right)=$
$=\overline{1}$ by $C_{A_{0}}(K)=1$. From $A_{0}^{p^{k}} S_{1}=A_{0}^{p^{k}} S_{2}$ it follows that \bar{S}_{1} and \bar{S}_{2} are complements to \bar{A}_{0} in \bar{E}_{0} which coincide modulo $\bar{A}_{0}^{p^{k}}$. Applying Lemma 6 in [6] to the group \bar{E}_{0} and its subgroups \bar{K}_{0}, \bar{A}_{0}, we have the conjugacy of the complements: $\bar{S}_{1}^{\bar{a}}=\bar{S}_{2}, a \in A_{0}$. Since $\bar{S}_{1}=S_{1} / N, \bar{S}_{2}=S_{2} / N$, and N is normal in E_{0} it follows that $S_{1}^{a}=S_{2}$, i.e., E splits conjugately over A, a contradiction.
(2) Now we may suppose that $K / C_{K}\left(A_{0}\right)$ is cyclic.

In this case, we let $A_{1}=\left[A_{0}, K\right] \leqslant A_{0}$, then, by $C_{A_{0}}(K)=1$, we have $A_{1} \neq 1$. Thus E splits conjugately over A modulo A_{1}, i.e., $E=A E_{1}, A \cap$ $\cap E_{1}=A_{1}$. Let $K_{1}=K \cap E_{1}$ and $C_{1}=C_{K_{1}}\left(A_{0}\right)$. It is clear that $A_{1} \leqslant C_{1} \leqslant$ $\leqslant C_{K_{1}}\left(A_{1}\right) \leqslant C_{E_{1}}\left(A_{1}\right)$. By Lemma 10, $C_{1}=A_{1} \times N$ for some normal subgroup N of E_{1}. Since $K_{1} / C_{1} \cong K / C_{K}\left(A_{0}\right)$, we have $K_{1}=C_{1}\langle x\rangle$ for some $x \in K_{1}$. Let $M=N\langle x\rangle$, then $K_{1}=C_{1}\langle x\rangle=A_{1} M$. Since

$$
\begin{aligned}
& {\left[A_{1} \cap M, K\right]=\left[A_{1} \cap M, C_{K}\left(A_{0}\right)\langle x\rangle\right]=\left[A_{1} \cap M, x\right]=} \\
& =\left[A_{1} \cap M,\langle x\rangle\right] \leqslant\left[A_{1}, x\right] \cap[M, x] \leqslant A_{1} \cap N=1,
\end{aligned}
$$

we have $A_{1} \cap M \leqslant C_{A_{0}}(K)=1$. Thus $K_{1}=A_{1} M$, i.e., M is a complement to A_{1} in K_{1}.

Suppose that M_{0} is also a complement to A_{1} in K_{1}, with $N \leqslant M_{0}$; we show that M and M_{0} are conjugate by an element of A_{0}. We can write $x=a_{1} x_{0}$ with $a_{1} \in A_{1}$ and $x_{0} \in M_{0}$. Since

$$
A_{1}=\left[A_{0}, K\right]=\left[A_{0}, C_{K}\left(A_{0}\right)\langle x\rangle\right]=\left[A_{0},\langle x\rangle\right]=\left[A_{0}, x^{-1}\right],
$$

so $a_{1}=\left[a_{0}{ }^{-1}, x^{-1}\right]$ for some $a_{0} \in A_{0}$, and therefore

$$
x=a_{1} x_{0}=\left[a_{0}^{-1}, x^{-1}\right] x_{0}=a_{0}\left(a_{0}^{-1}\right)^{x^{-1}} x_{0}=\left(a_{0}^{-1}\right)^{x^{-1}} a_{0} x_{0}=x\left(x^{-1}\right)^{a_{0}} x_{0},
$$

i.e., $x_{0}=x^{a_{0}}$. Since $N \leqslant M_{0}$ and $N \leqslant C_{1}=C_{K_{1}}\left(A_{0}\right)$, we have

$$
M^{a_{0}}(N\langle x\rangle)^{a_{0}}=N\left\langle x^{a_{0}}\right\rangle=N\left\langle x_{0}\right\rangle \leqslant M_{0} .
$$

As $C_{K}\left(A_{0}\right)=A C_{K_{1}}\left(A_{0}\right)$ and $K=K_{1} C_{K}\left(A_{0}\right)$, so

$$
\begin{aligned}
A M_{0}=A\left(A_{1} M_{0}\right)=A K_{1}=A C_{K_{1}}\left(A_{0}\right) K_{1}= & C_{K}\left(A_{0}\right) K_{1}= \\
& =K=K^{a_{0}}=(A M)^{a_{0}}=A M^{a_{0}},
\end{aligned}
$$

also $A \cap M_{0}=A_{1} \cap M_{0}=1$ and $A \cap M=1$ implies that $A \cap M^{a_{0}}=1$. Thus $M_{0}=M^{a_{0}}$.

We now prove that A has conjugate complements in E and that the complements are of the form $L=N_{E_{0}}(M)$, where $E_{0}=A_{0} E_{1}$ and M is, as above, a complement to A_{1} in K_{1} containing N.

If $g \in E_{1}$, then since N and K_{1} are both normal in E_{1} and the sub-
group M^{g} is a complement to A_{1} in K_{1} containing N, thus $M_{g}=M^{a_{0}}$ for some $a_{0} \in A_{0}$ and so $g a_{0}{ }^{-1} \in N_{E_{0}}(M)=L$, hence $E=A E_{1}=A L$. We show that L is a complement to A in E. That is, we need to prove that $A \cap L=1$.

Since $L \leqslant E_{0}=A_{0} E_{1}$ and $A \cap E_{1}=A_{1}$, so
$A \cap L=A \cap\left(E_{0} \cap L\right)=\left(A \cap E_{0}\right) \cap L=\left(A \cap A_{0} E_{1}\right) \cap L=$

$$
=A_{0}\left(A \cap E_{1}\right) \cap L=A_{0} A_{1} \cap L=A_{0} \cap L
$$

also A_{0} is normal in E and $L=N_{E_{0}}(M)$, hence $\left[A_{0} \cap L, M\right] \leqslant A_{0} \cap M$.
Since

$$
A_{0} \cap M=A_{0} \cap\left(E_{1} \cap M\right)=\left(A_{0} \cap E_{1}\right) \cap M=A_{1} \cap M=1
$$

so $A \cap L \leqslant C_{A_{0}}(M)$. Therefore, by $K=A M$ and $C_{A_{0}}(K)=1$, we have $A \cap L \leqslant C_{A_{0}}(M)=C_{A_{0}}(K)=1$. That is, $A \cap L=1$ and so L is a complement to A in E.

Now let S be any complement to A in E. Thus S and L are conjugate modulo A_{1} and we may assume that $A_{1} L=A_{1} S$. Therefore, we have

$$
\begin{aligned}
E_{0}=E_{0} \cap E=E_{0} \cap A L=\left(E_{0} \cap A\right) L & =\left(A_{0} E_{1} \cap A\right) L= \\
& =A_{0} L=A_{0} A_{1} L=A_{0} A_{1} S=A_{0} S
\end{aligned}
$$

Since $K_{1}=A_{1} M \leqslant A_{1} L=A_{1} S$, so $K_{1}=A_{1} M_{1}, A_{1} \cap M_{1}=1$, where $M_{1}=K_{1} \cap S$; thus M and M_{1} are complements to A_{1} in K_{1}. We show that $N \leqslant M_{1}$. By $K_{1} \leqslant A_{1} S$ and $C_{1}=C_{K_{1}}\left(A_{0}\right) \leqslant K_{1}$ we have $C_{1}=C_{1} \cap$ $\cap A_{1} S=A_{1}\left(C_{1} \cap S\right)$, thus $C_{1}=A_{1} \times N_{1}$, where $N_{1}=C_{1} \cap S \leqslant M_{1}$ and N_{1} is normal in $A_{0} S=E_{0}$ since $C_{1}=C_{K_{1}}\left(A_{0}\right)$ is normal in $A_{0} E_{1}=E_{0}$. In particular, N_{1} is normal in $E_{1} \leqslant E_{0}$ and, since E_{1} / A_{1} is hyper-(cyclic or finite), N_{1} is hyper-(cyclically or finitely) embedded in E_{1}. Consider the product $N N_{1}$. If $N N_{1} \neq N_{1}$ then, by $C_{1}=A_{1} \times N=A_{1} \times N_{1}, N N_{1} \cap$ $\cap A_{1} \neq 1$ and so A_{1} contains a nontrivial cyclic or finite subgroup normal in E_{1}. By $A_{1} \leqslant A$ and $E_{1} / A_{1} \cong E / A \cong G$, we have A has a nonzero cyclic or finite $\mathbb{Z} G$-module and hence contains a nonzero finite $\mathbb{Z} G$-factor, a contradition. Thus $N N_{1}=N_{1}, N \leqslant N_{1}$ and so $N \leqslant M_{1}$.

This shows that M and M_{1} are conjugate by anelement $a_{0} \in A_{0}$, i.e., $M^{a_{0}}=M_{1}$, and hence $L^{a_{0}}=N_{E_{0}}(M)^{a_{0}}=N_{E_{0}}\left(M^{a_{0}}\right)=N_{E_{0}}\left(M_{1}\right)$. From $K_{1}=A_{1} M$ and M is normal in L it follows that K_{1} is normal in $A_{1} L$. Therefore, by $A_{1} L=A_{1} S$, we have K_{1} is normal in $A_{1} S$, and so $M_{1}=$ $=K_{1} \cap S$ is normal in S and $S \leqslant N_{E_{0}}\left(M_{1}\right)$. By $L^{a_{0}}=N_{E_{0}}\left(M_{1}\right)$, we have $S \leqslant L^{a_{0}}$ and so

$$
L^{a_{0}}=A S \cap L^{a_{0}}=\left(A \cap L^{a_{0}}\right) S=S
$$

That is, S and L are conjugate in E, i.e., E splits conjugately over A, a contradiction again.

Thus, we have finished the proof of the theorem.
Acknowledgements. I am grateful to Dr. M. J. Tomkinson for the guidance of the research. Also I am grateful to the Sino-British Friendship Scholarship Scheme for the financial support.

REFERENCES

[1] Z. Y. Duan, The extension of abelian-by-hyper-(cyclic or finite) groups, Comm. Alg., 20: 8 (1992), pp. 2305.2321.
[2] D. S. Passman, Infinite Crossed Products, Academic Press (1989).
[3] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York (1982).
[4] J. S. Wilson, On normal subgroups of $\overline{\text { SI-groups, Arch. Math., } 25 \text { (1974), }}$ pp. 574-577.
[5] D. I. ZAǏcev, On estensions of abelian groups, AN USSR, Inst. Mat., Kiev (1980), pp. 16-40.
[6] D. I. ZAilcev, Hyperfinite extensions of abelian groups, AN USSR, Inst. Mat., Kiev (1988), pp. 17-26.

Manoscritto pervenuto in redazione il 12 febbraio 1992.

