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The Triangle Groups.

MUHAMMAD A. ALBAR - WALID M. AL-HAMDAN (*)

ABSTRACT - The aim of this paper is to consider the structure and other

properties of some of the triangle groups 4(L, m, n) for positive integers
l,m,n &#x3E; 2.

The triangle group J(l, m, n) is defined by the presentation

It is the group of tesselation of a space with a triangle [7]. The group
m, n) is finite iff the corresponding space is compact. This implies

that IJ(l, m, n) I  00 iff + + &#x3E; 1. [7]. We get the following
three cases for J(l, m, n).

1) The Euclidean case if + + = 1. This equation has
the solution (3, 3, 3), (2, 3, 6) and (2, 4, 4).

2) The elliptic case if + 1/m + 1/n &#x3E; 1. This inequality has
the following solutions (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5) for n &#x3E; 2.

3) The hyperbolic case if + +  1. This inequality
has an infinite number of solutions.

REMARK 1. J(- 1, m, n) = m, n) = J(m, l, n). The group
m, n) depends only on the absolute values of l, m, n and not on

their order or sign.

THEOREM 1. The group A(l, m, n) is finite iff 1/1 + 1/m + 1/n &#x3E; 1.

PROOF. We use the fact that J(l, m, n) is a Coxeter group. Its asso-

(*) Indirizzo degli AA.: Department of Mathematical Sciences, King Fahd
University of Petroleum &#x26; Minerals, Dhahran 31261, Saudi Arabia.
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ciated quadratic form has the matrix

Therefore n) is fmite iff Q is positive defmite [12]. It is easy to
see that Q is positive definite iff

is positive. We consider now the three possible cases for 1, m, n:

(i) If 1/L + 1 /m + 1/n &#x3E; 1, then (l, m, n) is one of: (2,3,3),
(2, 3, 4), (2, 3, 5), (2, 2, n), n -&#x3E; 2. It is easy to see that B  1 in every
case and hence | Q I &#x3E; 0. Therefore Q is positive definite and m, n)
is finite.

(ii) If + 1 /m + = 1. The solutions of this equation are
(2, 3, 6), (2, 4, 4) and (3, 3, 3). In every case B = 1 and so Q is not positi-
ve definite and d(L, m, n) is infinite.

(iii) + 1/m + 1/n  1. The number of solutions of this inequa-
lity is infinite. We classify them as follows:

It is easy to see that in every case B &#x3E; 1 and hence Q is not positive de-
finite. Therefore is infinite.

NOTATIONAL CONVENTIONS. We use the abbreviation RSRP for the
Reidemeister-Schreier rewriting process. We use x for the semi-di-
rect product and 2 for the wreath product and h.c.f. for the highest
common factor.

General properties of the group A(l,m,n).

a) Let x = ab, y = bc and H = (x, y). It is easy to see that
H a J(l, m, n) and Z2 . Using the RSRP we find that H is isomor-
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phic to the von-Dyck group D(L, m, n) = (x, = y m = (xy)n = e). So
we have the following theorem.

THEOREM 2. D(L, m, n) isormal subgroup. of m, n) of index 2.

REMARK 2. We consider the map ~~~~)-~Z2=(~!~==~
defined b -3 x, c 2013~. Then 0 is a split extension. L1/ker 0 Z,2
and using the RSRP we get ker 0 -= D(L, m, n). Hence J(l, m, n) =
== D(l, m, n) ~ Z2 .

REMARK 3. a) D(- 1, m, n) = D(L, m, n) = D(m, 1, n). The group
D(l, m, n) depends only on the absolute values of l, m, n and not on
their order or sign.

b) The abelianized von-Dyck group is D(l, m, n)/D ’ (l, m, n,) =
The following theorem deter-

mines the cases when this group is finite.

THEOREM 3. The group D(l, m, n)/D’(1, m, n, ) is finite iff at most
one of 4 is zero.

PROOF. The relation matrix of
der the following cases:

We consi-

(i) Let L, m, n be non-zero. Then D(l, m, n)/D ’ (l, m, n, ) =
= Zd1 x Z, where

Thus, D/D, is a finite group of order mn, 

(ii) Let one and only one of l, m, n be zero. WLOG we take
n = 0. Then D/D ’ = Zl x Zm and so finite of order Lm.

(iii) Let two of 1, m, n be zeros. WLOG we take m = n = 0. Thus
D/D ’ = Zl x Z which is infinite.

(iv) Let 1 = m = n = 0. Thus D/D ’ = Z x Z which is infinite.

Therefore D/D ’ is finite iff at most one of l, m, n is zero.

Properties of some of the triangle groups.

1) The Euclidean case. The group J(3,3,3) is the affine Weyl
group of type A 2 . We showed in our paper [2] that A(3, 3, 3) = ( Z x
x Z) ~Q S3 , Z(~(3, 3, 3)) is trivial and 4(3, 3, 3) is solvable of derived
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length 3. In our paper [3] we showed that d(3, 3, 3) is a subgroup
of the wreath product 

REMARK 4. To identify the structure of a group G we look for a
known group H and a split extension 0: G -~ H. Then G/ker 0 == H. If

I is small, then we can find ker 0 using the RSRP. Hence we get
G = ker 0 x H. We use this method in several places of this paper.
We observe the following properties of 4(3, 3, 3).

a) d’ (3, 3, 3) = D(3, 3, 3), 4" (3, 3, 3) = Z x Z and hence d(3, 3, 3)
is solvable of derived length 3. D(3, 3, 3) = (Z x 

b) We define 0: J(3, 3, 3) --~ s3 = = y 2 = (xy)3 = e) by
a --~ x, b ~ x, c - y. 0 is a split extension and 3, 3). Hence
we get J(3, 3, 3) = D(3, 3, 3) A ,S3 .

2) The group 4(2, 4, 4). The group 4(2, 4, 4) is C3 which is one of the
affine Weyl groups of type Cl. We showed in our paper [5] the following
properties of 4(2, 4, 4):

a) 4’ (2, 4, 4) = (x, y, = y 2 = z 2 = (xyz)2 = e) an d" (2, 4, 4) =
= Z x Z. Thus d(2, 4, 4) is solvable of derived length 3. We also showed

3) The group d(2, 3, 6). We get the following properties of

d(2, 3, 6):
ac) 4’ (2, 3, 6) = D(2, 3, 6), d" (2, 3, 6) = Z x Z. Hence d(2, 3, fi) is

solvable at derived length 3.

b) Let 0: D(2, 3, 6) ~ Z6 = defined 
Then 0 is a split extension and we find D(2, 3, 6) = ( Z x 

4) The elliptic case. The groups in this case are A(l, m, n) where
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1/t + 1 /m + 1 /n &#x3E; 1. These groups are well-known [8]. They are as fol-
lows : d(2, 2, n) = Dn x Z2 , J(2, 3, 3) = S4 , D(2, 3, 3) = A4 , 4(2, 3, 4) =
= S4 ~ Z2 , D(2, 3, 4) = S4 , 4(2, 3, 5) = A5 ~Q Z2 , D(2, 3, 5) = A5 . We note
here that J(2, 3, 4) is B3 a special case of the Coxeter groups of type Bn .
The structure of J(2, 3, 4) is J(2, 3, 4) = Z2 2 S3 [4].

5) The hyperbolic case. The groups in this case are J(l, m, n),
where + 1 /m + 1 /n  1. The number of possible values of the orde-
red triple (l, m, n) satisfying the inequality is infinite. We classify the-
se solutions of the inequality in the following categories:

We investigate some of the properties of some of the groups in these
categories.

a) The groups 4(2, 3, n), n ~ 7.

We obtain the following results about these groups:
(i) If (n, 6) = 1, then I’ (2, 3, n) = D(2, 3, n) = and D(2, 3, n) is

perfect. Hence J(2, 3, n) is not solvable.

Since the number if relations is less than the number of generators, we
deduce that d"(2, 3, n) is infinite. Hence A(2, 3, n) is infinite.

b) The case 4(2, 4, n) n ~ 5.

We obtain the following results about these groups:
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(i) If

(ii) If

(iii) If

Since the number of generators is greater than the number of relations,
the group d"(2, 4, n) is infinite and hence the group d(2, 4, n) is
infinite.

We also find in this case that D ’ (2, 4, n) = ~a, b, c I a n/4 =
= = e) which implies that D’ (2, 4, n) is infinite by the sa-
me argument as in the previous paragraph. Therefore D(2, 4, n) and
,J(2,4, n) are also infinite.

c) The groups d(2, 5, n), n ~ 4.

We find the following results about these groups:
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where k = n/10. Thus D’(2, 5, n) is infinite and so 4(2, 5, n) is also
infinite.

e) The groups A(2, m, n), n ~ m ~ 5.

(i) If ~n and n are even,

(ii) If m is even and n is odd, ~~ (2, m, n) = D(n, n, m/2).
(iii) If m and n are both odd d’ (2, m, n) = D(2, m, n). We let

k = (m. n) where m = sk and n = rk. Then

j) The groups d(3, m, n), n ~ m &#x3E;- 4.

(i) If ~n and n are even,

General properties of the groups J(l, m, n)

a) The commutator subgroup of J(l, m, n) is:

(i) If l, m, n are even,



110

(ii) If two of 1, are even and one is odd, WLOG let n be
odd and 1, m be even

(iii) If at most one of 1, m, n is even,

b) We give a necessary and sufficient condition that makes
D(l, rn, n) perfect.

THEOREM. D(L, m, n) is perfect iff 4 n4 n are mutually relatively
prime.

PROOF. The relation matrix for
= Zdi x Z, where

Let D be perfect, i.e., D/D’ = E ~ d1 = d2 = 1 ~ hcf{L, m, n} and
mn, = 1. This easily implies that 1, m, n are mutually rela-

tively prime. Let 1, m, n be mutually relative m, n } _
= = 1. It is easy to see that mn, nl I = 1 and hence D/D ’ =
= E and

c) The derived subgroup of the group D(n, n, n), n ~ 3.

D ’ (n, n, n) = T) where

THEOREM. The group D(n, n, n) is infinite iff n ~ 3.

PROOF. If n = 1 ~ D = E. If n = 2 ~ D = Z2 x Z2 . Let n ~ 3. The
number of generators of D’ is n(n - 1 ). The number of relations
is R ~ I + ~ ,S ~ I + I = 2n - 1. Now the number of generators is greater



111

than the number of relations ’iff n ~ 3. Hence D’ is infinite iff
n &#x3E; 3 and so D is infinite iff n a 3.
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