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An Application of Markov Operators in Differential
and Integral Equations.

JAN MALCZAK (*)

1. Introduction.

One of the important techniques used in the theory of Markov oper-
ators is studying the properties of a semigroup from the prop-
erties of a single operator P ~ with some 

The main result of the paper is Theorem 2.1 which concerns the

asymptotic stability of a Markov operator. The main advantage of hav-
ing Theorem 2.1 is that it allows to obtain many corollaries concerning
the asymptotic behavior for semigroup from already proved results for
iterates of a single operator.

Stochastic semigroup generated by Fokker-Planck equations are
particularly convenient to study by Theorem 2.1. This is due to the fact
that they are represented by the integral formula (3.6). In this case the
asymptotic behavior of the solution depend on the existence of a sta-
tionary solution and its summability.

The organization of the paper is the following. In Section 2 we give
a formulation of the main theorem concerning expanding Markov oper-
ators. Section 3 gives a simple criterion (Theorem 3.1) for the asymp-
totical stability of solutions of parabolic partial differential equation. In
Section 4 we study the one dimensional example of the Fokker-Planck
equation. In Section 5 we analyze a rule which a stochastic integral op-
erator plays in the asymptotic behavior of a semigroup, generated by
integro-differential equation. The last one contains an application of
Theorem 2.1 to Markov integral operators with advanced argu-
ment.

(*) Indirizzo dell’A.: Universytet Jagiellonski, Instytut Informatyki, 31-501
Krak6w, ul. Kopernika 27, Poland.
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2. Existence of an invariant density for Markov operators.

Let (X,2:,m) be a a-finite measure space.
A linear operator P: is called a Markov operator if

P(D) c D, where D = f ~ 0, lif 11 = 1 } is the set of densities
I stands for the norm in L (m). By a standard procedure using

monotone seuqences of integrable functions, any linear positive opera-
tor on extends (uniquely) beyond L 1 (m) to act on arbitrary non-
negative (possible infinite) measurable functions.

Let a Markov operator be given. A density f is called stationary if
Pf = f. If a Markov operator P has a positive invariant function f * then
we can define the Markov operator P: L 1 (X, E, ~) H L’ (X, ~, ~) by
letting 

’

where dfJ: = f * dm. Clearly P1 = 1, so by the Riesz-Thorin convexity
theorem P acts as a positive contraction on any 1 ~ p :::; 00. We
denote by !7 the L 2 (a)-adjoined of P as well as its monotone extension
to all the spaces L p (iu). Now applying the well-known complex Hilbert
space technique to P (see [Fog69], Chapter III]), we define

Then K is a closed sublattice of L2 (p.) and the operator P is unitary on
K. For every and -Ulf- 0 weakly in L2 (p.). Now
let

Then ~1 (P) is a subring of 2: on which P and U act as automorphisms.
Moreover, K is the closed span in L 2 (u) of {1A : A E E1} and if X1 E E is
minimal in E such that A c Xl (mod for every A E Z, then X, is P-in-
variant. The set X, will be referred to as the deterministic part of P. Fi-
nally 
A Markov operator P: L 1 (m) H L 1 (m) is called asymptotically

stable if there is a unique stationary f * E D and as

for every f E D. For we define the support of f
by setting

This set is not defined in a completely unique manner, since f may be
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represented by functions that differ on a set of measure zero. This inac-
curacy never leads to any difficulties in calculating measures and inte-
grals. Of course supp f is defined up to a set of measure zero. Inequali-
ties (equalities) between functions or sets are in the a.e. sense.

Now, we examine a limit behavior of Markov operators admitting a
stationary density. We have the following

THEOREM 2.1. Let P: L 1 (m) H L 1 (~n) be a Markov operator. Sup-
pose that P has a positive invariant density f * . Assume also that for
every A, B E E with positive finite measure the following condition is
satisfied:

If in addition, .~l (P) defined by (2.3) is atomic, then P is asymptotically
stable.

REMARK. If a Markov operator is given by the integral formula

where k is stochastic kernel, i.e. k: is jointly measurable
and

then P has the form

d&#x3E; = f * dm, y) = k(x, y)/f * (x) and f * is positive and invariant for
P. It is known [FeI65] that.El (P) defined for the integral operator (2.6)
is atomic.

PROOF. Uniqueness of invariacnt density. Assume there are two
stationary densities for P, namely, f, and f2 . so we have

Pf = f. Let further f = f + - f -, where f + (x) = max (0, f(x)) and

f - (x) = max (0, -f(x)). So that, then neither f + nor f - are
zero. Note that Pf + = f + and Pf - = f - . Further, there exist sets A, B
with positive measure such that and Thus, we have

which contradicts the condition (2.4).
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Asymptotical stability. Define, as above, an operator
P: L 1 (,u) H L 1 (~u,) by letting Ph = where dg = f * dm. Note
that P1 = = 1 and = 1_. Using (2.4) it is easy to prove that
2JI (P_) _ 10, XI. Thus the operator P is a Harris operator with trivial
2JI (P). Then, by [Fog69, Chapter VIII, Theorem E, p. 89], we have

Now, pick f E D, then the function h = f/f * belongs to and from

(2.7) we ~0 as 

REMARK. The condition (2.4) is immediately satisfied if a kernel
in (2.5) is positive.

3. Stochastic semigroups; asymptotic behavior of solutions of

parabolic equations.

Let (X, 2;, m) be a o-finite measure space. A family of Markov oper-
ators is called a stochastic semigroup and
P ° = 1 for all tl , t2 &#x3E;- 0. A stochastic semigroup o is called asymp-
totically stable if there exists a unique f * E D such that P t f * = f * for all
t ~ 0 and lim = 0 for all f E D.

t - oo

The following proposition 3.1 shows the relationship between the
asymptotical stability of discrete semigroup and the semi-

group 

PROPOSITION 3.1. Let be a semigroup of Markov opera-
tors. Assume there exist to &#x3E; 0 and a unique f * E D such that

pntof* = f * and for f E Then 

= f * for all and 
t - oo

PROOF. First we show that = f * for all t a 0. Fix t’ &#x3E; 0 and
set f1: = Therefore

Since f* || = 0, we must have f*11 = 0, and hence
P f* = .f* At the end, to show asymptotical stability pick a function
f E D, so that
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is a nonincreasing function. Since for the sequence tn = nto we have

we have a nonincreasing function that converges to zero on a subse-
quence and, hence lim IIPF -f. II = 0. E

t t-+ 00

As the first applications of Theorem 2.1 we consider a partial differ-
ential equation of parabolic type

with the initial condition

This equation appears while studying the stochastic differential

equation

with initial condition

where b(x): R d H R d, dr) is a (d x d) matrix.
In (3.3), the «white noise» vector

should be considered, from a mathematical point of view, as a pure
symbol much like the letters «dt» in the notation for derivative. How-
ever, from an application standpoint, ~ denotes a very specific process
consisting of «infinitely» many independent, or random impulses. We
assume that the initial vector XO and the Wiener process are in-

dependent. To examine the solution of equation (3.3), (3.4) we are re-
quired to introduce all the abstract concepts which are necessary to de-
fine the It6 integral, and to give the solution of equation (3.3) and (3.4)
in terms of a general formula, generated by the method of successive
approximations, which contains infinitely many It6 integrals. One can
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pass to a consideration of the density function of random process x(t)
which is a solution (3.3) and (3.4).

This density is define as the function u(t, x) that satisfies

The uniqueness of u(t, x) up to set of measure zero is an immediate
consequence of Randon-Nikodym theorem, but the existence requires
some regularity conditions on coefficients b(x) and 7(x). One can show
that u(t, x) can be found without any knowledge concerning the sol-
ution x(t). It turns out that u(t, x) is given by the solution of a partial
differential equation (3.1), known as Fokker-Planck equation, that is

completely specified by the coefficients b(x) and of equation (3.3).
We must only insert to (3.1)

and bi (x) be the same as in (3.3).
It is clear that a~~ = and

Moreover, if the initial condition (3.4), x(0) = xo, which is a random

variable, has a density f then u(O, x) = f(x). Thus to understand the be-
havior of the density u(t, x), we must study the initial-value (Cauchy)
problem (3.1) and (3.2). Since our unknown function u(t, x) is a density,
so we are interested in nonnegative solutions of (3.1) and (3.2).

The uniqueness of non-negative solutions of parabolic equations has
been considered in several papers, beginning with the work of [Wid44]
on the equation of heat conduction. Various extensions of Widder’s re-
sult to more general parabolic equations can be found in [Aro65],
[Krz64] and [Ser54]. In all of these papers, however, the coefficients of
the equation are Assumed to be bounded. Here we shall also deal with
equations whose coefficients grow at infinity in various ways. The most
convenient results, from our point of view, concerning the uniqueness
of solution may be found in [Fri64], [Aro65], [ArB66], [Arb67a],
[Cha70a].

It is well know that a linear second order parabolic equation with
bounded H61der continuous coefficients possesses a fundamental sol-
ution.

One important consequence of the existence of a fundamental sol-



287

ution is that it gives an explicit formula for solutions of the Cauchy
problem. Detailed descriptions of this theory, as well as further refer-
ences can be found in [IK062) and in the books of [Eid69] and [Fri64].
The fundamental solution for equations with unbounded coefficients
was treated, among other, in [Eid69), [Bod66), [ArB67b], [Cha70b],
[Bes75].

In order to state a relatively simple existence and uniqueness theo-
rem we admit here the following classical conditions (for a uniqueness
theorem see [Fri64], Chapter II, Theorem 10, for a theorem of the exis-
tence of the fundamental solution see [Eid69], p. 136-137):

(i) The coefficients bi (x) are C3 functions for x E R d and
their derivatives of the third order are locally Hölderian.

(ii) The equation (3.1) is uniformly parabolic that is 

aii (x) and

where C is a positive constant and I denotes the Euclidean norm of
the vector z = (z 1, ..., zd ).

(iii) The coefficients satisfy the growth conditions

and

for some constant M &#x3E; 0.

For less restrictive conditions the reader is referred to [Cha70]
and [Bes75].

A function m = w(t, x) defined on R x R d will be said to belong to
dass EBK if there exist constant {3, K &#x3E; 0 such that

Under the assumptions (i)-(iii) for every continuous function

u(0, x) = f(x) from a class 8K there exists a unique classical solution
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u(t, x) of (3.1) and (3.2). The term classical means that for every T &#x3E; 0
the solution u(t, x) also belongs for t E (0, T], x E R d. Moreover,
u(t, x) has continuous derivatives ut , uxz , and satisfies equation
(3.1) for every t &#x3E; 0, x E R d ; and lim u(t, x) = f (x). The solution u(t, x)
is given by the formula 

where 1’ is the fundamental solution of (3.1). The function r(t, x, y), de-
fined for t &#x3E; 0, x, y E R d, is continuous, positive and differentiable with
respect to t, is twice differentiable with respect to x, and satisfies (3.1)
as a function of (t, x) for every fixed y.

Moreover is satisfies the inequality

for x, y E R d, t &#x3E; 0, s ~ I ~ 2, with some positive constant A and a.
If f is not necessarily continuous but integrable, the formula (3.6)

defines a generalized solution of (3.1) for t &#x3E; 0. In this case it satisfies
the initial condition of the form

Using (3.7) it is easy to verify that u(t, t a 0. Thus

setting

we define a family of operators P~: L 1 - L 1 which describes the evolu-
tion in time of solution u(t, x). Using the specific «divergent» form of
equation (3.1) it is easy to verify that is a stochastic

semigroup.
By virtue of the considerations of § 2, the behavior of the solutions

of the Cauchy problem (3.1), (3.2) can be stated as follows.

THEOREM 3.1. Assume that the conditions (i)-(’lii) are fulfilled.
Assume moreover that equation (3.1) has a positive stationary solution

u * (x) which belongs to a class 8§ and j u * (x) dx = 1. Then u * is unique
Rd
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and for stochastic semigroup ~P t ~t , o defined by
(3.6) is asymptotically stable with the limiting function u * .

PROOF. First we are going to show that the kernel y) in for-
mula (3.9) is stochastic for each t &#x3E; 0. We already know that r is positi-
ve and is stochastic semigroup. Further for we

have

and consequently

arbitrary this implies

Further, according to the definition of semigroup ~P t ~ t , o the func-
tion 

-

is a solution of (3.1), (3.2) with f = u * . Since u * (x) is stationary sol-
ution and the Cauchy problem is uniquely solvable we have

Thus, by (3.6) we have

Since 1’(1, x, y) is strictly positive, then the assumptions of Theorem
2.1 are satisfied. Hence by Theorem 2.1

is asymptotically stable for any integrable function f. By Proposition
3.1, we obtain the conclusion of Theorem 3.1.
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4. The one dimensional case.

We are going to show an application of Theorem 3.1 to the one di-
mensional case. Thus we consider a stochastic differential equation:

when a, b are scalar functions and ~ is one dimensional white noise. The
corresponding Fokker-Planck equation has form:

We assume that a(x) _ ~ (x) and b(x) satisfy the conditions (i)-(iii).
Moreover

for sufficiently large x. In order to find a stationary solution of (4.2) we
should solve the ordinary differential equation

or

where y = a2u and CI is a constant. Therefore

where

The solution y(x) is positive iff



291

From condition (4.3) it follows that the integral

converges and This shows that

inequality (4.4) is satiafied iff cl = 0. Thus the unique up to multiplica-
tive constant positive stationary solution of equation (4.2) is given by

with c &#x3E; 0. Applying Theorem 3.1 to equation (4.2) we get the

following.

COROLLARY. Assume that the coefficients a and b of equation
(4.2) satisfy the conditions (i)-(iii). If u * (x) belongs to a class 8~ for

&#x3E; 0 and ~-2 (x) eG(x) dx is finite, then the semigroup o

R

generated by equation (4.2) is asymptotically stable.

5. Integro-differential equations.

In this section we consider a special case of the linear Boltzmann
equation

with the initial condition

where P is given Markov operator on L 1 (X, ~, m).
We consider the solution x) as a function from the positive real

numbers, R + into m).
By the Hille-Yosida theorem, the linear Boltzman equation (5.1)

generates a continuous semigroup of Markov operators For
the initial condition f E L 1 (m) the unique solution to equation (5.1) is

given by formula

Where I is the identity operator on L 1 (m). For t ~ 0 the sum of the co-
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efficients on the right-hand side of (5.3) is sequal to one. This is the rea-
son that the operators preserve integral.

In order to examine the behavior of solutions of equation (5.1) we
may use Theorem 2.1.

PROPOSITION 5.1. Assume that the Markov operator P satisfies as-
sumptions of Theorem 2.1. Then the is asymp-
totically stable.

PROOF. Assume that there exists a positive stationary density f *
for P. Then by Theorem 2.1 f * is unique. By [LaM85, Corollary 8.7.2,
p. 239] the semigroup ~e t~P - n ~t , o is asymptotically stable. *

We consider now the special case of the linear Boltzman equation
which is called the Linear Tjon-Wu equation

A Markov operator P: L 1 ((o, (0» H L 1 «000» is defined by

where

Since f * = e -x is the stationary density for (5.5) and the kernel (5.6) is
positive then the assumptions of Theorem 2.1 are satisfied. Therefore
for an arbitrary initial condition u(0, x) = f (x) E D((0, oo)) the solution of
(5.4) is asymptotically stable with the limiting density e -x. By Theo-
rem 2.1 the Markov operator (5.5) is asymptotically stable as well.

REMARK. A different situation occurs when we consider the Chan-
drasekhar-Mfnch equation (see Examples 7.9.2 and 11.10.2
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in [LaM85]) describing the fluctuations in the brightness of the Milky
Way

where P: L’[0, -) - L 1 [0, c*) is the integral Markov operator of the
form

and ~:[0,1]~~ is an integragle function such that

Here we will discuss the properties of (5.8) independently of this
equation. We show that there is no invariant density for (5.8). Let
V: R + be a nonnegative, measurable and bounded function. We
have

or substituting x / y = z

Assuming that for some density f * : Pf * = f * we get

or

Now choose V: [0, - ) - R to be positive, bounded and strictly in-
creasing (e.g. V(z) = z/(1 + z)) then V(y) - V(zy) &#x3E; 0 for y &#x3E; 0, 0 ~ z 
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 1 and the integral

is strictly positive for every y &#x3E; 0. In particular the product f * (y) I(y)
is a nonnegative and nonvenishing function. This shows that the equal-
ity (5.10) is impossible. Even more, one can show 

c &#x3E; 0 for every f E L1 [0, oo). This seems to be quite interesting since it
was proved in [LaM85] that the semigroup of Markov operators gener-
ated by (5.7)-(5.8) is asymptotically stable. Thus is a factor in

(5.7) which determines the asymptotic stability of the semigroup gen-
erated by this equation.

6. Markov operator defined by Volterra type integral with ad-
vanced argument.

A more sophisticated example of a Markov operator satisfying the
condition (2.4) is given by formula

where k(x, y) is a measurable kernel satisfying

and 1~: [a, oo) H [(7, oo) is a continuous, strictly increasing function such
that

It is easy to show that P is a Markov operator on L 1 [~, when

We have the following

PROPOSITION 6.1. If k and y satisfy conditions (6.2) and (6.3) then
the Markov operator P: ~ ) H L 1 [o~, defined by (6.1), satisfies
the condition (2.4).
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PROOF. Let g E D be given and let

This means that xo is the largest possible real number satisfying

where m is the Lebesque measure. Further let xl = y-1 (xo ). From (6.1)
we have Pg(x) &#x3E; 0 for y(x) &#x3E; xo or x &#x3E; Define rn = y-n (xo ). It is
easy to prove by induction that &#x3E; 0 for x &#x3E; Xn. Thus for arbit-

rary measurable set a c [~, we have

The sequence is bounded from below a) and it is decreasing
since xn = y-1 (xn _ 1 ) ~ xn -1. Thus is convergent to a number
x* i Q.

Since y(xn ) = Xn - 1 we have y(x * ) = x *. From inequality (6.3) this
is only possible if x * = a which according to (6.4) shows that P satisfies
(2.4).

To illustrate the utility of Theorem 2.1 for a the Markov operator of
the form (6.1) let us consider the Markov operator P: L1 [o, 

oo )

with

where a &#x3E; 0 and 1 &#x3E; a &#x3E; 0 are constants. This operator was introduced
by J. J. Tyson and K. B. Hannsgen [TyH86] in the mathematical mod-
elling of the cell cycle.

Following Tyson and Hannsgen we are looking for the invariant den-
sity of the form f * (x) = cx -1- a. From the equation f * = Pf * we obtain
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or

It is clear that the above condition is satisfied when f3 is a solution of the
transcended equation

The left hand side of this equation is equal to 1 for /3 = 0 and tends to
+ 00 as {3 tends to + 00. Thus in order to have a positive solution of (6.7)
it is sufficient to assume that

which is equivalent to

Thus satisfying (6.8) there exists {3 &#x3E; 0, for which the func-
tion f * (X) = CX -1 - (3 is invariant with respect to P. It can be normalized
on the interval [a, OJ ), namely for c = 

Now we can apply Theorem 2.1. The function f * is a positive invariant
density, further according to Proposition 6.1 the operator (6.5) satisfies
the condition (2.4). Therefore the sequence is asymptotically
stable.
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