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Distribution of Solutions of Diophantine Equations
f1 (x1)f2(x2) = f3(x3), where fi are Polynomials.

A. SCHINZEL - U. ZANNIER (*)

Introduction and statement of results.

At the meeting on Analytic Number Theory of Oberwolfach 1988
P.T. Bateman presented the following question sent to the American
Mathematical Monthly by W. R. Utz:

«Is the density of positive integers z such that the equation

is soluble in integers x, y greater than 1, equal to zero?»

The only correct solution of this problem sent to the American
Math. Monthly, due to F. Dodd and L. Mattics [4] gives for the number
N(Z) of such z ~ Z the estimate

We shall consider here a more general problem; namely, given three
polynomials with integer coefficients (i = 1, 2, 3), the distribution of
integers X3 such that x3 ~ ~ x and the equation

is soluble in integers xl , .x’2’

(*) Indirizzo degli AA.: A. SCHINZEL: Mathematical Institute P.A.N.,
P.O.Box 137, 00 950 Warsaw, Poland; U. ZANNIER: D.S.T.R., Ist. Univ. di Ar-

chitettura, S. Croce 191, 30135 Venezia, Italy.
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The equation in question may have an infinite sequence of integer
solutions with f (xi ) = a for an I K 2 and x3 _ = P(X3) for a suitable
polynomial p E B ~. Such solutions will be called trivial.

Let N(x) be the number of X3 with x3 ~ ~ x for wich (1) has non-triv-
ial solutions.

Let f have the degree di &#x3E; 0, the discriminant A. and the leading co-
efficient ai . We shall assume throughout that ai &#x3E; 0 for all i - 3; indeed
if two of the ai’s are negative one may change the signs of both relevant
polynomials f without affecting the equation and if exactly one of the
ai’s is negative the problem reduces to finitely many equations in two
variables which are dealt with by known methods.

We have the following general result. -

THEOREM 1. If ~3 ~ 0, then for all E &#x3E; 0

where

(The implied constant depends on the fi’s as well as on -.)
Some information about trivial solutions is contained in the follow-

ing.

THEOREM 2. Assume that f, has at least two distinct zeros. There
exists at most one positive number A such that

and I = A.
For the special case of quadratic polynomials the following more

precise theorem holds.
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THEOREM 3. Let di = 2 (i  3). Assume that at most one of the A,’s
is 0 and let do = a23D1 L12 + 4a1a2a3D3. We have

where, by convention, 1/0 g Q.
In some cases it is possible to give a much sharper estimate for

N(x).

Assume that

and 2’ &#x3E; 5 + 4/(c - 1).
As to lower bounds for N(x) we have two results for the quadratic

case.

THEOREM 5. If di = 2 (i  3), if each of the polynomials f (i  3)
has an integer zero and if at most one of these is double then

for some positive co (depending on the fi’s) if al a2 a3 and

always.
The symbols expk and logk denote, here and in the sequel, the k-th

iterate of the exponential and the logarithmic functions respect-
ively.

The numbers CI, c2 , ... depend only on polynomials f .
In some cases, where di = 2 (i ; 3), Q, it is possible to

give an asymptotic formula for N(x). We work out one such example at
the end of the paper. If di = 2 (i:::; 3), we conjecture that

for every c &#x3E; 0.
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1. Proof of Theorem 1.

Throughout this section constants involved in the symbol « will de-
pend on the f ’s (i = 1, 2, 3) and possibly on other specified parameters.
We may also assume di , d,2, 2. Indeed if d2 = 1 (i = 1 or 2) all sol-
utions of (1) with 13 (Xg) ~ 0 are trivial, thus N(z) £ d3 ; if d3 = 1 then
trivially

For a and i = 1 or 2 define N~i~ (a, x) = # [ ~ x and (1)
has a non-trivial solution with xi = a}.
We shall use a strong recent result due to E. Bombieri and J. Pila

([1], Th. 5), which we state as

LEMMA 1. Let C be an absolutely irreducible curve of degree
6D -&#x3E; 2 and let N ~ exp (V). Then the number of integral points on C
and inside a square of side N does not exceed

This lemma implies

LEMMA 2. For every a we have

where

PROOF. If f, (a) = 0 then clearly N(1) (a, x) ~ d3 . If f, (a) # 0 we con-
sider the curve 1’ defmed by

Clearly N(I) (a, x) does not exceed the number M(x) of integral points
on r with [ :::; x and with the further condition x2 ~ in case
there exists an identity .
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Let

be a decomposition into powers of absolutely irreducible factors F~ , rel-
atively prime in pairs, corresponding to irreducible curves Defining
M~ (x) for r, as M(x) is defined for 1’ we obtain

If degx2F,, = 1 we have on rp’ X2 = p(x3 ), P E ~[x3 ], thus by the defmition
of M p.

In general, if x2 , X3 are given weight dg, fl respectively, the polynomial
on the left hand side of (2) has the highest isobaric part

This is the product of the highest isobaric parts of the polynomials
Fl, Cx2 , X3 )e¡.t, hence

It follows that

thus either (4) holds or

Observe also that if (x2 , x3 ) is a point on r with x3 ~ ~ x then

whence x2 
Let be the degree of the curve Two cases occur

1) c~ &#x3E; (JJp. = degx2Fp.. Now for large x the integral points on r,
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with ~ x lie in a square of side 2x. Application of Lemma 1

gives

2) = In this case for large x the integral
points in question lie in a square of side and the application of
Lemma 1 gives

Hence by (3)

Observe that in view of the strong uniformity in Lemma 1 the con-
stant in the symbol « is independent of a.

LEMMA 3. Under the assumptions of Theorem 1 the number of in-
tegers a such that the curve f3 (x) = f, (a) f2 (X2 ) is reducible over C is
finite.

PROOF. By E. Noether’s theorem (see [11], Theorem 15) the set V
of A E C such that the curve in question is reducible over C is an affine
algebraic variety (note that 0 E V since 2). If dim V = 0,
card V  oo and the assertion of the lemma follows. If dim V = 1,
V = C and by Bertini’s theorem (see [11], Theorem 18) we have

where n a 2, ai E ~[~], ~, ~ E X3 ]. It follows that

Let

It follows from (6) that

Hence if either n &#x3E; m or at least two Cj (1 :::; j :::; m) are distinct we ob-
tain p, § and by (5) f2 (x2 ) E a contradiction. If n = m and
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are equal we obtain

contrary to the assumption that f3 has no multiple zeros.

PROOF OF THEOREM 1. Set q = d3/(dl + d2) and observe that (1)
implies that at least one of the inequalities

holds. Thus

where

In order to estimate N ~1~ (x) we shall follow different arguments de-
pending on the magnitude of a.

Clearly, if = 0 then N(1) (a, x) ~ while if ./i(c0 ~ 0, as we
shall assume from now on,

where p(M) is the number of solutions of the congruence

Since J3 ~ 0 we have by the theorem of Sandor [9] and Huxley [5]

where w(A0 is the number of distinct prime factors of M. For our pur-
pose the weaker estimate

suffices. Since
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we obtain

Using this estimate for a = 1/dl - lld, d2 we easily obtain

for all - &#x3E; 0. (Of course the sum may be empty).
If a ~ I  x’ and f3 (x3 ) - fl (a) f2 (x2 ) is irreducible over C we apply

Lemma 1 to the square x3 ~ ~ x if d3  d2 or to the square x2 ~ 
if d3 -&#x3E; d2, as in the proof of Lemma 2 and similarly obtain

This gives

where E* is taken over all integers a with |a|  xd such that f3 (x3 ) -
- f, (a) f2 (x2 ) is irreducible over C.

By Lemma 3 and Lemma 2

Combining the estimates (8), (9), (10) we obtain

In view of symmetry the same estimate holds for N (2) (x) and the theo-
rem follows by virtue of (7).

REMARK 1. If f3 has multiple zeros with maximal multiplicity m a
similar, but more complicated argument shows that
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where

provided (i = 1, 2) has at least two zeros of multiplicity not divisible
by p for every prime p such that both 13 and f3 _ i are p-th powers in
CM. The above estimate is not trivial only if di &#x3E; m (i = 1, 2).

REMARK. 2. Another proof of Theorem 1, but with a worse esti-
mate for c (which, however, remains  1 provided q  1, dl , 2 and

dependent only on dl , d2 , d3) may be given without appealing to
Bombieri-Pila’s theorem. Instead one may follow one of classical proofs
of the Hilbert Irreducibility Theorem (namely the one based on a cer-
tain theorem of D6rge, as given in [11], § 22) to bound the number of in-
tegers x3 ~ x such that the equation

has a solution (here A is a real parameter, |k| &#x3E; 1). The only
modifications with respect to the mentioned method come from the fact
that one needs uniformity with respect to A.

2. Proof of Theorem 2.

Suppose that

It follows that

hence, by a theorem of Engstrom (see [11], Theorem 5),

where po E C[t] and deg po = [deg pl , deg p2 ].
However, by (11), deg PI = deg hence deg po = deg pi (i = 1, 2)

and we obtain
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Therefore P2 = ap1 + p and by (11)

Let Z be the set of zeros of fi , p = diameter of Z.
By the assumption p &#x3E; 0 and by (12) we get

By (11) again we gave 

3. Proof of Theorem 3.

LEMMA. 4. Let d, q = 20’m, m odd, be non-zero integers without a
common square factor greater than 1. The total number Mo (d, q) of es-
sentially distinct representations of q by a complete system of inequiv-
alent integral binary quadratic forms with discriminant 4d equals

where

If two representations are not essentially distinct they differ by proper
automorph of the relevant form.

REMARK 3. This lemma generalizes the classical result of Dirich-
let ([3], § 91) in which it is assumed that (q, 2d) = 1. A generalization to
the case where q and 4d have no common square factor greater than 1
given as Theorem 55 of [6] is false. It fails e.g. for d = p, q = p2, p an
odd prime. Dirichlet proved also a related result concerning forms with
odd discriminant d (in modern terminology). In this case the extended
formula is the same as the original one

PROOF. Let M(d, q) be total number of essentially different proper
representations of q by a complete system of quadratic forms in ques-
tion. By Theorem 53 of [6] M(d, q) is the number of distinct solutions of
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the congruence

(Note that our d is denoted by - d in [6]), hence it is a multiplicative
function of q. On the other hand

hence Mo (d, p) is also a multiplicative function of q and it suffices to
evaluate it for q = p 2, p a prime. By Theorem 54 of [6]

Using (13) we find by a little tedious calculation

If p &#x3E; 2, we have by Theorem 54 of [6]

hence by (13) we obtain

If p &#x3E; 2, p k d we have by Theorem 54 of [6]

hence by (13) we obtain

Since the lemma follows.

LEMMA 5. Let a polynomial F E Z[xl have no multiple zeros and
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p(p) be the number of solutions of the congruence

Let f be a multiplicative function such that for all prime powers
p1

A, B constants.

We have

where

PROOF. The sequence { ~ F(n) ~ } (F(n) ~ 0) and the function f satis-
fy the assumption of Wolke’s Theorem 1 ([12], p. 55) except possibly the
second part of the assumption (A2) the inequality p(p)  p, which may
fail for finitely many primes p. If such exceptional primes exist the
function P(x) occuring in Lemma 2 of [12] has to be redefined as

El (1 - p(p)/p), but otherwise only minor modifications of the
p x~ p(p)  p

proof are needed.

PROOF OF THEOREM 3. We shall give the proof first for the princi-
pal case D1D2D3 # 0 and then indicate briefly the changes needed if

D1D2D3 = 0. On completing the squares we obtain

where Ni (x) is the number of positive integers y3 ~ 2a,3 x such that

is soluble in integers y1, y2 satisfying 0 ~ Yi :::; y3 - i and

(the equality corresponds to trivial solutions).
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If 0 ~ y2 the equation (15) implies

hence

where N(yl , x) is the number of solutions of the equation (15) in non-
negative integers Y2, y3 with Yg:::; 2ag x and the star signifies the
condition

for y1 in the range of summation.

The equation (15) can be rewritten in the form

where in view of (17) 0.
Let

m,22 be the maximal square dividing

be the maximal square dividing

It follows from (18) that

Let

We infer that (d(YI), q(yi )) is squarefree.
Since the quadratic form on the left hand side of (19) is primitive all
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its proper automorphs are given by the formulae

where the integers t, u satisfy the Pell equation

(see [6], Theorem 50). These formulae imply

The condition M3 Z3 = 2a x together with (19) implies

on the other hand the conditions zi &#x3E; 0, zj’ % 0 (i = 2,3) restrict the
signs of t, u. Hence we obtain

where 77(yi) is the fundamental totally positive unit of
If d(yi ) &#x3E; 0 is not a square we have

Since we obtain
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and it remains to estimate q(yl )). By Lemma 4

where I** signifies that g in the range of summation is restricted to
odd integers unless d(yi) = 1 mod 8.
We have for all d, e, q different from 0

This can be verified for q equal to a prime power and the follows by
multiplicativity of both sides with respect to q.

Taking d = e = L12, q = q(yl ) we obtain

where ~ * * * signifies that g in the range of summation is restricted to
odd integers unless d(yl ) = 1 mod 8 and )/(q(yl ), 4b ) = 0 mod 8.

Since

we have for all 

also if is even = 8.
On the other hand, by (19)

~ence
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where

Since

it follows that

for all odd fJ.1 q(YI )/(q(YI), Y2 ) and for q(YI )/(q(YI), J22 ) if

Thus finally

The ratio

depends only upon the residue class of y, mod 4a1 a2 a3 while (q(YI), A22 )
and b(YI) depend only upon the residue class of y1 mod 4aI 

For every residue r mod we have

and Fr has a multiple zero if and only if ~ = 0. Moreover if 0 the
number pr (p) of solutions of the congruence
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satisfies for sufficiently large primes p

Taking

we find that fr is multiplicative,

hence if 0 the polynomial F, and the function f, satisfy the assump-
tions of Lemma 5 and we obtain

where

Using (23), (24) and the classical formula for characters X

we obtain
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This gives in views of (25)

Using (20) we obtain by partial summation the same estimate for the

In view of the symmetry between yl and y2 we obtain for N2 (x) a
similar estimate with a2 replaced by 41 . In view of (14) this gives the
theorem for the case D0 # 0.

If 40 = 0, we have

and Gr is of degree 1. By (21) applied with

and by (22) we obtain in this case

Taking

we find that g is a multiplicative function and

1 otherwise,
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Applying Lemma 4 to the polynomial Gr and the function gr we find
by a computation similar to that made before that

In view of the symmetry between y1 and Y2 we obtain for N2 (x) a
similar estimate with 12 replaced by a1. In view of (14) this completes
the proof.

Assume now that a1 = 0, J2 D3 # 0. Then D0 # 0, but the symmetry be-
tween Nl (x) and N2 (x) is lost. can be estimated as above,
i.e.

If we reverse the roles of y1 and y2 we find that

hence by Lemma 4

(16) and (20) give by partial summation

and the theorem follows from (14). A similar argument works if D2 = 0,
D1D3 # 0.

Finally assume that a3 = 0, Jl J2 # 0. Then 0 and there is a sym-
metry between Nl (x) and N2 (x). However, the lower estimate for 
is not valid and hence instead of (20) we have only

On the other hand,
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hence

and by Lemma 4

It follows by (16) that NI (x) «x 1/2 log x, by symmetry the same esti-
mate holds for N2 (x) and by (14) the theorem follows.

REMARK 4. The established estimate for N(x) is valid also for the
number of all non-trivial integer solutions of (1) satisfying X-

REMARK 5. If L1¿ = j3 = 0 for i = 1 or 2, all solutions of (1) with
~(~3)~0 are trivial thus N(x) ~ 2.

If 41 =,d2 = 0, 0 the equation (18) gives

4. Proof of Theorem 4.

If 41 = A2 = 0 the theorem holds by Remark 5. Therefore we may as-
sume that dl + d2 &#x3E; 0 and in view of symmetry that 42 &#x3E; 0.

If L11 = 0 we multiply the equation (1) by 16/d2 and obtain

where

If .11 &#x3E; 0 we multiply the equation (1) by 256/,j,,J2 and obtain

where
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In both cases the leading coefficients of gi are equal to 1.

If D1 = 0 the discriminant of g2 is 16, if D1&#x3E;0 the discriminants of gl ,
g2 are equal to 16 and the discriminant of g3 is equal to 256,13/AlIJ2-
Therefore it is enough to prove the theorem for the cases

In the case 1) on completing the squares we obtain

where NI (x) is the number of nonnegative integers y3 ~ x for
which

is soluble in integer yl , y2 . For each y2 ~ ~ [ + 3 the equation (26) has
only O(logz) solution with y3 ~ x (see the proof of Theorem 3) and for

yz &#x3E; + 3 the equation (26) has no solutions. Indeed, then

~ a3 ~  y2 - 4 and by Theorem 12 of Chapter II of [7] for every sol-
ution must be a convergent of the continued fraction for 
Now the continued fraction expansions of y 2 - 4 are known:

(see, e.g. [10], p. 411). It follows that

which contradicts the assumption G g Q.
In the case 2) on completing the squares we obtain
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where N1 (x) is the number of nonnegative integers y3 ~ x such
that

is soluble in integers yl , y2 . This equation can be written in the
form

If (YI, Y2, Y3) is an integer solution of (29) then by the assumption
L13 == 0 mod 8 it follows that

y3 = y1y2 mod 2. 

Hence the numbers Y2I, defined by the formula

are integers and it is easily seen that (yl, y2 , is a solution of

(29).
Let us assign two solutions of (29) is nonnegative integers

(yl , Y2 , and (yl , y2 , y’l) to the same class if there exist numbers
~ _ ± 1, r~ _ ± 1 and an integer n such that

Let us denote the family of all such classes by 
Any two solutions of (29) differing by an automorph of the quadratic

(y 1 2 - 4) y 2 belong to the same class since the fundamental
solution of the Pell equation x z - (yi - 4) y 2 = 1 is given by ~2 for yl
even and by P for yl odd, Hence 9’(y, ) is finite for each yl such
that

If 4 = 0 the equation (29) has no solutions, since 6 g Q.
If D3 /4 - 4(y1 - 4) = 0 the equation (29) has only one solution,

namely y2 = Y3 = 0, since then (a3 /16) y2 = 0. Thus



61

Given a class C E let A(x, yl, C), B(y, yl , C) be the number of sol-
utions of (29) belonging to C and such that y3 ~ x or Y2 :::; y, respect-
ively.

A simple calculation shows that for all C E r * 2, x ~ 3

always.
For 2/1 sufficiently large, say 2/1 &#x3E; c9 &#x3E; 1 + I Lis I /16 we obtain

In view of symmetry of the equation (28) with respect to yl, Y2 we
may assume that Y2 and hence we have
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Given a solution (YI, y2 , y3 ) in a class C e we choose n such
that

and then obtain from (29)

Setting

we have yz ~ , ~ y3 ~ ) E C and

Thus for yl &#x3E; C12 every class C E contains a solution

(yi , y2 , y3 ~ of (29) satisfying (33). In view of symmetry of (28) with re-
spect to y2 we obtain

and further by (29) and (30)

where C13 = 

Since 2c &#x3E; 5 + 4/(c - 1) there exists a CI4 ~ 8 such that for

We choose a c15 such that
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and

for all y - CI4, y ~ 3. We shall show by induction on y that the inequali-
ty (37) holds for all integers y ~ 3. Suppose that y &#x3E; c14 % 8 and that
(37) holds with y replaced by an arbitrary integer z  y, z ; 3. Then it
holds also with y replaced by an arbitrary real z ~ y - 1, z ~ 3 and
since 2B/?/ + 1 ; y - 1, by an arbitrary real z K 2 V~y- + 1, z ~ 3. Using
(34), (36), partial summation, the inductive assumption and (35) we
obtain

which completes the inductive proof of (37). Substituting (37) into (32)
and using partial summation again we obtain Nl (x) « (log x)’. The the-
orem follows by (27).

REMARK 6. The method of proof should extend to the case, where
a2 E {0, 1, 4, - 4, 16, 201316} (i = 1, 2) however the details become com-
plicated.

REMARK 7. Let us call a polynomial solution every solution of (1)
which comes from an identity

where pi , p2 , p3 e are polynomials not all constant (thus trivial sol-
utions are polynomial, but in general not vice versa). Then the method
of proof of Theorem 4 gives

1) If a, = a2 = 1, ii r= f 1, 4, 16} (i = 1, 2), 32J3 = 0 mod JlJ2
the number of non-polynomial solutions of (1) with x is

0((log for every c with 2c &#x3E; 5 + 4/(c - 1).
2) The number of solutions of (38) in polynomials pal, p2, p3 satis-

fying the three conditions: deg p3 ~ d, P2, P3) = 0(t), P3 has the
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leading coefficient 1 and the second coefficient 0, is fmite for every d, in
fact less than de for a suitable c.

If al = a2 = a3 = 1, 6 (i = 1, 2, 3) there exist polynomial sol-
utions, see the proof of Theorem 5. The above two facts indicate the
way of finding the asymptotic formula for N(x) in the case al = a2 =
= a = 1, L1i E ~ 1, 4, 16} (i = 1, 2), 32L1g = 0(mod IE Q however
many details have to be settled in order to prove such a formula. If

L11 E ( 1, 4, 16}, J2 = 0 the situation is simpler and an example is worked
out at the end of the paper.

5. Proof of Theorem 5.

On

completing the squares we obtain

where No (x) is the number of integers Y3 such that

and (15) holds for some integers yi satisfying

We distinguish two cases

1) ala2a.3 is a perfect square,
2) is not a perfect square.

In the case 1) we assume without loss of generality that 0, set
a = and for an integer parameter t = 1 mod 2a, /(2ai, 
t &#x3E; 1 put
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By Euler’s theorem for the field Q(yIt2=!) there exist positive inte-
gers n such that

Let n(t) be the least positive integer n with this property and
m = min n(t), the minimum being taken over all t in question, T =
= It: n(t) = m}. T is a union of arithmetic progressions.

For all t E T we set

and verify that the conditions (15), (40), (41) and (42) are satisfied ex-
cept for 0(1) values of t. The number of values of t E T such that (20)
holds is » x I/(2m + 1) (even » z I/2m if 0) and the same Y3 can corre-
spond to a most 2m + 1 such values. Hence

In the case 2) we take the fundamental solution (po, qo) of the Pell
equation

and set

Postponing for a moment the choice of n we take for t an arbitrary divi-
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sor of (1/2) u2n and put

The numbers yl , y2 , Y3 satisfy the condition (15), (40), (41) and (42) ex-
cept for at most 4 values of t. The condition (39) will be satisfied

provided

Take for n the maximal product of initial consecutive odd primes satis-
fying (44). Denoting the i-th prime by pi (pi = 2) we obtain

Hence by Theorem 5 of Robin [8]

which gives after a computation

Since the same value of Y3 can correspond by means of formulae (42) to
at most two values of t we obtain

where r(u) is the number of divisors of u.

By the result of Carmichael [2] on primitive divisors of Lucas num-
bers and by (45)
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hence by (46) and (47)

REMARK 8. If each of the polynomials f has two integer zeros the
estimate for N(x) given in Theorem 2 is valid also for the number of po-
sitive integers such that (1) has nontrivial solutions in positive
integers.

PROOF. All solutions in nonnegative integers of the equation

are given by the formula

F or n = 0 or ri K 1 we obtain 1. F or n = 1 we obtain trivial
solutions.

For n = 2 the formula gives X3 = 2x1 - 1 and the inequality is

satisfied for Vx/2 + 0(1) values of x3. For each n ~ 3 the formula gives
xi hence the number of distinct X3 &#x3E; 1 obtainable from the

formula is less than W, and for n &#x3E; log x/ log 2 it is zero. Since N(x)
counts both positive and negative X3 the asymptotic formula fol-
lows.
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