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Wielandt Series and Defects of Subnormal Subgroups
in Finite Soluble Groups.

CARLO CASOLO (*)

1. Introduction.

We are interested in this paper in the subnormal structure of finite
soluble groups; we show that the Wielandt length of a finite soluble
group is bounded in terms of its Fitting length and of the maximum de-
fect of its subnormal subgroups.

The Wielandt subgroup m(G) of a group G is the intersection of all
normalizers of subnormal subgroups of G; clearly is a characteri-
stic subgroup of G. The Wielandt series:

is defined by (see [9; § 4.6]):

H. Wielandt [13] proved that if G is a finite group then w(G) 0 1, for
in this case contains all minimal normal subgroups of G. It there
follows that for a finite group G there is a smallest positive integer n
such that Wn (G) = G: such n is called the Wielandt length of G; we deno-
te it by wl(G). From now on, all groups considered will be finite.
We denote by b(G) the maximum among the defects of subnormal

subgroups of the group G, and by Bn the class of all groups G such that
b(G):5 n. H. Wielandt observed that wl(G) [13]; thus a bound on
the Wielandt length implies a bound on the defects of the subnormal
subgroups. When dealing with soluble groups, there is a bound on the
derived length of a group in terms of its Wielandt length (the exact
bound has been determined by R. Bryce and J. Cossey [2], see [4] for
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an extension to infinite groups). On the other hand, while soluble

groups in B1 are metabelian [6] [10] and finite soluble groups in B2 have
derived length at most 5 [5], no bound exists on the derived length of fi-
nite soluble groups in B3 , as first shown by T. Hawkes [8] (see also R.
Bryce [1] for examples of B3-groups with abelian Sylow subgroups and
arbitrary derived length). Thus, a fortiori, no bound on the Wielandt
length of a group exists depending only on the maximum defect of its
subnormal subgroups. Also, no bound on b(G) (and so on the Wielandt
length wl(G)) exists depending only on the derived length of the group
G: the wreath product of a cyclic group of order p (a prime number) by
itself is metabelian and has subnormal subgroups of defect p.

The n-th term Fn (G) of the Fitting series of G is defined by Fo (G) =
- 1 and Fn + 1 (G)/Fn (G) = Fit (G/Fn (G)). If G is soluble, the Fitting (or
nilpotent) length of G is the smallest n such that Fn (G) = G, and it is
denoted by l(G).

We shall show that there exists a function f : N x N - N such
that

for any finite soluble group G.
In fact this result is a corollary of a more general statement (Theo-

rem 2): if X is a class of finite soluble groups, closed by homomorphic
images and normal subgroups, such that all nilpotent groups belonging
to it have nilpotency class at most c, then wt(G) _ f (L(G), c) for every G
in X.

2. A strong Wielandt subgroup.

In order to find bounds on the Wielandt length of a finite group, we
have found it useful to introduce a special subgroup of the Wielandt
subgroup, which is in some sense easier to deal with. Then we define a
corresponding ascending series, a bound on whose length implies a
bound on the Wielandt length. In our definition and most of our argu-
ments, we have chosen a «local» approach, as it is done in [2] for the
Wielandt subgroup.

DEFINITIONS. Let G be a group, p a prime number. We put

~x E G; [H, x]  for all p’-perfect subnormal sub-

groups H of G ~ .

(We remind that, if 7r is a set of primes, a group H is said to be n-perfect
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if0"(~)=~). And

(Here HN is the nilpotent residual of H, i.e. the smallest normal sub-
group K of H such that H / K is nilpotent.)

Then wP (G) and 15(G) are characteristic subgroups of G, and it is im-
mediate (G) is contained in mP(G) (the intersection of the norma-
lizers of all p’-perfect subnormal subgroups of G, as defined in [2]), and
~(G)  w(G).

PROPOSITION 1. Let G be a groups, x(G) the set of all primes divi-
din G ~ , a(G) the socle of G. Then:

PROOF. (i) If H is p’-perfect then = HN. Thus (;j(G) ~ 
for every p E ~(G). Conversely, let x E U (G) for every pr= 7~G), and
H sn G. For each p, Hp = is p’-perfect and subnormal in G; so

[Hp , HN. Since H is the normal product of the Hp’s,
[H, HN and x E 

(ii) Let M be a minimal normal subgroup of G. We have to show
that M S w(G). Let H sn G; then MH is subnormal in G and so M:5
~ a-(MH). We may therefore assume MH = G. Then M &#x3E;_ G, so
[M, H] = 1 or [M, H] = M. Since the second case implies HN ? M, we
have, in both cases, [M, m S HN, as wanted. 0

The next lemma states some trivial properties of and 
The proof is straightforward, and we omit it.

LEMMA 1. Let N be a normal subgroup of G. Then:

The next proposition shows that the subgroups (G) and a)(G) en-
joy a property which is not satisfied by the corresponding standard
Wielandt subgroups. Since we do not need it in the proof of our main
result, we again leave the easy proof to the reader.

PROPOSITION 2. Let G and H be groups, p a prime. Then:
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Let now n be a positive integer, we and by put-
ting : = 1 and

for n b 1.
Observe that if G is nilpotent, then the series - (G). n e N, coinci-

des with the upper central series of G.

LEMMA 2. Let G be a p-soluble group, and K = Op , (G). Then
and wP(G)/K = 

PROOF. We first show that, if K = 1, wP(G) = w(G). Let T = wP(G);
then T is a p-group, since Op - (T) = 1 and all normal p-sections of T are
central. If H sn G, then T normalizes OP (H) because OP (H) is p-perfect
subnormal and T is a normal p-subgroup. Also [T, 0 P (H)l s T n

(H)). On the other hand, T normalizes by defi-
nition and [T, In conclusion:

Thus T s ~(G). Since the reverse inclusion is trivial, we get T =
= cJ(G). 

,

Let now K # 1, and H a p’-perfect subnormal subgroup of G. Then
H is normalized by K and so [K, n H Hence K 
~cJ~(G). This, together with Lemma 1, gives:

by the case discussed above. To finish, we have to show that c

c úJP (G)/K. Let gK E H a p’-perfect subnormal subgroup of G.
Then H = is normalized by g and

Hence g E (;jP (G), concluding the proof of the lemma.

PROOF. This is because all p’-perfect subnormal subgroups of G lie
in Op’(G).

By Proposition 1 (ii), for every finite group G there is a minimum
positive integer n such that wn (G) = G. We call such n the strong Wie-
landt length of G, and denote it by wl(G). It is then clear that 
~ wl(G), and a bound on wl(G) implies a bound on wl(G). However, we do
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not know the exact relation between and (and thus bet-
ween the two corresponding lengths). In particular we do not know
whether there exists a positive integer m such that w(G) S wm (G) for
all groups G.

LEMMA 4. Let P be a normal p-subgroup o, f the group G. Suppose
that P has nilpotency elass d and that P / P’ is 
Then (G), where g(r, d) = (2d - 1 ) r - 2d -1 + 1.

PROOF. By induction on d.
If d = 1, then P’ = 1, so P S wpr (G) and, in fact, g(r, 1) _ (2 - 1) r -

-1+1=r.
Let now d &#x3E; 1. Write Wo = (the last non trivial term of the

lower central series of P). Then, by inductive hypothesis:

The Xn is normal in G for each n. We show that Xn /Xn - 1 is contained in
for every n = 1, ..., 2a - 1.

Let H be a subnormal p’-perfect subgroup of G. Then is nor-
malized by P, because P is a normal p-subgroup and is subnor-
mal and p-perfect. Thus Let t, s E ~ 1, ..., a) and t + s =
= n + 1 (n = 1, ..., 2a - 1). Then:

(observe that, if t = 1, [Wt - 1, = [Wo , = 1).
Similarly: [W~ , H, 0 P (H) 1. Since 0 P (H) 1 is normal

in PH, by the three subgroups lemma we get:

This is true for all pairs (t, s) with t + s = n + 1 and so

showing that 1 is contained in 
We have therefore for every n = 1, ..., 2a -1. In

particular
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Since P/P’ is contained in we conclude that

and:

REMARKS. The same argument of the preceding proof can be used
to show that if N is a nilpotent normal subgroup of G, and N / N’ is con-
tained in wr (G / M ’) then N -5 Wk (G), where k depends only on r and on
the nilpotency class of N. In this form, the result is in the same spirit of
a well known nilpotency criterion of P. Hall [7], stating that if both N
and G / N’ are nilpotent then G is nilpotent of class which depends on
the classes of N and of G/N’. We have not attempted to find the best
bounds for k above or g(r, d) of Lemma 4. Also, it is conceivable that a
similar result holds for the standard Wielandt series, but we have not
been able to find a proof in this case.

3. The main result.

We begin this section with three known results, that will be used in
the proof of our main theorem.

LEMMA 5. Let A be a normal p-subgroup of G, compLemented by Q
in G, and let S be a p-perfect subnormal subgroup of G. Then
S = (,S n A)(S n Q).

PROOF. Since S is subnormal in G:

LEMMA 6. Let H, K be subgroups of G, such that H, K are subrcor-
mal in J = (H, K), and let X be the class of soluble groups of p-length
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at most n ( for a fixed n EN). Then

PROOF. This follows from the fact that, for every set n of primes,
H, K sn J = (H, K ) implies 07r (J) = (0’~ (H), 0’~ (I~~, and induction on
n.

LEMMA 7 (Shult [12]; Carter and Hawkes [3; Theorem 5.15]). Let
F be a saturated formation and G a soluble group whose F-residual G F
is abelian. Then G F is complemented and any two complements are
conjugate.

THEOREM 1. There exists a function h: I~T X ~ ~ 1~ such that if G
is a soluble group of p-length n, and all subnormal p-sections of G have
class at most c, then

PROOF. We proceed by induction on the p-length n of G.
Observe that if A is a normal p-subgroup of G, then for

every prime q ~ p. Thus, to prove the Theorem, it is enough to show
that Op(G) is contained in ~~~~, n) (G).

If n = 1, then by Lemmas 2 and 3:

for i = 1, 2, ..., c. Hence Op , , p (G) _ c~ p (G). We put h(c, 1) = c.
Let now n &#x3E; 1 and suppose that we have proved the assertion for

n - 1 and thus found h(c, n - 1). Let X be the class of all soluble groups
of p-length n - 1; then X is a saturated formation, and it is closed by ta-
king normal products. Given a group K we denote by K its X-residual.
We prove the following fact:

(*) let G be a soluble group of p-length n. Assume that all subnormal
p-sections of G have class at most c and that G is an abelian p-
group. Then G S c.~ ~~c, n - 1) (G).

Let G be a minimal counterexample. Write A = G and let N = Gx be
the X-radical of G; also put d = h(c, n -1 ).

1) Op - (G) = 1 and G / N is a p-group.
Let K = Op’ (G); then AK/K = ( G/K ) is abelian and a p-group; if
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K;e 1 then AK/K S and so, by Lemma 2, A S ~g(G). Hence
K = 1. Furthermore (G). Since, by Lemma 3, _

S 15$/ (G), our choice of G implies G = 0 p ~ (G). Now G / N has p-length 1,
and Op, (GIN) = 1, so G / N is a p-group.

2) A is not decomposable as the direct product of two proper G-inva-
riant subgroups.
Suppose this false, and let R x ,S = A be a proper direct G-decom-

position of A. Now (G/R) = A/R so, by our choice of G, 
S ~ d (G/R). For i = 1, ..., d let Ri /R (G/R) f1 A/R and Xi = Ri fl S;
thus XiR = Ri . Now, by Lemma 7, A is complemented in G, say by ~o .
It there follows that R is complemented in G by Q = SQO . Let H be a p’-
perfect subnormal subgroup of G. Then, for i = 1, ..., d (and with
Ro = R):

In particular [Ri , H]  Now 0 P (H) is p-perfect, whence,
by Lemma 5, n Q)(OP(H) n R). We have therefore:

showing that Xi/Xi-I 1 is contained for all i = 1, ... , d.
Thus ,S = Xd s Applying the same argument, we obtain also

~ d (G) and so contradicting the choice of G. Thus 2) is
proved.

Let now M = {H; N  H G, H  A and T = A for all T &#x3E; H}. Ob-
serve that, since N = 1, 0. Let H E m. By Lemma 7, H is comple-
mented in H by Q , say, and all such complements are conjugate. Let
CH= An QH ; then 1 ~ and A = H x CH . Observe in particular
that H and CH are normal subgroups of N.

3) For every H E ~, 

Since H/H has p-length n - 1, A/H is contained 
by our inductive hypothesis. Then follows by the same
argument used in part 2). Thus if we show that [CH , S] :5
S OP(S) for any p’-perfect subnormal subgroup ,S of G not contained
in H. Let therefore S be such a subgroup, and put Si = N,S. Then,
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in particular, S, &#x3E; N and (S, H) &#x3E; H. By Lemma 6:

and, since _H E 3l1: S ~ H_ _ (S, H~ = A.
Let X/S = Op, (SI /9). I claim that S = [A, X]. In fact, if V = [A, X],

then V  S because A/S and Xlg are normal subgroups of S1 /S of copri-
me order. 0_n the other hand, AX / Y is nilpotent and, if P/S =
= °P’, P (Si IS), P /AX is a p-group. It follows that P / V has p-length 1,
and so belongs to X; this yields V and consequently S = V.

Now, X:5 N, so X normalizes both H and CH . Thus:

Hence we have: A = S · H = H[CH , X], which gives [CH , X] = CH . The-
refore S &#x3E; CH . In particular CH , and so [CH , This
shows that 

4) Proof of (*) concluded.
c 3l1. By induction or r = I oz 1, we show that

If r = 1: A = H x CH (where K = IHI) by definition of CH . Let r &#x3E; 1
and let :no By inductive hypothesis A = Co x Ho ,
where Co = (CK ; K E :no) and Ho = f l K. Let X/H = Op’ (H/H). As we
saw in point 3), H = [A, X]. Also [CH, = 1, and this yields
CH = CA (X), as X acts by coprime action on the abelian group A. Now,
Co and Ho are normal in N, whence, in particular, they are normalized
by X. Thus we have:

as wanted.
Let now C = ~CH ; H E 3ll). Clearly C~G and C is complemented by

T = n H in A, by what we proved above. But T is also normal in G,
H E M

so, by point 2), T = 1, because certainly C # 1. Hence C = A. By point
3), CH  ~ d (G) for all H E 3l1; thus a contradiction which
concludes the proof of claim (*).
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We now finish the proof of the Theorem. We have d = h(c, n -1 ) by
inductive hypothesis. Let G be a soluble group of p-length n, all of who-
se subnormal p-sections have nilpotency class at most c.

By Lemma 2, we may assume Op’ (G) = 1. Let P = Op (G). Then G / P
has Hence A = P, where X is the class of soluble
groups of p-length n - 1. By (*)

By applying Lemma 4, se get A _ ~,9~d, ~&#x3E; (G). Since P/A is contained in
~(G/A) by inductive hypothesis, we finally have

where h(c, n) = g(d, c) + d = g(h(c, n -1), c) + (c, n -1 ), which, by
what we observed at the beginning of the proof, it is enough to conclu-
de that P is contained 

Now observe that the function h of Theorem 1 (as well as the fun-
ction g of Lemma 4) does not depend on the prime p. Thus if we

put:

we obtain the following

COROLLARY 1. Let G be a soluble group.

(i) If G has p-Length n, an all subnormal p-sections of G have
class at most c:

(ii) If G has Fitting length l(G) and all nilpotent subnormal sec-
tions of G have class at most c:

PROOF. It follows easily from Lemma 2, Theorem 1, and induction
on n. m

We restate part of the corollary to make more transparent our appli-
cation to the classes Bm.
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THEOREM 2. Let X be a class of soluble groups, closed by homo-
morphic images and normal subgroups, and suppose that every nilpo-
tent group in X has nilpotency class at most c. Then:

for all G in X.

This in particular applies to the classe Bm (m E N); they are closed
by homomorphic images and normal subgroups and, by a theorem of J.
Roseblade [11], nilpotent groups in Bm have nilpotency class bounded
by a function of m. Thus Theorem 2 yields:

COROLLARY 2. There exists a function ,f: N x ~T -~ I~ such that,
for every soluble group G:

An interesting particular case is the class B2. In fact if G is a soluble
group in B2 (i.e. if b(G) 5 2), then I(G) 5 4 (see [5]). Hence we
have

COROLLARY 3. Soluble groups in B2 have bounded (strong) Wie-
landt length.

By combined results of H. Heineken and S. K. Mahdavianary, nil-
potent groups in B2 have class at most three. Thus f(3, 4) of Theorem 2
provides such a bound. However, direct computation of it gives a ra-
ther unrealistic value; we leave it open the problem of determining the
exact bound for the Wielandt length of a finite soluble B2-group (I do
not know of any example of a finite soluble B2-group whose Wielandt
length exceeds 3).

Acknowledgement. I am grateful to R. Bryce for discussions on the
subject of this paper, which particularly helped to state the results in
the present generality.
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