Rendiconti

del
 SEminario Matematico della Università Di Padova

M. J. Iranzo
A. MARTÍNEZ-PAStor
F. PÉREZ-Monasor
\section*{A $Z J$-theorem for p^{*}, p-injectors in finite groups}

Rendiconti del Seminario Matematico della Università di Padova, tome 87 (1992), p. 69-76
http://www.numdam.org/item?id=RSMUP_1992__87__69_0
© Rendiconti del Seminario Matematico della Università di Padova, 1992, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

A $Z J$-Theorem for p^{*}, p-Injectors in Finite Groups.

M. J. Iranzo - A. Martínez-Pastor - F. Pérez-Monasor (*)

1. Introduction and notation.

All groups considered in this paper are finite. A group G is said to be p-stable, p prime, if whenever A is a p-subgroup of G and B is a p-subgroup of $N_{G}(A)$ such that $[A, B, B]=1$ then $B \leq$ $\leq O_{p}\left(N_{G}(A) \bmod . C_{G}(A)\right)$. In [5] Glauberman obtained the following theorem:

Let p be an odd prime and let P be a Sylow p-subgroup of a group G. Assume that G is p-stable and that $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$. Then $Z J(P)$ is a characteristic subgroup of G, where $Z J(P)=Z(J(P))$ and $J(P)$ is the Thompson's subgroup of P, that is, subgroup of P generated by the set $\mathfrak{A}(P)$ of all abelian subgroups of maximum order of P.

With the same conditions he also obtained a factorization of the group G.

In the same paper Glauberman introduces the characteristic subgroup $Z J^{*}(P)$ and proves the following result:

Let p be an odd prime and let P be a Sylow p-subgroup of a group G. Suppose that $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$ and that $S A(2, p)$ is not involved in G. Then $Z J^{*}(P)$ is a characteristic subgroup of G and $C_{G}\left(Z J^{*}(P)\right) \leq$ $\leq Z J^{*}(P)$.

Some related results were obtained by Ezquerro [4] and Pérez Ramos [9, 10].

Given a fixed prime p, we shall denote by \mathscr{D}_{p} the class of all p -
(*) Indirizzo degli AA.: Departamento de Algebra, Facultad de Matemáticas, Universidad de Valencia, 46100 Burjassot (Valencia), Spain.

Work supported by the CICYT of the Spanish Ministry of Education and Science, project PS 87-0055-C02-02. The second author was supported by a scholarship from the same Ministry.
groups, $\mathbb{E}_{p^{*}}$ that all p^{*}-groups [2] and $\mathbb{E}_{p^{*}} \mathscr{B}_{p}$ that of the p^{*}, p-groups; the corresponding radicals in a group G are denoted, as usual, by $O_{p}(G), O_{p^{*}}(G)$ and $O_{p^{*}, p}(G)$ respectively. Every group G possesses p^{*}, p-injectors which are the subgroups of the form $O_{p^{*}}(G) P$ where P describes the set of Sylow p-subgroups of G [8].

The aim of this paper is to establish the analogous to Glauberman's results with the subgroups $Z J(K)$ and $Z J^{*}(K)$ where K is a p^{*}, p-injector of a group G.

2. The factorization.

Lemma 2.1. Let G be a group of $F^{*}(G) \leq H \leq G$. Then it follows:

$$
\pi(Z J(H)) \subseteq \pi(F(G))=\pi(F(H))
$$

Proof. Clearly $\pi(Z J(H)) \subseteq \pi(F(H))$ and $\pi(F(G)) \subseteq \pi(F(H))$. On the other hand as $\pi(F(H))=\pi(Z(F(H)))$ and $Z(F(H)) \leq C_{G}(F(G)) \cap$ $\cap C_{G}(E(G))=C_{G}\left(F^{*}(G)\right) \leq F(G)$, then the result follows.

Corollary 2.2. Let G be a group and K a p^{*}, p-injector of G. If $p \in \pi(F(G))$ then $p \in \pi\left(Z J(K)\right.$). Moreover if $O_{p^{\prime}}(F(G)) \leq Z(K)$ then $\pi(F(G))=\pi(F(K))=\pi(Z J(K))$ and in particular the following are equivalent: i) $F(G) \neq 1$, ii) $F(K) \neq 1$, iii) $Z J(K) \neq 1$.

Proof. We can assume that $K=O_{p^{*}}(G) P$ where P is a Sylow p subgroup of G. If $O_{p}(G) \neq 1$ then we have:

$$
1 \neq Z(P) \cap O_{p}(G) \leq C_{K}\left(O_{p^{*}}(G)\right) \cap C_{K}(P)=Z(K) \leq Z J(K)
$$

If moreover $O_{p^{\prime}}(F(G)) \leq Z(K)$ then $O_{p^{\prime}}(F(G)) \leq Z J(K)$ and we can conclude that $\pi(F(G)) \subseteq \pi(Z J(K))$. Now Lemma 2.1 applies.

Lemma 2.3. Let G be a group and K a p^{*}, p-injector of G. Assume that $O_{p^{\prime}}(F(G)) \leq Z(K)$. Let B be a nilpotent normal subgroup of G and let A be a nilpotent subgroup of K, then $A B$ is a nilpotent subgroup of G.

Proof. By a known result of Bialostocki [3] it is enough to prove that $A O_{q}(B)$ is nilpotent for every $q \in \pi(B)$.

Since K is a p^{*}, p-injector of G we have $B \leq F(G) \leq K$ and so $O_{p^{\prime}}(B) \leq O_{p^{\prime}}(F(G)) \leq Z(K)$. Then $A O_{q}(B)$ is nilpotent for every prime q with $q \neq p$. Now assume that $K=O_{p^{*}}(G) P$ where P is a Sylow p-sub-
group of G, then:

$$
\left[O_{p}(B), A\right] \leq\left[O_{p}(B), O_{p^{*}}(G) P\right]=\left[O_{p}(B), P\right] \leq[P, P]=P^{\prime}
$$

By induction on n we can prove that for every $n \geq 1$:

$$
\left[O_{p}(B), A ; n\right] \leq\left[O_{p}(B), P ; n\right] \leq \Gamma_{n+1}(P)
$$

and so, for some positive integer m is $\left[O_{p}(B), A ; m\right]=1$, thus A acts nilpotently on $O_{p}(B)$ and then $A O_{p}(B)$ is nilpotent.

Proposition 2.4. Let G be a p-stable group. If K is a p^{*}, p-injector of G and A is an abelian normal subgroup of K then $A \unlhd \unlhd G$ and $A \leq F(G)$. In particular $Z J(K) \leq F(G)$.

Proof. Clearly $O_{p^{\prime}}(A) \leq O_{p^{*}}(K)=O_{p^{*}}(G) \leq O_{p^{*}, p}(G) \leq K$ thus $O_{p^{\prime}}(A) \leq O_{p^{*}, p}(G)$. If $K=O_{p^{*}}(G) P$ then $O_{p}(A) \leq P$. Set $Q=P \cap$ $\cap O_{p^{*}, p}(G)$ then $G=O_{p^{*}, p}(G) N_{G}(Q)$. Since $Q \leq N_{G}\left(O_{p}(A)\right)$ and A is abelian then $\left[Q, O_{p}(A), O_{p}(A)\right]=1$. As $O_{p}(A) \leq N_{G}(Q)$ and G is p-stable we have:

$$
O_{p}(A) C_{G}(Q) / C_{G}(Q) \leq O_{p}\left(N_{G}(Q) / C_{G}(Q)\right)=M / C_{G}(Q) .
$$

On the other hand $C_{G}(Q) \leq O_{p^{*}, p}(G)[7]$, so $M O_{p^{*}, p}(G) / O_{p^{*}, p}(G)$ is a normal p-subgroup of $G / O_{p^{*}, p}(G)$, hence is trivial. So $O_{p}(A) \unlhd O_{p^{*}, p}(G)$ thus $A \unlhd \unlhd G$ and $A \leq F(G)$.

Theorem 2.5. Let G be a p-stable group, p odd and $F(G) \neq 1$. If K is a p^{*}, p-injector of G and $O_{p^{\prime}}(F(G)) \leq Z(K)$ then $1 \neq Z J(K) \unlhd G$.

Proof. (This proof is based, in part, on Glauberman's proof of his $Z J$-theorem ([6], Th. 8,2.10)).

First note that as the p^{*}, p-injectors of G are coniugated, the statements $Z J(K) \unlhd G$ and $Z J(K)$ char G are equivalent.

As a consequence of the above Proposition we know that $Z J(K) \leq F(G)$ and by Corollary $2.2 Z J(K) \neq 1$. Now to obtain the theorem it is enough to prove that if B is a nilpotent normal subgroup of G then $B \cap Z J(K)$ is normal in G.

Let G be a minimal counterexample and B a nilpotent normal subgroup of G of least order such that $B \cap Z J(K)$ is not normal in G.

Set $Z=Z J(K)$ and let B_{1} be the normal closure of $B \cap Z$ in G, then $B \cap Z=B_{1} \cap Z$ an by our minimal choice it follows $B=B_{1}$.

Now $B^{\prime}<B$ then $B^{\prime} \cap Z \unlhd G$, hence for every g of G is $[(B \cap$ $\left.\cap Z)^{g}, B\right]=[B \cap Z, B]^{g} \leq B^{\prime} \cap Z$. Since B is the normal closure of $B \cap Z$
in G it follows that $B^{\prime} \leq B^{\prime} \cap Z$. In particular $B \cap Z$ centralizes B^{\prime} and by an analogue argument we obtain that $[B, B, \mathrm{~B}]=1$.

Consider $A \in \mathfrak{A}(K)$. For Lemma 2.3 we know that $A B$ is nilpotent. Thus there exists a positive integer n such that $[B, A ; n]=1$. Moreover as $O_{p^{\prime}}(B) \leq Z(K)$ and p odd it follows that $[A, B]^{\prime}=\left[A, O_{p}(B)\right]^{\prime}$ has odd order.

By ([1], Cor. 2.8) there exists $A \in \mathscr{A}(K)$ such that $B \leq N_{G}(A)$, therefore $[B, A, C]=1$. In particular $\left[O_{p}(B), O_{p}(A), O_{p}(A)\right]=1$. Since G is p-stable we have:

$$
O_{p}(A) C / C \leq O_{p}(G / C)=T / C \unlhd G / C
$$

where $C=C_{G}\left(O_{p}(B)\right)$. Now, since $O_{p^{\prime}}(A)$ centralizes $O_{p}(B)$ it follows that $A \leq T$.

If $T=G$ then G / C is a p-group so $K C=G$. Moreover as $O_{p^{\prime}}(B) \leq$ $\leq Z(K) \leq Z$ is $B \cap Z=O_{p^{\prime}}(B)\left(O_{p}(B) \cap Z\right)$ a normal subgroup of $K C$, what is a contradiction. Thus $T<G$. Since $A \leq K \cap T$ it follows $\mathfrak{A}(K \cap T) \subseteq$ $\subseteq \mathfrak{A}(K), J(K \cap T) \leq J(K)$ and $Z J(K) \leq Z J(K \cap T)$. By our minimal choice of $G Z J(K \cap T)$ char T and so it follows $Z J(K \cap T)$ normal in G. Then $B \leq Z J(K \cap T)$. In particular B is abelian. If $J(K \cap T)<J(K)$ then there exists $A_{1} \in \mathfrak{A}(K)$ such that A_{1} there is not a subgroup of T, then we must have $\left[B, A_{1}, A_{1}\right] \neq 1$. Set $=\{A \in \mathfrak{A}(K) \mid[B, A, A] \neq 1\}$, we choose $A_{1} \in \mathcal{D}^{\prime}$ such that $\left|A_{1} \cap B\right|$ is maximal. By ([1], Th. 2.5) there exists $A_{2} \in \mathcal{A}(K)$ such that $A_{2} \leq N_{G}\left(A_{1}\right)$ and $B \cap A_{1}<B \cap A_{2}$. Therefore [B, A_{2}, A_{2}] $=1$ thus $A_{2} \leq T$ and $Z J(K \cap T) \leq A_{2}$. Hence:

$$
\left[B, A_{1}, A_{1}\right] \leq\left[Z J(K \cap T), A_{1}, A_{1}\right] \leq\left[A_{2}, A_{1}, A_{1}\right]=1
$$

what is a contradiction.
Consequently $J(K \cap T)=J(K)$ and $Z J(K)=Z J(K \cap T) \unlhd G$. This is the last contradiction.

Corollary 2.6. Let G be a p-stable group, p odd, with $F(G) \neq 1$. If K is a p^{*}, p-injector of G and $O_{p^{\prime}}(F(G)) \leq Z(K)$ then:

$$
G=N_{G}(J(K)) C_{G}(Z J(K))=N_{G}(J(K)) C_{G}(Z(K))
$$

Proof. Let us write $Z=Z J(K)$ and $C=C_{G}(Z)$. As $Z \unlhd G$ is also $C \unlhd G$ and therefore $G=C N_{G}(K \cap C)$. Now, as $J(K \cap C)$ char $K \cap C$, it follows $G=C N_{G}(J(K \cap C)$). Since $J(K) \leq K \cap C, J(K)=J(K \cap C)$. Moreover as $Z(K) \leq Z$ we have $C \leq C_{G}(Z(K))$ and we obtain:

$$
G=N_{G}(J(K)) C_{G}(Z J(K))=N_{G}(J(K)) C_{G}(Z(K)) .
$$

Corollary 2.7 (Glauberman's $Z J$-Theorem). Let G be a group with $O_{p}(G) \neq 1, O_{p^{\prime}}(G)=1$, which is p-constrained and p-stable, p odd. If P is a Sylow p-subgroup of G, then $Z J(P) \unlhd G$.

Proof. Since G is p-constrained then $O_{p^{*}}(G)=O_{p^{\prime}}(G)=1$ ([2], Lemma 6.12) and so $K=O_{p^{*}}(G) P=P$ is a p^{*}, p-injector of G and Theorem 2.5 applies.

3. A self-centralizing characteristic subgroup.

Definition 3.1 [4]. For any group K define two sequences of characteristic subgroups of K as follows. Set $Z J^{0}(K)=1$ and $K_{0}=K$. Given $Z J^{i}(K)$ and $K_{i} i \geq 0$ let $Z J^{i+1}(K)$ and K_{i+1} the subgroups of K that contain $Z J^{i}(K)$ and satisfy:

$$
\begin{gathered}
Z J^{i+1}(K) / Z J^{i}(K)=Z J\left(K_{i} / Z J^{i}(K)\right) \\
K_{i+1} / Z J^{i}(K)=C_{K_{i} / Z J^{\imath}(K)}\left(Z J^{i+1}(K) / Z J^{i}(K)\right)
\end{gathered}
$$

Let n be the smallest integer such that $Z J^{n}(K)=Z J^{n+1}(K)$, then $Z J^{n}(K)=Z J^{n+r}(K)$ and $K_{n}=K_{n+r}$ for every $r \geq 0$. Set $Z J^{*}(K)=$ $=Z J^{n}(K)$ and $K_{*}=K_{n}$.

Remarks. 1) Notice that if $C_{G}\left(Z J^{*}(K)\right) \leq Z J^{*}(K)$ then by ([4], Prop.II 3.7) $K_{*} / Z J^{*}(K)$ is nilpotent, therefore $Z J\left(K_{*} / Z J^{*}(K)=1 \mathrm{im}\right.$ plies $K_{*} / Z J^{*}(K)=1$, that is, $K_{*}=Z J^{*}(K)$.
2) If K is a p^{*}, p-injector of G then $Z J^{i}(K)$ is p-nilpotent for every $i \geq 0$. Later we will improve this statement.

Lemma 3.2. Let K be a p^{*}, p-injector of G and $N \unlhd G$ such that $C_{K}(N) \leq N \leq K$ then $C_{G}(N)=Z(N)$.

Proof. Observe that $Z(N)=C_{K}(N)=C_{G}(N) \cap K$ is a p^{*}, p-injector of $C_{G}(N)$. On the other hand if $x \in C_{G}(N)$ then $\langle x, Z(N)\rangle$ is an abelian subgroup of G and $Z(N) \leq\langle x, Z(N)\rangle \leq C_{G}(N)$, therefore $\langle x, Z(N)\rangle=$ $=Z(N)$ and $x \in Z(N)$.

Remark. Notice that if K is a p^{*}, p-injector of G then K is also p^{*}, p-injector of $N_{G}\left(K_{*}\right)$. Moreover by ([4], Prop.II 3.7) $C_{K}\left(K_{*}\right) \leq$ $\leq C_{K}\left(Z J^{*}(K)\right) \leq K_{*}$. Thus, by the above Lemma, is $C_{N_{G}\left(K_{*}\right)}\left(K_{*}\right)=$ $=C_{G}\left(K_{*}\right) \leq K_{*}$.

Theorem 3.3. Let p be an odd prime and K a p^{*}, p-injector of a group G. Assume that $S A(2, p)$ is not involved in G and that
$O_{p^{\prime}}(F(G)) \leq Z(K)$. Then $Z J^{i}(K)$ is a characteristic subgroup of G for every $i \geq 0$.

Proof. Let G be a minimal counterexample. As $S A(2, p)$ is not involved in G, G is p-stable.Thus by Theorem 2.5 we have $Z J(K)$ char G. If $Z J(K)=1$ then $Z J^{i}(K)=1$ contrary to the choice of G. So we can assume $1 \neq Z J(K) \leq C_{G}(Z J(K)) \unlhd G$. Set $C=C_{G}(Z J(K))$. Assume $C<G$ then for every $i \geq 0$ it follows $Z J^{i}(K \cap C)$ char C. Since $J(K) \leq K \cap C$ we have $J(K)=J(K \cap C)$ and $Z J(K)=Z J(K \cap C)$. Moreover if $K_{1}=$ $=C_{K}(Z J(K))=C_{K \cap C}(Z J(K \cap C))$ and by induction on i it follows $Z J^{i}(K)=Z J^{i}(K \cap C)$. Thus $Z J^{i}(K)$ char $C \unlhd G$ for every $i \geq 0$ and by the conjugacy of p^{*}, p-injectors of G, we obtain $Z J^{i}(K)$ char G for every $i \geq 0$ contrary to our choice of G. Therefore $C=G$, and so $Z J(K)=$ $=Z(G)$. Since $Z J(K) \neq 1$ we have $|G / Z(G)|<|G|$ and we can conclude that $Z J^{i}(K / Z(G))$ char $G / Z(G)$ for every $i \geq 0$. Now, since $K_{1}=K$, using ([4], Prop.II 3.6) it follows $Z J^{i+1}(K) / Z(G)=Z J^{i}(K / Z(G))$, thus for every $i \geq 0, Z J^{i}(K)$ char G. That is the last contradiction.

Proposition 3.4. Let K be a p^{*}, p-injector of a group G. Assume $O_{p^{\prime}}(F(G)) \leq Z(K)$, then for every $i \geq 0$:
i) $Z J^{i}(K)$ is nilpotent
ii) $F\left(K_{i} / Z J^{i}(K)\right)=F\left(K_{i}\right) / Z J^{i}(K)$ is a p-group
iii) $O_{p^{*}}(G) \leq K_{i}$.

Proof. Simultaneously we will prove i) and ii) by induction on i. First notice that $Z J(K) \leq Z\left(C_{K}(Z J(K))\right)=Z\left(K_{1}\right)$ thus $F\left(K_{1} / Z J(K)\right)=$ $=F\left(K_{1}\right) / Z J(K)$ and $O_{p^{\prime}}\left(F\left(K_{1} / Z J(K)\right)\right)=O_{p^{\prime}}\left(F\left(K_{1}\right) / Z J(K)\right)=1$. Clearly $Z J^{1}(K)=Z J(K)$ is nilpotent.

Assume that $F\left(K_{i} / Z J^{i}(K)\right)=F\left(K_{i}\right) / Z J^{i}(K)$ is a p-group, then $O_{p^{\prime}}\left(Z J^{i+1}(K)\right) \leq Z J^{i}(K)$, therefore $O_{p^{\prime}}\left(Z J^{i+1}(K)\right)$ is a nilpotent normal subgroup of K and we have $O_{p^{\prime}}\left(Z J^{i+1}(K)\right) \leq O_{p^{\prime}}(F(K)) \leq Z(K)$. Now, since $Z J^{i+1}(K)$ is p-nilpotent, we have that $Z J^{i+1}(K)$ is nilpotent.

On the other hand we have:

$$
F\left(K_{i+1} / Z J^{i+1}(K)\right) \cong F\left(K_{i+1} / Z J^{i}(K) / Z J^{i+1}(K) / Z J^{i}(K)\right)
$$

and as $Z J^{i+1}(K) / Z J^{i}(K)=Z\left(K_{i+1} / Z J^{i}(K)\right)$, it follows:
$F\left(K_{i+1} / Z J^{i}(K) / Z J^{i+1}(K) / Z J^{i}(K)\right)=$

$$
=F\left(K_{i+1} / Z J^{i}(K)\right) / Z J^{i+1}(K) / Z J^{i}(K) .
$$

But

$$
\begin{aligned}
F\left(K_{i+1} / Z J^{i}(K)\right)= & F\left(K_{i} / Z J^{i}(K)\right) \cap K_{i+1} / Z J^{i}(K)= \\
& =F\left(K_{i}\right) / Z J^{i}(K) \cap K_{i+1} / Z J^{i}(K)=F\left(K_{i+1}\right) / Z J^{i}(K)
\end{aligned}
$$

and we can conclude:

$$
F\left(K_{i+1} / Z J^{i+1}(K)\right)=F\left(K_{i+1}\right) / Z J^{i+1}(K)
$$

Moreover as $O_{p^{\prime}}\left(F\left(K_{i+1}\right)\right) \leq O_{p^{\prime}}(F(K)) \leq Z(K) \leq\left(Z J^{i+1}(K)\right)$ it follows that $F\left(K_{i+1} / Z J^{i+1}(K)\right)$ is a p-group.
iii) Clearly $O_{p^{*}}(G)=O_{p^{*}}(K) \leq C_{K}\left(O_{p}\left(Z J^{*}(K)\right)\right)$. Moreover as $Z J^{*}(K)$ is nilpotent it follows: $O_{p^{\prime}}\left(Z J^{*}(K)\right) \leq O_{p^{\prime}}(F(K)) \leq Z(K)$. Therefore $O_{p^{*}}(G) \leq C_{K}\left(Z J^{*}(K)\right) \leq K_{i}$ for every $i \geq 0$.

Proposition 3.5. Let G be a group with $O_{p^{\prime}}(F(G)) \leq Z(K)$, where K is a p^{*}, p-injector of G, then the following are equivalent:
i) G is an -constrained group
ii) $K_{*}=Z J^{*}(K)$
iii) $C_{G}\left(Z J^{*}(K)\right) \leq Z J^{*}(K)$.

Proof. i) \Rightarrow ii) Set $K=O_{p^{*}}(G) P$ where P is a Sylow p-subgroup of G, then by ([2], Lemma 6.11) it follows $\left[P, O_{p^{*}}(G)\right]=1$ and as $O_{p^{*}}(G) \leq$ $\leq C_{G}(F(G)) \leq F(G)$ we have K is nilpotent, thus K_{*} is nilpotent, hence $K_{*}=Z J^{*}(K)$.
ii) \Rightarrow iii) By the remark of Lemma 3.2.
iii) \Rightarrow i) We know that $\left[O_{p^{*}}(G), Z J^{*}(K)\right]=1$ therefore $E(G) \leq$ $\leq O_{p^{*}}(G) \leq C_{G}\left(Z J^{*}(K)\right) \leq Z J^{*}(K)$, then $E(G)=1$, i.e. G is an \mathcal{R}^{2}-constrained group.

Corollary 3.6. Let p be an odd prime and K a p^{*}, p-injector of a , 2 -constrained group G. Assume that $S A(2, p)$ is not involved in G and $O_{p^{\prime}}(F(G)) \leq Z(K)$. Then $Z J^{*}(K)$ is a characteristic subgroup of G and $C_{G}\left(Z J^{*}(K)\right) \leq Z J^{*}(K)$.

As a consequence of the above Corollary we can obtain the wellknown result of Glauberman:

Corollary 3.7. Let p be an odd prime and P a Sylow p-subgroup of a group G. Suppose that $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$ and that $S A(2, p)$ is not involved in G. Then $Z J^{*}(P)$ is a characteristic subgroup of G and $C_{G}\left(Z J^{*}(P)\right) \leq Z J^{*}(P)$.

Proof. Clearly $O_{p^{*}}(G)=O_{p^{\prime}}(G)=1$ so P is a p^{*}, p-injector of G. Now Corollary 3.6 applies.

REFERENCES

[1] Z. Arad, A characteristic subgroup of π-stable groups, Canad. J. Math., 26, no. 6 (1974), pp. 1509-1514.
[2] H. Bender, On the normal p-structure of a finite group and related topics I, Hokkaido Mathematical Journal, 7 (1978), pp. 271-288.
[3] A. Bialostocki, On products of two nilpotent subgroups of a finite group, Israel J. Math., 20 (1975), pp. 178-188.
[4] L. M. Ezquerro, y-establidad, constricción y factorización de grupos finitos, Tesis Doctoral, U. de Valencia (1983).
[5] G. Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math., 20 (1968), pp. 1101-1135.
[6] D. Gorenstein, Finite Groups, Harper and Row, New York (1968).
[7] B. Huppert - N. Blackburn, Finite Groups - III, Springer-Verlag, Berlin (1982).
[8] M. J. Iranzo - M. Torres, The p^{*}, p-injectors of a finite group, Rend. Sem. Mat. Univ. Padova, 82 (1989), pp. 233-237.
[9] M. D. Perez Ramos, A characteristic subgroup of Math., 54 (1986), pp. 51-59.
[10] M. D. Perez Ramos, A self-centralizing characteristic subgroup, Journal Austral. Math. Soc., 46 (serie A) (1989), pp. 302-307.

Manoscritto pervenuto in redazione l'8 ottobre 1990.

