RENDICONTI del Seminario Matematico della Università di Padova

M. J. IRANZO A. MARTÍNEZ-PASTOR F. PÉREZ-MONASOR A ZJ-theorem for p^{*}, p-injectors in finite groups

Rendiconti del Seminario Matematico della Università di Padova,

tome 87 (1992), p. 69-76

http://www.numdam.org/item?id=RSMUP_1992_87_69_0

© Rendiconti del Seminario Matematico della Università di Padova, 1992, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 87 (1992)

A ZJ-Theorem for p^* , p-Injectors in Finite Groups.

M. J. IRANZO - A. MARTÍNEZ-PASTOR - F. PÉREZ-MONASOR (*)

1. Introduction and notation.

All groups considered in this paper are finite. A group G is said to be p-stable, p prime, if whenever A is a p-subgroup of G and B is a p-subgroup of $N_G(A)$ such that [A, B, B] = 1 then $B \le O_p(N_G(A) \mod C_G(A))$. In [5] Glauberman obtained the following theorem:

Let p be an odd prime and let P be a Sylow p-subgroup of a group G. Assume that G is p-stable and that $C_G(O_p(G)) \leq O_p(G)$. Then ZJ(P) is a characteristic subgroup of G, where ZJ(P) = Z(J(P)) and J(P) is the Thompson's subgroup of P, that is, subgroup of P generated by the set $\mathfrak{A}(P)$ of all abelian subgroups of maximum order of P.

With the same conditions he also obtained a factorization of the group G.

In the same paper Glauberman introduces the characteristic subgroup $ZJ^*(P)$ and proves the following result:

Let p be an odd prime and let P be a Sylow p-subgroup of a group G. Suppose that $C_G(O_p(G)) \leq O_p(G)$ and that SA(2, p) is not involved in G. Then $ZJ^*(P)$ is a characteristic subgroup of G and $C_G(ZJ^*(P)) \leq \leq ZJ^*(P)$.

Some related results were obtained by Ezquerro [4] and Pérez Ramos [9, 10].

Given a fixed prime p, we shall denote by \mathfrak{B}_p the class of all p-

(*) Indirizzo degli AA.: Departamento de Algebra, Facultad de Matemáticas, Universidad de Valencia, 46100 Burjassot (Valencia), Spain.

Work supported by the CICYT of the Spanish Ministry of Education and Science, project PS 87-0055-C02-02. The second author was supported by a scholarship from the same Ministry. groups, \mathfrak{E}_{p^*} that all p^* -groups [2] and $\mathfrak{E}_{p^*}\mathfrak{S}_p$ that of the p^* , p-groups; the corresponding radicals in a group G are denoted, as usual, by $O_p(G)$, $O_{p^*}(G)$ and $O_{p^*, p}(G)$ respectively. Every group G possesses p^* , p-injectors which are the subgroups of the form $O_{p^*}(G)P$ where P describes the set of Sylow p-subgroups of G [8].

The aim of this paper is to establish the analogous to Glauberman's results with the subgroups ZJ(K) and $ZJ^*(K)$ where K is a p^* , p-injector of a group G.

2. The factorization.

LEMMA 2.1. Let G be a group of $F^*(G) \le H \le G$. Then it follows:

$$\pi(ZJ(H)) \subseteq \pi(F(G)) = \pi(F(H)).$$

PROOF. Clearly $\pi(ZJ(H)) \subseteq \pi(F(H))$ and $\pi(F(G)) \subseteq \pi(F(H))$. On the other hand as $\pi(F(H)) = \pi(Z(F(H)))$ and $Z(F(H)) \leq C_G(F(G)) \cap C_G(E(G)) = C_G(F^*(G)) \leq F(G)$, then the result follows.

COROLLARY 2.2. Let G be a group and K a p^* , p-injector of G. If $p \in \pi(F(G))$ then $p \in \pi(ZJ(K))$. Moreover if $O_{p'}(F(G)) \leq Z(K)$ then $\pi(F(G)) = \pi(F(K)) = \pi(ZJ(K))$ and in particular the following are equivalent: i) $F(G) \neq 1$, ii) $F(K) \neq 1$, iii) $ZJ(K) \neq 1$.

PROOF. We can assume that $K = O_{p^*}(G)P$ where P is a Sylow p-subgroup of G. If $O_p(G) \neq 1$ then we have:

$$1 \neq Z(P) \cap O_p(G) \le C_K(O_{p^*}(G)) \cap C_K(P) = Z(K) \le ZJ(K).$$

If moreover $O_{p'}(F(G)) \leq Z(K)$ then $O_{p'}(F(G)) \leq ZJ(K)$ and we can conclude that $\pi(F(G)) \subseteq \pi(ZJ(K))$. Now Lemma 2.1 applies.

LEMMA 2.3. Let G be a group and K a p^* , p-injector of G. Assume that $O_{p'}(F(G)) \leq Z(K)$. Let B be a nilpotent normal subgroup of G and let A be a nilpotent subgroup of K, then AB is a nilpotent subgroup of G.

PROOF. By a known result of Bialostocki [3] it is enough to prove that $AO_q(B)$ is nilpotent for every $q \in \pi(B)$.

Since K is a p^* , p-injector of G we have $B \le F(G) \le K$ and so $O_{p'}(B) \le O_{p'}(F(G)) \le Z(K)$. Then $AO_q(B)$ is nilpotent for every prime q with $q \ne p$. Now assume that $K = O_{p^*}(G)P$ where P is a Sylow p-sub-

group of G, then:

 $[O_p(B), A] \leq [O_p(B), O_{p^*}(G)P] = [O_p(B), P] \leq [P, P] = P'.$

By induction on *n* we can prove that for every $n \ge 1$:

$$[O_n(B), A; n] \leq [O_n(B), P; n] \leq \Gamma_{n+1}(P)$$

and so, for some positive integer m is $[O_p(B), A; m] = 1$, thus A acts nilpotently on $O_p(B)$ and then $AO_p(B)$ is nilpotent.

PROPOSITION 2.4. Let G be a p-stable group. If K is a p^* , p-injector of G and A is an abelian normal subgroup of K then $A \trianglelefteq \subseteq G$ and $A \le F(G)$. In particular $ZJ(K) \le F(G)$.

PROOF. Clearly $O_{p'}(A) \leq O_{p^*}(K) = O_{p^*}(G) \leq O_{p^*,p}(G) \leq K$ thus $O_{p'}(A) \leq O_{p^*,p}(G)$. If $K = O_{p^*}(G)P$ then $O_p(A) \leq P$. Set $Q = P \cap \cap O_{p^*,p}(G)$ then $G = O_{p^*,p}(G)N_G(Q)$. Since $Q \leq N_G(O_p(A))$ and A is abelian then $[Q, O_p(A), O_p(A)] = 1$. As $O_p(A) \leq N_G(Q)$ and G is p-stable we have:

$$O_p(A) C_G(Q) / C_G(Q) \le O_p(N_G(Q) / C_G(Q)) = M / C_G(Q).$$

On the other hand $C_G(Q) \leq O_{p^*, p}(G)$ [7], so $MO_{p^*, p}(G)/O_{p^*, p}(G)$ is a normal *p*-subgroup of $G/O_{p^*, p}(G)$, hence is trivial. So $O_p(A) \leq O_{p^*, p}(G)$ thus $A \leq \leq G$ and $A \leq F(G)$.

THEOREM 2.5. Let G be a p-stable group, p odd and $F(G) \neq 1$. If K is a p^* , p-injector of G and $O_{p'}(F(G)) \leq Z(K)$ then $1 \neq ZJ(K) \leq G$.

PROOF. (This proof is based, in part, on Glauberman's proof of his ZJ-theorem ([6], Th. 8,2.10)).

First note that as the p^* , *p*-injectors of G are conjugated, the statements $ZJ(K) \leq G$ and ZJ(K) char G are equivalent.

As a consequence of the above Proposition we know that $ZJ(K) \leq F(G)$ and by Corollary 2.2 $ZJ(K) \neq 1$. Now to obtain the theorem it is enough to prove that if B is a nilpotent normal subgroup of G then $B \cap ZJ(K)$ is normal in G.

Let G be a minimal counterexample and B a nilpotent normal subgroup of G of least order such that $B \cap ZJ(K)$ is not normal in G.

Set Z = ZJ(K) and let B_1 be the normal closure of $B \cap Z$ in G, then $B \cap Z = B_1 \cap Z$ an by our minimal choice it follows $B = B_1$.

Now B' < B then $B' \cap Z \leq G$, hence for every g of G is $[(B \cap CZ)^g, B] = [B \cap Z, B]^g \leq B' \cap Z$. Since B is the normal closure of $B \cap Z$

in G it follows that $B' \leq B' \cap Z$. In particular $B \cap Z$ centralizes B' and by an analogue argument we obtain that [B, B, B] = 1.

Consider $A \in \mathfrak{A}(K)$. For Lemma 2.3 we know that AB is nilpotent. Thus there exists a positive integer n such that [B, A; n] = 1. Moreover as $O_{p'}(B) \leq Z(K)$ and p odd it follows that $[A, B]' = [A, O_p(B)]'$ has odd order.

By ([1], Cor. 2.8) there exists $A \in \mathfrak{A}(K)$ such that $B \leq N_G(A)$, therefore [B, A, C] = 1. In particular $[O_p(B), O_p(A), O_p(A)] = 1$. Since G is *p*-stable we have:

$$O_p(A) C/C \le O_p(G/C) = T/C \le G/C$$

where $C = C_G(O_p(B))$. Now, since $O_{p'}(A)$ centralizes $O_p(B)$ it follows that $A \leq T$.

If T = G then G/C is a *p*-group so KC = G. Moreover as $O_{p'}(B) \leq \leq Z(K) \leq Z$ is $B \cap Z = O_{p'}(B)(O_p(B) \cap Z)$ a normal subgroup of KC, what is a contradiction. Thus T < G. Since $A \leq K \cap T$ it follows $\mathfrak{A}(K \cap T) \subseteq \mathfrak{A}(K)$, $J(K \cap T) \leq J(K)$ and $ZJ(K) \leq ZJ(K \cap T)$. By our minimal choice of $GZJ(K \cap T)$ char T and so it follows $ZJ(K \cap T)$ normal in G. Then $B \leq ZJ(K \cap T)$. In particular B is abelian. If $J(K \cap T) < J(K)$ then there exists $A_1 \in \mathfrak{A}(K)$ such that A_1 there is not a subgroup of T, then we must have $[B, A_1, A_1] \neq 1$. Set $\mathfrak{B} = \{A \in \mathfrak{A}(K) | [B, A, A] \neq 1\}$, we choose $A_1 \in \mathfrak{B}$ such that $|A_1 \cap B|$ is maximal. By ([1], Th. 2.5) there exists $A_2 \in \mathfrak{A}(K)$ such that $A_2 \leq N_G(A_1)$ and $B \cap A_1 < B \cap A_2$. Therefore $[B, A_2, A_2] = 1$ thus $A_2 \leq T$ and $ZJ(K \cap T) \leq A_2$. Hence:

$$[B, A_1, A_1] \leq [ZJ(K \cap T), A_1, A_1] \leq [A_2, A_1, A_1] = 1$$

what is a contradiction.

Consequently $J(K \cap T) = J(K)$ and $ZJ(K) = ZJ(K \cap T) \leq G$. This is the last contradiction.

COROLLARY 2.6. Let G be a p-stable group, p odd, with $F(G) \neq 1$. If K is a p^* , p-injector of G and $O_{p'}(F(G)) \leq Z(K)$ then:

$$G = N_G(J(K)) C_G(ZJ(K)) = N_G(J(K)) C_G(Z(K)).$$

PROOF. Let us write Z = ZJ(K) and $C = C_G(Z)$. As $Z \leq G$ is also $C \leq G$ and therefore $G = CN_G(K \cap C)$. Now, as $J(K \cap C)$ char $K \cap C$, it follows $G = CN_G(J(K \cap C))$. Since $J(K) \leq K \cap C$, $J(K) = J(K \cap C)$. Moreover as $Z(K) \leq Z$ we have $C \leq C_G(Z(K))$ and we obtain:

$$G = N_G(J(K)) C_G(ZJ(K)) = N_G(J(K)) C_G(Z(K)).$$

72

COROLLARY 2.7 (Glauberman's ZJ-Theorem). Let G be a group with $O_p(G) \neq 1$, $O_{p'}(G) = 1$, which is p-constrained and p-stable, p odd. If P is a Sylow p-subgroup of G, then $ZJ(P) \leq G$.

PROOF. Since G is p-constrained then $O_{p^*}(G) = O_{p'}(G) = 1$ ([2], Lemma 6.12) and so $K = O_{p^*}(G)P = P$ is a p^* , p-injector of G and Theorem 2.5 applies.

3. A self-centralizing characteristic subgroup.

DEFINITION 3.1 [4]. For any group K define two sequences of characteristic subgroups of K as follows. Set $ZJ^0(K) = 1$ and $K_0 = K$. Given $ZJ^i(K)$ and $K_i i \ge 0$ let $ZJ^{i+1}(K)$ and K_{i+1} the subgroups of K that contain $ZJ^i(K)$ and satisfy:

$$ZJ^{i+1}(K)/ZJ^{i}(K) = ZJ(K_{i}/ZJ^{i}(K)),$$

$$K_{i+1}/ZJ^{i}(K) = C_{K_{i}/ZJ^{i}(K)}(ZJ^{i+1}(K)/ZJ^{i}(K))$$

Let *n* be the smallest integer such that $ZJ^{n}(K) = ZJ^{n+1}(K)$, then $ZJ^{n}(K) = ZJ^{n+r}(K)$ and $K_{n} = K_{n+r}$ for every $r \ge 0$. Set $ZJ^{*}(K) = ZJ^{n}(K)$ and $K_{*} = K_{n}$.

REMARKS. 1) Notice that if $C_G(ZJ^*(K)) \leq ZJ^*(K)$ then by ([4], Prop.II 3.7) $K_*/ZJ^*(K)$ is nilpotent, therefore $ZJ(K_*/ZJ^*(K) = 1$ implies $K_*/ZJ^*(K) = 1$, that is, $K_* = ZJ^*(K)$.

2) If K is a p^* , p-injector of G then $ZJ^i(K)$ is p-nilpotent for every $i \ge 0$. Later we will improve this statement.

LEMMA 3.2. Let K be a p^* , p-injector of G and $N \trianglelefteq G$ such that $C_K(N) \le N \le K$ then $C_G(N) = Z(N)$.

PROOF. Observe that $Z(N) = C_K(N) = C_G(N) \cap K$ is a p^* , *p*-injector of $C_G(N)$. On the other hand if $x \in C_G(N)$ then $\langle x, Z(N) \rangle$ is an abelian subgroup of G and $Z(N) \leq \langle x, Z(N) \rangle \leq C_G(N)$, therefore $\langle x, Z(N) \rangle = Z(N)$ and $x \in Z(N)$.

REMARK. Notice that if K is a p^* , p-injector of G then K is also p^* , p-injector of $N_G(K_*)$. Moreover by ([4], Prop.II 3.7) $C_K(K_*) \le C_K(ZJ^*(K)) \le K_*$. Thus, by the above Lemma, is $C_{N_G(K_*)}(K_*) = C_G(K_*) \le K_*$.

THEOREM 3.3. Let p be an odd prime and K a p^* , p-injector of a group G. Assume that SA(2, p) is not involved in G and that

 $O_{p'}(F(G)) \leq Z(K)$. Then $ZJ^i(K)$ is a characteristic subgroup of G for every $i \geq 0$.

PROOF. Let G be a minimal counterexample. As SA(2, p) is not involved in G, G is p-stable. Thus by Theorem 2.5 we have ZJ(K) char G. If ZJ(K) = 1 then $ZJ^i(K) = 1$ contrary to the choice of G. So we can assume $1 \neq ZJ(K) \leq C_G(ZJ(K)) \leq G$. Set $C = C_G(ZJ(K))$. Assume C < G then for every $i \geq 0$ it follows $ZJ^i(K \cap C)$ char C. Since $J(K) \leq K \cap C$ we have $J(K) = J(K \cap C)$ and $ZJ(K) = ZJ(K \cap C)$. Moreover if $K_1 = C_K(ZJ(K)) = C_{K \cap C}(ZJ(K \cap C))$ and by induction on i it follows $ZJ^i(K) = ZJ^i(K) = ZJ^i(K \cap C)$. Thus $ZJ^i(K)$ char $C \leq G$ for every $i \geq 0$ and by the conjugacy of p^* , p-injectors of G, we obtain $ZJ^i(K)$ char G for every $i \geq 0$ and by the $ZJ^i(K) \neq 1$ we have |G/Z(G)| < |G| and we can conclude that $ZJ^i(K/Z(G))$ char G/Z(G) for every $i \geq 0$. Now, since $K_1 = K$, using ([4], Prop.II 3.6) it follows $ZJ^{i+1}(K)/Z(G) = ZJ^i(K/Z(G))$, thus for every $i \geq 0$, $ZJ^i(K)$ char G. That is the last contradiction.

PROPOSITION 3.4. Let K be a p^* , p-injector of a group G. Assume $O_{p'}(F(G)) \leq Z(K)$, then for every $i \geq 0$:

- i) $ZJ^{i}(K)$ is nilpotent
- ii) $F(K_i/ZJ^i(K)) = F(K_i)/ZJ^i(K)$ is a p-group
- iii) $O_{p^*}(G) \leq K_i$.

PROOF. Simultaneously we will prove i) and ii) by induction on *i*. First notice that $ZJ(K) \leq Z(C_K(ZJ(K))) = Z(K_1)$ thus $F(K_1/ZJ(K)) = F(K_1)/ZJ(K)$ and $O_{p'}(F(K_1/ZJ(K))) = O_{p'}(F(K_1)/ZJ(K)) = 1$. Clearly $ZJ^1(K) = ZJ(K)$ is nilpotent.

Assume that $F(K_i/ZJ^i(K)) = F(K_i)/ZJ^i(K)$ is a *p*-group, then $O_{p'}(ZJ^{i+1}(K)) \leq ZJ^i(K)$, therefore $O_{p'}(ZJ^{i+1}(K))$ is a nilpotent normal subgroup of K and we have $O_{p'}(ZJ^{i+1}(K)) \leq O_{p'}(F(K)) \leq Z(K)$. Now, since $ZJ^{i+1}(K)$ is *p*-nilpotent, we have that $ZJ^{i+1}(K)$ is nilpotent.

On the other hand we have:

$$F(K_{i+1}/ZJ^{i+1}(K)) \cong F(K_{i+1}/ZJ^{i}(K)/ZJ^{i+1}(K)/ZJ^{i}(K))$$

and as $ZJ^{i+1}(K)/ZJ^{i}(K) = Z(K_{i+1}/ZJ^{i}(K))$, it follows:

 $F(K_{i+1}/ZJ^{i}(K)/ZJ^{i+1}(K)/ZJ^{i}(K)) =$

$$= F(K_{i+1}/ZJ^{i}(K))/ZJ^{i+1}(K)/ZJ^{i}(K).$$

But

$$F(K_{i+1}/ZJ^{i}(K)) = F(K_{i}/ZJ^{i}(K)) \cap K_{i+1}/ZJ^{i}(K) =$$

$$= F(K_i)/ZJ^{i}(K) \cap K_{i+1}/ZJ^{i}(K) = F(K_{i+1})/ZJ^{i}(K)$$

and we can conclude:

$$F(K_{i+1}/ZJ^{i+1}(K)) = F(K_{i+1})/ZJ^{i+1}(K).$$

Moreover as $O_{p'}(F(K_{i+1})) \leq O_{p'}(F(K)) \leq Z(K) \leq (ZJ^{i+1}(K))$ it follows that $F(K_{i+1}/ZJ^{i+1}(K))$ is a *p*-group.

iii) Clearly $O_{p^*}(G) = O_{p^*}(K) \leq C_K(O_p(ZJ^*(K)))$. Moreover as $ZJ^*(K)$ is nilpotent it follows: $O_{p'}(ZJ^*(K)) \leq O_{p'}(F(K)) \leq Z(K)$. Therefore $O_{p^*}(G) \leq C_K(ZJ^*(K)) \leq K_i$ for every $i \geq 0$.

PROPOSITION 3.5. Let G be a group with $O_{p'}(F(G)) \leq Z(K)$, where K is a p^* , p-injector of G, then the following are equivalent:

- i) G is an \mathfrak{R} -constrained group
- ii) $K_* = ZJ^*(K)$
- iii) $C_G(ZJ^*(K)) \le ZJ^*(K).$

PROOF. i) \Rightarrow ii) Set $K = O_{p^*}(G)P$ where P is a Sylow p-subgroup of G, then by ([2], Lemma 6.11) it follows $[P, O_{p^*}(G)] = 1$ and as $O_{p^*}(G) \le C_G(F(G)) \le F(G)$ we have K is nilpotent, thus K_* is nilpotent, hence $K_* = ZJ^*(K)$.

ii) \Rightarrow iii) By the remark of Lemma 3.2.

iii) \Rightarrow i) We know that $[O_{p^*}(G), ZJ^*(K)] = 1$ therefore $E(G) \le O_{p^*}(G) \le C_G(ZJ^*(K)) \le ZJ^*(K)$, then E(G) = 1, i.e. G is an \mathbb{P} -constrained group.

COROLLARY 3.6. Let p be an odd prime and K a p^* , p-injector of a \mathfrak{P} -constrained group G. Assume that SA(2, p) is not involved in G and $O_{p'}(F(G)) \leq Z(K)$. Then $ZJ^*(K)$ is a characteristic subgroup of G and $C_G(ZJ^*(K)) \leq ZJ^*(K)$.

As a consequence of the above Corollary we can obtain the wellknown result of Glauberman:

COROLLARY 3.7. Let p be an odd prime and P a Sylow p-subgroup of a group G. Suppose that $C_G(O_p(G)) \leq O_p(G)$ and that SA(2, p) is not involved in G. Then $ZJ^*(P)$ is a characteristic subgroup of G and $C_G(ZJ^*(P)) \leq ZJ^*(P)$. **PROOF.** Clearly $O_{p^*}(G) = O_{p'}(G) = 1$ so P is a p^* , p-injector of G. Now Corollary 3.6 applies.

REFERENCES

- Z. ARAD, A characteristic subgroup of π-stable groups, Canad. J. Math., 26, no. 6 (1974), pp. 1509-1514.
- [2] H. BENDER, On the normal p-structure of a finite group and related topics -*I*, Hokkaido Mathematical Journal, 7 (1978), pp. 271-288.
- [3] A. BIALOSTOCKI, On products of two nilpotent subgroups of a finite group, Israel J. Math., 20 (1975), pp. 178-188.
- [4] L. M. EZQUERRO, *f*-establidad, constricción y factorización de grupos finitos, Tesis Doctoral, U. de Valencia (1983).
- [5] G. GLAUBERMAN, A characteristic subgroup of a p-stable group, Canad. J. Math., 20 (1968), pp. 1101-1135.
- [6] D. GORENSTEIN, Finite Groups, Harper and Row, New York (1968).
- [7] B. HUPPERT N. BLACKBURN, Finite Groups III, Springer-Verlag, Berlin (1982).
- [8] M. J. IRANZO M. TORRES, The p*, p-injectors of a finite group, Rend. Sem. Mat. Univ. Padova, 82 (1989), pp. 233-237.
- [9] M. D. PEREZ RAMOS, A characteristic subgroup of ℜ-stable groups, Israel J. Math., 54 (1986), pp. 51-59.
- [10] M. D. PEREZ RAMOS, A self-centralizing characteristic subgroup, Journal Austral. Math. Soc., 46 (serie A) (1989), pp. 302-307.

Manoscritto pervenuto in redazione l'8 ottobre 1990.