RENDICONTI

 del
SEminario Matematico

 della Università di PadovaMuhammad A. Albar
Walid M. Al-Hamdan

The triangle groups

Rendiconti del Seminario Matematico della Università di Padova, tome 89 (1993), p. 103-111
http://www.numdam.org/item?id=RSMUP_1993_89__103_0

© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The Triangle Groups.

Muhammad A. Albar - Walid M. Al-Hamdan (*)

Abstract - The aim of this paper is to consider the structure and other properties of some of the triangle groups $\Delta(l, m, n)$ for positive integers $l, m, n \geqslant 2$.

The triangle group $\Delta(l, m, n)$ is defined by the presentation

$$
\Delta(l, m, n)=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=(a b)^{l}=(b c)^{m}=(c a)^{n}=e\right\rangle .
$$

It is the group of tesselation of a space with a triangle [7]. The group $\Delta(l, m, n)$ is finite iff the corresponding space is compact. This implies that $|\Delta(l, m, n)|<\infty$ iff $1 / l+1 / m+1 / n>1$. [7]. We get the following three cases for $\Delta(l, m, n)$.

1) The Euclidean case if $1 / l+1 / m+1 / n=1$. This equation has the solution $(3,3,3),(2,3,6)$ and $(2,4,4)$.
2) The elliptic case if $1 / l+1 / m+1 / n>1$. This inequality has the following solutions $(2,2, n),(2,3,3),(2,3,4),(2,3,5)$ for $n \geqslant 2$.

3) The hyperbolic case if $1 / l+1 / m+1 / n<1$. This inequality has an infinite number of solutions.

REMARK 1. $\quad \Delta(-l, m, n) \cong \Delta(l, m, n) \cong \Delta(m, l, n)$. The group $\Delta(l, m, n)$ depends only on the absolute values of l, m, n and not on their order or sign.

THEOREM 1. The group $\Delta(l, m, n)$ is finite iff $1 / l+1 / m+1 / n>1$.
Proof. We use the fact that $\Delta(l, m, n)$ is a Coxeter group. Its asso-
${ }^{(*)}$ Indirizzo degli AA.: Department of Mathematical Sciences, King Fahd University of Petroleum \& Minerals, Dhahran 31261, Saudi Arabia.
ciated quadratic form has the matrix

$$
Q=\left[\begin{array}{ccc}
1 & -\cos \frac{\pi}{l} & -\cos \frac{\pi}{n} \\
-\cos \frac{\pi}{l} & 1 & -\cos \frac{\pi}{m} \\
-\cos \frac{\pi}{n} & -\cos \frac{\pi}{m} & 1
\end{array}\right]
$$

Therefore $\Delta(l, m, n)$ is finite iff Q is positive definite [12]. It is easy to see that Q is positive definite iff

$$
|Q|=1-\left[\cos ^{2} \frac{\pi}{l}+\cos ^{2} \frac{\pi}{m}+\cos ^{2} \frac{\pi}{n}+2 \cos \frac{\pi}{l} \cos \frac{\pi}{m} \cos \frac{\pi}{n}\right]=1-B
$$

is positive. We consider now the three possible cases for l, m, n :
(i) If $1 / l+1 / m+1 / n>1$, then (l, m, n) is one of: $(2,3,3)$, $(2,3,4),(2,3,5),(2,2, n), n \geqslant 2$. It is easy to see that $B<1$ in every case and hence $|Q|>0$. Therefore Q is positive definite and $\Delta(l, m, n)$ is finite.
(ii) If $1 / l+1 / m+1 / n=1$. The solutions of this equation are $(2,3,6),(2,4,4)$ and $(3,3,3)$. In every case $B=1$ and so Q is not positive definite and $\Delta(l, m, n)$ is infinite.
(iii) $1 / l+1 / m+1 / n<1$. The number of solutions of this inequality is infinite. We classify them as follows:

$$
\begin{gathered}
\{(2,3, n) \mid n \geqslant 7\}, \quad\{(2,4, n) \mid n \geqslant 5\}, \quad\{(2, m, n) \mid m \geqslant n \geqslant 5\}, \\
\{(3,3, n) \mid n \geqslant 4\}, \quad\{(3, n, n) \mid \geqslant m \geqslant n \geqslant 4\}, \quad\{(l, m, n) \mid l \geqslant m \geqslant 4\} .
\end{gathered}
$$

It is easy to see that in every case $B>1$ and hence Q is not positive definite. Therefore $\Delta(l, m, n)$ is infinite.

Notational conventions. We use the abbreviation RSRP for the Reidemeister-Schreier rewriting process. We use \rtimes for the semi-direct product and \geq for the wreath product and h.c.f. for the highest common factor.

General properties of the group $\Delta(l, m, n)$.
a) Let $x=a b, y=b c$ and $H=\langle x, y\rangle$. It is easy to see that $H \unlhd \Delta(l, m, n)$ and $\Delta / H \cong Z_{2}$. Using the RSRP we find that H is isomor-
phic to the von-Dyck group $D(l, m, n)=\left\langle x, y \mid x^{l}=y^{m}=(x y)^{n}=e\right\rangle$. So we have the following theorem.

THEOREM 2. $D(l, m, n)$ isormal subgroup of $\Delta(l, m, n)$ of index 2.
Remark 2. We consider the map $\theta: \Delta(l, m, n) \rightarrow Z_{2}=\left\langle x \mid x^{2}=e\right\rangle$ defined by $a \rightarrow x, b \rightarrow x, c \rightarrow x$. Then θ is a split extension. $\Delta / \operatorname{ker} \theta \cong Z_{2}$ and using the RSRP we get $\operatorname{ker} \theta \cong D(l, m, n)$. Hence $\Delta(l, m, n) \cong$ $\cong D(l, m, n) \rtimes Z_{2}$.

REMARK 3. a) $D(-l, m, n) \cong D(l, m, n) \cong D(m, l, n)$. The group $D(l, m, n)$ depends only on the absolute values of l, m, n and not on their order or sign.
b) The abelianized von-Dyck group is $D(l, m, n) / D^{\prime}(l, m, n)=$, $=\left\langle x, y \mid x^{l}=y^{m}=x^{n} y^{n}=e, x y=y x\right\rangle$. The following theorem determines the cases when this group is finite.

ThEOREM 3. The group $D(l, m, n) / D^{\prime}(l, m, n$,$) is finite iff at most$ one of l, m, n is zero.
Proof. The relation matrix of $\frac{D(l, m, n)}{D^{\prime}(l, m, n)}$ is $\left[\begin{array}{cc}l & 0 \\ 0 & m \\ n & n\end{array}\right]$. We consi-
der the following cases:
(i) Let l, m, n be non-zero. Then $D(l, m, n) / D^{\prime}(l, m, n,) \cong$ $\cong Z_{d_{1}} \times Z_{d_{2}}$ where

$$
d_{1}=h c f\{l, m, n\} \quad \text { and } \quad d_{2}=\frac{h c f\{l m, m n, l n\}}{h c f\{l, m, n\}}
$$

Thus, D / D, is a finite group of order $d_{1} d_{2}=h c f\{\operatorname{lm}, m n, \ln \}$.
(ii) Let one and only one of l, m, n be zero. WLOG we take $n=0$. Then $D / D^{\prime}=Z_{l} \times Z_{m}$ and so finite of order lm .
(iii) Let two of l, m, n be zeros. WLOG we take $m=n=0$. Thus $D / D^{\prime}=Z_{l} \times Z$ which is infinite.
(iv) Let $l=m=n=0$. Thus $D / D^{\prime} \cong Z \times Z$ which is infinite.

Therefore D / D^{\prime} is finite iff at most one of l, m, n is zero.

Properties of some of the triangle groups.

1) The Euclidean case. The group $\Delta(3,3,3)$ is the affine Weyl group of type \widetilde{A}_{2}. We showed in our paper [2] that $\Delta(3,3,3) \cong(Z \times$ $\times Z) \rtimes S_{3}, Z(\Delta(3,3,3))$ is trivial and $\Delta(3,3,3)$ is solvable of derived
length 3. In our paper [3] we showed that $\Delta(3,3,3)$ is a subgroup of the wreath product $Z \subset S_{3}$.

Remark 4. To identify the structure of a group G we look for a known group H and a split extension $\theta: G \rightarrow H$. Then $G / \operatorname{ker} \theta \cong H$. If $|H|$ is small, then we can find ker θ using the RSRP. Hence we get $G \cong \operatorname{ker} \theta \rtimes H$. We use this method in several places of this paper.

We observe the following properties of $\Delta(3,3,3)$.
a) $\Delta^{\prime}(3,3,3)=D(3,3,3), \Delta^{\prime \prime}(3,3,3)=Z \times Z$ and hence $\Delta(3,3,3)$ is solvable of derived length $3 . D(3,3,3) \cong(Z \times Z) \rtimes Z_{3}$.
b) We define $\theta: \Delta(3,3,3) \rightarrow s_{3}=\left\langle x, y \mid x^{2}=y^{2}=(x y)^{3}=e\right\rangle \quad$ by $a \rightarrow x, b \rightarrow x, c \rightarrow y . \theta$ is a split extension and $\operatorname{ker} \theta \cong D(3,3,3)$. Hence we get $\Delta(3,3,3) \cong D(3,3,3) \rtimes S_{3}$.
2) The group $\Delta(2,4,4)$. The group $\Delta(2,4,4)$ is \widetilde{C}_{3} which is one of the affine Weyl groups of type \widetilde{C}_{l}. We showed in our paper [5] the following properties of $\Delta(2,4,4)$:
a) $\Delta^{\prime}(2,4,4)=\left\langle x, y, z \mid x^{2}=y^{2}=z^{2}=(x y z)^{2}=e\right\rangle$ an $\Delta^{\prime \prime}(2,4,4)=$ $=Z \times Z$. Thus $\Delta(2,4,4)$ is solvable of derived length 3 . We also showed that $\Delta^{\prime}(2,4,4) \cong(Z \times Z) \rtimes Z_{2}$. and $D(2,4,4) \cong(Z \times Z) \rtimes Z_{4}$.
b) $\Delta(2,4,4) \cong D(2,4,4) \rtimes\left(Z_{2} \times Z_{2}\right)$.
c) $\Delta(2,4,4) \cong \Delta^{\prime}(2,4,4) \rtimes\left(D_{4} \times Z_{2}\right)$.
d) $\Delta(2,4,4) \cong D(2,4,4) \rtimes D_{4}$.
e) $\Delta(2,4,4) \cong H \rtimes\left(Z_{2} \times Z_{2}\right)$ where $H=\left\langle c, d \mid d^{2} c d^{2}=c\right\rangle$.
3) The group $\Delta(2,3,6)$. We get the following properties of $\Delta(2,3,6)$:
a) $\Delta^{\prime}(2,3,6)=D(2,3,6), \Delta^{\prime \prime}(2,3,6)=Z \times Z$. Hence $\Delta(2,3,6)$ is solvable at derived length 3.
b) Let $\theta: D(2,3,6) \rightarrow Z_{6}=\left\langle a \mid a^{6}=c\right\rangle$ defined by: $x \rightarrow a^{3}, y \rightarrow a^{2}$. Then θ is a split extension and we find $D(2,3,6)=(Z \times Z) \rtimes Z_{6}$.
c) We define $\theta: \Delta(2,3,6) \rightarrow S_{3} \times Z_{2}=\langle x, y, z| x^{2}=y^{2}=z^{2}=$ $\left.=(x y)^{3}=(x z)^{2}=(x y)^{2}=e\right\rangle$ by $a \rightarrow z, b \rightarrow y, c \rightarrow x$. Then θ is a split extension and we get $\Delta(2,3,6)=D(3,3,3) \rtimes\left(S_{3} \times Z_{2}\right)$.
d) We let $\theta: \Delta(2,3,6) \rightarrow S_{3}=\left\langle x, y \mid x^{2}=y^{2}=(x y)^{3}=e\right\rangle$ defined by $a \rightarrow x, b \rightarrow x, c \rightarrow y$. Then $\operatorname{ker} \theta \cong G=\left\langle p, q, r \mid p^{2}=q^{2}=r^{2}=(p q r)^{2}=e\right\rangle$ and $\Delta(2,3,6)=G \rtimes S_{3}$.
e) We let $\theta: \Delta(2,3,6) \rightarrow Z_{2} \times Z_{2}=\left\langle x, y \mid x^{2}=y^{2}=(x y)^{2}=e\right\rangle$ defined by $a \rightarrow x, b \rightarrow y, c \rightarrow y$. Then $\Delta(2,3,6) \cong D(3,3,3) \rtimes\left(Z_{2} \times Z_{2}\right)$.
4) The elliptic case. The groups in this case are $\Delta(l, m, n)$ where
$1 / l+1 / m+1 / n>1$. These groups are well-known [8]. They are as follows: $\Delta(2,2, n)=D_{n} \times Z_{2}, \Delta(2,3,3)=S_{4}, D(2,3,3)=A_{4}, \Delta(2,3,4)=$ $=S_{4} \rtimes Z_{2}, D(2,3,4)=S_{4}, \Delta(2,3,5)=A_{5} \rtimes Z_{2}, D(2,3,5)=A_{5}$. We note here that $\Delta(2,3,4)$ is B_{3} a special case of the Coxeter groups of type B_{n}. The structure of $\Delta(2,3,4)$ is $\Delta(2,3,4) \cong Z_{2} ᄅ S_{3}[4]$.
5) The hyperbolic case. The groups in this case are $\Delta(l, m, n)$, where $1 / l+1 / m+1 / n<1$. The number of possible values of the ordered triple (l, m, n) satisfying the inequality is infinite. We classify these solutions of the inequality in the following categories:
(i) $(2,3, n), \quad n \geqslant 7$,
(ii) $(2,4, n), \quad n \geqslant 5$,
(iii) $(2, m, n), \quad n \geqslant m \geqslant 5$,
(iv) $(3,3, n), \quad n \geqslant 4$,
(v) $(3, m, n), \quad n \geqslant m \geqslant 4$,
(vi) $(l, m, n), \quad l \geqslant m \geqslant n \geqslant 4$.

We investigate some of the properties of some of the groups in these categories.
a) The groups $\Delta(2,3, n), n \geqslant 7$.

We obtain the following results about these groups:
(i) If $(n, 6)=1$, then $\Delta^{\prime}(2,3, n)=D(2,3, n)=$ and $D(2,3, n)$ is perfect. Hence $\Delta(2,3, n)$ is not solvable.
(ii) If $(n, 6)=2, \quad \Delta^{\prime}(2,3, n)=D(3,3, n / 2) \quad$ and $\quad \Delta^{\prime \prime}(2,3, n)=$ $=D(n / 2, n / 2, n / 2)$.
(iii) If $(n, 6)=3, \Delta^{\prime}(2,3, n)=D(2,3, n)=\langle r, s, t| r^{n / 3}=s^{2}=t^{2}=$ $\left.=(r s t)^{2}=e\right\rangle$ and $\Delta^{\prime \prime \prime}(2,3, n)=\left\langle d, f, g \mid d^{n / 3}=f^{n / 3}=g^{n / 3}=(d f g)^{n / 3}=e\right\rangle$.
(iv) If

$$
\begin{gathered}
(n, 6)=6, \quad \Delta^{\prime}(2,3, n)=D(3,3, n / 2), \\
\Delta^{\prime \prime}(2,3, n)=\left\langle p, q \mid\left(p q p^{-1} q^{-1}\right)^{n / 6}=e\right\rangle
\end{gathered}
$$

Since the number if relations is less than the number of generators, we deduce that $\Delta^{\prime \prime}(2,3, n)$ is infinite. Hence $\Delta(2,3, n)$ is infinite.
b) The case $\Delta(2,4, n) n \geqslant 5$.

We obtain the following results about these groups:
(i) If

$$
(n, 4)=1, \quad \Delta^{\prime}(2,4, n)=D(2, n, n)=D^{\prime}(2,4, n)
$$

$$
\Delta^{\prime \prime}(2,4, n)=\left\langle p_{1}, p_{2}, \ldots, p_{n-1}\right| p_{1}^{2}=p_{2}^{2}=\ldots
$$

$$
\left.\ldots=p_{n-1}^{2}=\left(p_{1} p_{2}, \ldots, p_{n-1}\right)^{2}=e\right\rangle=D^{\prime \prime}(2,4, n)
$$

(ii) If

$$
\begin{gathered}
(n, 4)=2, \quad \Delta^{\prime}(2,4, n)=\left\langle x, y, z \mid x^{n / 2}=y^{n / 2}=(x y)^{2}=(y z)^{2}=e\right\rangle, \\
D^{\prime}(2,4, n)=\left\langle a, b, c \mid a^{n / 2}=b^{2}=(b c)^{n / 2}=(c a)^{2}=e\right\rangle .
\end{gathered}
$$

(iii) If

$$
(n, 4)=4, \quad \Delta^{\prime}(2,4, n)=\left\langle x, y, z \mid x^{n / 2}=y^{n / 2}=(x y)^{2}=(y z)^{2}=e\right\rangle
$$

$\Delta^{\prime \prime}(2,4, n)=\left\langle p_{i}, p_{j}, 1 \leqslant i \leqslant k-1,0 \leqslant j \leqslant k-2\right.$,

$$
k=\frac{n}{2}\left|p_{k-1} q_{k-2} p_{k-3}, \ldots, p_{1} q_{0}=q_{0} p_{1} q_{2}, \ldots, p_{k-1}\right\rangle
$$

Since the number of generators is greater than the number of relations, the group $\Delta^{\prime \prime}(2,4, n)$ is infinite and hence the group $\Delta(2,4, n)$ is infinite.

We also find in this case that $D^{\prime}(2,4, n)=\langle a, b, c| a^{n / 4}=$ $\left.=\left(a b c b^{-1} a^{-1}\right)^{n / 4}=e\right\rangle$ which implies that $D^{\prime}(2,4, n)$ is infinite by the same argument as in the previous paragraph. Therefore $D(2,4, n)$ and $\Delta(2,4, n)$ are also infinite.
c) The groups $\Delta(2,5, n), n \geqslant 4$.

We find the following results about these groups:
(i) If $(n, 10)=1, \Delta^{\prime}(2,5, n)=D(2,5, n) \quad$ and $\quad D^{\prime}(2,5, n)=$ $=D(2,5, n)$. Therefore $\Delta(2,5, n)$ is not solvable.
(ii) If $\quad(n, 10)=2, \quad \Delta^{\prime}(2,5, n)=D(5,5, n / 2), \quad D^{\prime}(2,5, n)=$ $=D(5,5, n / 2)$..
(iii) If $(n, 10)=5, \quad \Delta^{\prime}(2,5, n)=D(2,5, n)$ and
$D^{\prime}(2,5, n)=$

$$
=\left\langle p_{0}, p_{1}, p_{2}, p_{3}, p_{4}, \mid p_{0}^{2}=p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=\left(p_{0} p_{1} p_{2} p_{3} p_{4}\right)^{n / 5}=e\right\rangle .
$$

(iv) If $(n, 10)=10, \quad \Delta^{\prime}(2,5, n)=D\left(5,5, \frac{n}{2}\right)$ and
$D^{\prime}(2,5, n)=\left\langle s_{1}, s_{2}, s_{3}, s_{4} \mid\left(s_{1} s_{2} s_{3} s_{4} s_{1}^{-1} s_{2}^{-1} s_{3}^{-1} s_{4}^{-1}\right)^{k}=e\right\rangle$
where $k=n / 10$. Thus $D^{\prime}(2,5, n)$ is infinite and so $\Delta(2,5, n)$ is also infinite.
d) The groups $\Delta(3,3, n), n \geqslant 4$.
(i) If

$$
(n, 3)=3, \quad \Delta^{\prime}(3,3, n)=D(3,3, n)
$$

$$
\Delta^{\prime \prime}(3,3, n)=\left\langle a, b, c, d \mid a^{n / 3}=(b c d)^{n / 3}=(c a b d)^{n / 3}=e\right\rangle
$$

(ii) If $\quad(n, 3)=1, \Delta^{\prime}(3,3, n)=D(3,3, n) \quad$ and $\quad \Delta^{\prime \prime}(3,3, n)=$ $=D(n, n, n)$.
e) The groups $\Delta(2, m, n), n \geqslant m \geqslant 5$.
(i) If m and n are even,

$$
\Delta^{\prime}(2, m, n)=\left\langle x, y, z \mid x^{n / 2}=y^{n / 2}=(x z)^{m / 2}=(y z)^{m / 2}=e\right\rangle
$$

(ii) If m is even and n is odd, $\Delta^{\prime}(2, m, n)=D(n, n, m / 2)$.
(iii) If m and n are both odd $\Delta^{\prime}(2, m, n)=D(2, m, n)$. We let $k=(m . n)$ where $m=s k$ and $n=r k$. Then
$D^{\prime}(2, m, n)=\left\langle p_{0}, p_{1}, \ldots, p_{k-1}, q\right| p_{0}^{2}=p_{1}^{2}=\ldots$

$$
\left.\ldots=p_{k-1}^{2}=\left(p_{0} p_{1}, \ldots, p_{k-1} q\right)^{r}=q^{s}=e\right\rangle
$$

f) The groups $\Delta(3, m, n), n \geqslant m \geqslant 4$.
(i) If m and n are even,

$$
\Delta^{\prime}(3, m, n)=\left\langle x, y, z \mid x^{n / 2}=y^{3}=(y z)^{m / 2}=(z x)^{3}=e\right\rangle
$$

(ii) If m or n is odd, $\Delta^{\prime}(3, m, n)=(3, m, n)$.

General properties of the groups $\Delta(l, m, n)$
a) The commutator subgroup of $\Delta(l, m, n)$ is:
(i) If l, m, n are even,
$\Delta^{\prime}(l, m, n)=\left\langle x_{1} x_{2}, x_{3}, x_{4}, x_{5}\right| x_{1}^{l / 2}=$

$$
\left.=x_{2}^{m / 2}=x_{3}^{n / 2}=\left(x_{2} x_{4} x_{5}\right)^{l / 2}=\left(x_{3} x_{5}\right)^{m / 2}=\left(x_{1} x_{4}\right)^{n / 2}=e\right\rangle .
$$

(ii) If two of l, m, n are even and one is odd, WLOG let n be odd and l, m be even

$$
\Delta^{\prime}(l, m, n)=\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{l / 2}=x_{2}^{n}=\left(x_{2} x_{3}\right)^{m / 2}=\left(x_{3} x_{1}\right)^{n}=e\right\rangle .
$$

(iii) If at most one of l, m, n is even,

$$
\Delta^{\prime}(l, m, n)=D(l, m, n) .
$$

b) We give a necessary and sufficient condition that makes $D(l, m, n)$ perfect.

Theorem. $D(l, m, n)$ is perfect iff l, m, n are mutually relatively prime.
Proof. The relation matrix for $\frac{D}{D^{\prime}}$
$=Z_{d_{1}} \times Z_{d_{2}}$ where $\left[\begin{array}{cc}l & 0 \\ 0 & m \\ n & n\end{array}\right]$. Hence $\frac{D}{D^{\prime}}=$

$$
d_{1}=h c f\{l, m, n\} \quad \text { and } \quad d_{2}=\frac{h c f\{l m, m n, n l\}}{d_{1}} .
$$

Let D be perfect, i.e., $D / D^{\prime} \cong E \Rightarrow d_{1}=d_{2}=1 \Rightarrow h c f\{l, m, n\}$ and $h c f\{l m, m n, n l\}=1$. This easily implies that l, m, n are mutually relatively prime. Let l, m, n be mutually relative prime $\Rightarrow h c f\{l, m, n\}=$ $=1 \Rightarrow d_{1}=1$. It is easy to see that $h c f\{l m, m n, n l\}=1$ and hence $D / D^{\prime} \cong$ $\cong E$ and
c) The derived subgroup of the group $D(n, n, n), n \geqslant 3$.

$$
\begin{aligned}
& D^{\prime}(n, n, n)=\langle X \mid R, S, T\rangle \text { where } \\
& X=\left\{B_{i, j} \mid 0 \leqslant i \leqslant n-1, \quad 1 \leqslant j \leqslant n-1\right\}, \\
& R=\left\{B_{0, j} B_{1, j} \ldots B_{n-1, j}=e \mid 1 \leqslant j \leqslant n-1\right\}, \\
& S=\left\{B_{0,1} B_{1,2} \ldots B_{n-2} B_{n-1}=e\right\}, \\
& T
\end{aligned}=\left\{B_{i, 1} B_{i+1,2} \ldots B_{0, q+1} B_{1, q+2} \ldots, B_{p, n-1}=e \mid 1 \leqslant i \leqslant n-1\right\} . .
$$

Theorem. The group $D(n, n, n)$ is infinite iff $n \geqslant 3$.
Proof. If $n=1 \Rightarrow D=E$. If $n=2 \Rightarrow D=Z_{2} \times Z_{2}$. Let $n \geqslant 3$. The number of generators of D^{\prime} is $n(n-1)$. The number of relations is $|R|+|S|+|T|=2 n-1$. Now the number of generators is greater
than the number of relations iff $n \geqslant 3$. Hence D^{\prime} is infinite iff $n \geqslant 3$ and so D is infinite iff $n \geqslant 3$.

Acknowledgement. The authors thank KFUPM for support they get for conducting research.

REFERENCES

[1] Muhammad Albar, On presentation of group extensions, Comm. in Algebra, 12 (23) (1984), pp. 2967-2975.
[2] Muhammad Albar, On the affine Weyl group of type \bar{A}_{n-1}, Internat. J. Math. and Math. Sci., 10. No. 1 (1987).
[3] Muhammad Albar - Maha Al-Hamed, On the affine Weyl group of type $\widetilde{A}_{n-1} I I$, Bull. Korean Math. Soc., 30, No. 1 (1993).
[4] Muhammad Albar - Norah Al-Saleh, The Coxeter group of type B_{n}, Math. Japonica, 35, No. 4 (1990), pp. 599-602.
[5] Muhammad Albar - Maha Al-Hamed, On the affine Weyl group of type \widetilde{C}_{l}, Math. Japonica, 36, No. 5 (1991), pp. 943-945.
[6] C. T. Benson - L. C. Grove, Finite Reflection Groups, Bodger and Quiqley, Tarrytown on Hudson, New York (1971).
[7] N. Bourbaki, Elements de mathematique, Groupes et algebre de Lie, Chap. I-Chap. VIII.
[8] H. S. M. Coxeter - W. O. J. Moser, Generators and Relations for Discrete Groups, fourth edition, Springer-Verlag, Berlin-Heidelberg-New York (1980).
[9] D. L. Johnson, Topics in the Theory of Group Presentation, Cambridge University Press, Cambridge (1980).
[10] R. Lyndon, Groups and Geometry, Cambridge University Press, Cambridge (1985).
[11] G. Maxwell, The crystallography of Coxeter groups, J. Algebra, 33 (1975), pp. 159-177.
[12] G. Maxwell, The crystallography of Coxter groups II, J. Algebra, 44 (1977), pp. 290-318.
[13] M. Suzuki, Group Theory I, Springer-Verlag, Berlin-Heidelberg-New York (1982).

Manoscritto pervenuto in redazione il 6 febbraio 1992.

