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On Exact Power Margin Groups.

LUISE-CHARLOTTE KAPPE - JOHN H. YING (*)

1. Introduction.

The investigation of groups with special conditions on their power
structure is the topic of this .paper. Research in this area started with
regular p-groups, introduced by P. Hall in [3]. The guiding principle in
Hall’s investigations has been to look at groups which have properties
similar to abelian ones in as far as their power structure is concerned.
We will follows the same principle by investigating groups which have
an abelian-like structure of their power margins.

In 1940, P. Hall in [4] introduced the margin or marginal subgroup
of a word. In the special case of a single variable word f(x) = x n, n an
integer, the n-power margin of a group G is defined as

The n-power margin, as all margins, forms a characteristic subgroup of
G. The embedding of the n-power margin in a group for various values
of n was the topic of a recent paper by the first author [7].

We start with some observations on power margins of abelian

groups. Let a be a torsion element of order a ~ I in an abelian group G.
Then I = g for all g E G, hence a E (G). This leads to the fol-
lowing definition in general:

DEFINITION 1.1. A torsion element a of a group G is called an ex-
act power margin element if a E M 1 a (G).

The set of exact power margin elements in a group G is denoted by

(*) Indirizzo degli AA.: L.-C. KAPPE: SUNY at Binghamton, Binghamton,
N.Y. 13902-6000; J. H. YING: Montrose, PA 18801.



246

We will show that this set can be a nontrivial proper subgroup of G, but
it does not have to be a subgroup at all, even in the case of finite p-
groups (Example 4.2 and Example 6.3).

Observing Mn (G) = M -n (G) and Mo (G) = G, we will assume from
now on that n E N, where N denotes the set of natural numbers. Set-
ting g = 1, we obtain a n = 1 for a E Mn (G). Thus all elements in Mn (G)
have an order dividing n. Denoting with

the set of elements in G of order dividing n, we can reformulate this as
Mn (G) ç G[n] for any group G. In an abelian group the other inclusion
holds too. This leads to the following definition:

DEFINITION 1.2. Let G be a group and n E N. We say G has an ex-
act n-power margin if Mn (G) = G[n]. The class of exact n-power margin
groups is denoted by 3lln .

It can be easily seen that every n-abelian group, i.e. a group in
which (ab)n = a n b n for all a, b in the group, is in 3lln . An abelian group
has an exact n-power margin for all n E N. Thus we define:

DEFINITION 1.3. A group G is an exact power margin group if G E
E 3lln for all n E N. The class of exact power margin groups is denoted by
3ll.

We note that, by Theorem 4.4, a finite group G is an exact power
margin group if and only if EPM(G) = G. Moreover, a finite exact

power margin group is nilpotent. Thus we can focus our attention on fi-
nite p-groups when studying finite exact power margin groups.

The class 3K properly contains all regular p-groups. Other such
properties have been investigated by A. Mann in [8] and M. Y. Xu
in [9]. Two special classes defined in [9], namely the class of groups
with a regular power structure and the class of strongly semi-p-abe-
lian groups, are of particular interest, because they are both subclasses
of 3ll.

To make our notions more precise, we introduce the following nota-
tions. For a group G and n E N we define

Gn = (G[n]), the subgroup generated by the elements of order di-
viding n,

= G ~, the set of n-th powers of elements in G,
G n = the subgroup generated by the n-th powers of ele-

ments in G.
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For the convenience of the reader we list here the notational equiv-
alents for a p-group G and n = p i, a p-power. We have Vi (G) = and

Uï (G) = as well as = and Di (G) = Gp i .
In [9], Xu lists the following conditions as the main properties of the

power structure of a regular p-group:

(iii) 7ri: 
2 

is a well-defined bij ection from GIGP, onto
G EP’3 for all z.

We note that (iii) slightly differs from what appears in [9], namely:

(ill’) 7ri: is a well-defined bij ection from G jGpt onto Gut
for all i.

Condition (iii’) has (i) as an immediate consequence. Our conditions (i)
and (iii) turn out to be independent. We include two more conditions
into our discussion, also satisfied by a regular p-group:

In [9], Xu calls a finite p-group a strongly semi-p-abelian group if it
satisfies (iv). On the other hand, a finite p-group satisfies (v) if and only
if it is an exact power margin group (Proposition 5.1).

Xu calls a finite p-group satisfying (i), (ii) and (iii) a group with a
regular power structure. In [9, Theorem 1], he states that a finite p-
group G satisfies (i), (ii) and (iii) if and only if G satisfies (i) and (iv). A
stronger and more general version of this theorem is provided in Theo-
rem 5.3. It turns out that (ii) is redundant (Theorem 5.2). More precise-
ly, we show that the following equivalencies and implications hold:

Xu’s definitions, as well as the equivalencies and implications of
( 1.0.1 ), bring up a natural question: what is the complete classification
of all the combinations of the above five basic conditions? A main result
of our paper is the following graph that answers this question in the
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case of finite p-groups:

Each of the zi - 1 non-empty subsets of the four basic conditions (i),
(ii), (iv) and (v) belongs to a node in (1.0.2). That is, each subset is
equivalent to the representative conditions of a certain node in that
graph. On the other hand, Theorem 5.5 shows that the reverse of each
implication in (1.0.2) is not true. Hence the graph of (1.0.2) cannot be
further reduced, and so it represents a complete classification.

Like (v), each of the other conditions has an analogue power condi-
tion for any n E N in the class of all groups. In the following section we
will introduce some of these general power conditions and investigate
their intrdependencies and closure properties. Though of interest in
their own right, these results will become essential tools for the above-
mentioned complete classification of the five conditions for finite p-
groups, as discussed above.

2. Groups with a special power structure.

As an analogue to (i) and (ii) for p-groups we define the following
general conditions for a group G.

DEFINITION 2.1. For a group G and n E N we say

G is n-power closed if 

(b) G is n-exponent closed if Gn = G[n].
The classes of n-power closed and n-exponent closed groups are denot-
ed by and 

As an analogue of (iv) we define:

DEFINITION 2.2. For a group G and n E N, we say
(a) G is semi-n-abelian, provided for a, b E G we have (ab -1)n =1

if and only if a’= b’~;
(b) G has a regular n-power structure if G is n-power closed and

semi-n-abelian.
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The classes of semi-n-abelian groups and those with a regular n-power
structure are denoted by 6n and 91n, respectively.

We observe that n-abelian groups satisfy all of the above conditions
and abelian groups satisfy them for all n. This prompts the following
definitions.

DEFINITION 2.3. A group G is said to be power closed if G E ~n for
all n E N, and exponent closed if G e for all n E N. The respective
classes are denoted by B and F.

DEFINITION 2.4. (a) A group G is said to be strongly semi-abelian
if G E 6n for all n e N. The class of strongly semi-abelian groups is de-
noted by 6.

(b) A group G is said to have regular power structure if G e fin
for all n e N. The class of groups with regular power structure is denot-
ed by ffl.

We now investigate the interdependence of the above conditions
and their relationship to exact n-power margin groups. We start with
acharacterization of groups with an exact n-power margin.

THEOREM 2.5. Let G be a group and n e N. Then G has an exact

n-power margin if and only if (ab -1 )n =1 implies for
a, bEG.

PROOF. Assume that implies a n = b n. Consider
u e G [n] and b E G arbitrary. Setting a = ub, it follows that (ub)n = b n
for all b E G, hence u E Mn (G), and therefore Our claim

follows, since Mn (G) C G[n] holds always.
Conversely, assume G[n] = Mn (G). Thus implies (ux)n = x n

for all x e G. Setting ux = a and x = b, we have a n = b n whenever
(ab -1 )’~ =1.

The following corollary, stated without proof, connects semi-n-
abelian and exact n-power margin groups.

COROLLARY 2.6. Any semi-n-abelian group has an exact n-power
margin.

The next result shows that for groups in general and arbitrary
n E N, the analogue of (iii) always implies the corresponding condi-
tion (ii).
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PROPOSITION 2.7. Let G be a group and n E ~T, such that
a well-defined bijection of G/Gn onto Then

Gn = G[n].

PROOF. Suppose a, b E G[n]. We have to show Now

a, b E G[n] implies b ’~ e G[n] c Gn . Therefore b 
’~ Gn = Gn , and hence

ab-IGn = aGn = Thus by our assumption we have = In.
We conclude ab ’~ e G[n], and hence Gn = G[n].

The following theorem characterizes the property semi-n-
abelian.

THEOREM 2.8. For a group G and n e the following conditions
are equivalent:

(a) G is semi-n-abelian;
(b) G has an exact n-power margin and a

well-defined bijection of G/Mn (G) onto 
(c) 7rn: a well-defined bijection of G/Gn onto 

PROOF. Assume (a). By Corollary 2.6 it follows immediately that
Mn (G) = G[n]. This together with our assumption implies that a =
- b mod Mn (G) if and only if = 1 if and only if a n = b n. We con-
clude that is well-defined and one-one. Since maps trivially onto

it follows that (a) implies (b).
Next assume (b). We always have Mn (G) c Gn . Thus, G having an

exact n-power margin implies Gn c Mn (G), hence Gn = Mn (G). There-
fore trn = i.e. trn is a well-defined bijection of G/Gn onto Thus

(b) implies (c).
Finally assume (c); trn well-defined and one-one means a =

- b mod Gn (G) if and only if a n = b n. But by Proposition 2.7 we have
Gn = G[n]. This implies a = b mod Gn if and only if = 1. We con-
clude (ab -1 )n = 1 if and only if a n = Thus G is semi-n-abelian, and
(c) implies (a).

The following corollary is an immediate consequence of the above
theorems and the definitions.

COROLLARY 2.9. For the classes ffin, and the following
inclusions hold:

In Section 5 we will show that the inclusions are strict. The
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concluding result of this section is a discussion of the closure properties
of the various classes under consideration.

THEOREM 2.10. The classes Tln and are subgroup and di-
rect product closed, but not quotient closed. The class ~3n is quotient
and direct product closed, but not subgroup closed. The class 9in is
only direct product closed.

PROOF. The proofs of the subgroup and direct product closure of
3lln and as well as the quotient and direct product closure of ~n

are straight forward and omitted here. The p-group G, p odd, of

Example 6.1 is semi-p-abelian, thus in as well as ~~ . But the group
K of Example 6.4, a homomorphic image of G, is not in ~p , thus not in
vp and 6p as well. Thus 6n and 3lln are not quotient-closed. The
group H of Example 6.2 is p-power closed. Now H contains an isomor-
phic copy of the group G of Example 6.1 as a subgroup. But G is not p-
power closed. It follows that $n is not subgroup closed. Finally, ob-
serving that fin leads to the conclusion that 91,,, is direct

product closed. To show that fin is neither subgroup closed nor quo-
tient closed, we note that H of Example 6.2 has a regular power struc-
ture, but it has a subgroup and a quotient group not in 91P.

3. Elementary properties of exact power margin elements.

The first three lemmas of this section state some general facts about
power margins.

LEMMA 3.1. Let G be a groups and 

(a) If mln, then M~ (G) çMn(G);
(b) Let a E Mn (G) and g E G. Then [a, = [a n, g] = [a, g]n =

=1;
(c) Suppose (m, n) = t. Then for any and b E

E Mn (G)

In particular, if (m, n) = 1, then [Mm (G), Mn (G)] = 1.

PROOF. The proof of (a) is omitted here. To prove (b), we note that
from the definition of Mn (G) and the fact that it is a characteristic sub-
group, it follows hence [a, g n ] = 1.
The facts that [a, g] E Mn (G) and u n = 1 for all u E Mn (G) yield the
other two identities.
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To prove (c), let i, j be integers such that t = im + jn. Then b =
Because a E Mim (G), we obtain [a, = [a, = 1 by (b), and

similarly b] = 1. Now [a, b] E Mm (G) together with (b) im-
plies [a, b]t = [a, [a, b}’n = 1.

Without proof we state the following result for finite groups.

LEMMA 3.2. Let G be a finite group and (n, G ~ ) = t. Then

Mn (G) = Mt (G) and G[n] = G[t].

This lemma suggests that, for finite p-groups, only those n-power
margins, where n is a p-power, need to be considered. This will be es-
tablished in Proposition 5.1. The following lemma specifies a boundary
for such power margins in finite p-groups.

LEMMA 3.3. Let G be a finite p-group, and n = p’, an arbitrary
positive power of p. Then

Moreover, if G is a regular p-group, then Mpt (G) = Di (G).

PROOF. Obviously, Mpi (G) c i2i (G). For H = ~Zp _ 1 (G), g), g E G, we
observe that H’C- Zp - 2 (G). Therefore H has nilpotency dass 5 p - 1,
and hence is a regular p-group. Consider Then

(ag)P’ = for some c E (a, g)’. But both a and c belong to Pi (H),
which has exponent pi due to the regularity of H. So This
shows a E Mpi (G). Hence S~i (Zp - 1 (G)) g Mp, (G).

If G itself is regular and a then for any g E G, we conclude
again (ag)pt = gp2. This shows Mp i (G) = Di (G). 0

The next two lemmas present a few operations which serve to de-
rive new exact power margin elements from old ones.

L E MMA 3.4. For any group G we have:

(a) If a E EPM(G) and a E Aut (G), then a " a -1 more gener-
ally a t for (t, lal) = 1 are elements in EPM(G).

(b) If a, be EPM(G) and (Ial, = 1, then a. b E EPM(G) and
labi = 

(c) Suppose a, b E EPM(G) and lal I = pi i  pi where p is a
prime and Then ab, ba E EPM(G), and I ab I ba ~ I 

PROOF. We omit the proof of (a). To prove (b), let k b 1. Be-
cause a E EPM(G), (ab)k = b k = 1. Hence lab I divides k. On the other
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hand, since and (Ial, by Lemma
3.1 (c) we have [a, b] = 1. Thus But (a) n

= 1 and b labl = 1, and so k
divides This shows that b ~ . Thus, by Lemma 3.1 (a),
a, b E Mlabl (G), and hence ab E (G).

To prove (c), let n = PJ and m = ~’ -1. Then, by (a) of Lemma 3.1,
a E M~ (G) c Mn (G). Thus both ab and ba are elements in Mn (G), and
their orders divide n. On the other hand, (ab)m = 1. Hence ab I =
= n, thus ab E EPM(G), and similarly, ba E EPM(G).

For finite groups we have in addition:

LEMMA 3.5. Let G be a finite group.
(a) If n = exp (G), and g E G I = n, then g E EPM(G). In

particular if G is a p-group, then EPM(G) contains all elements of
maximal order, thus EPM(G) ~ 1.

(b) Z(G) c EPM(G).

(c) Let p be a prime. If 1 ~ g E 1 (G) I = p ; then g E
E EPM(G). In particular, if G is a p-group, Zp - 1 (G) g EPM(G).

(d) If G is a p-group, and N ~ I  p ~ then
N c EPM(G).

PROOF. The proofs of (a) and (b) are trivial and omitted here. For
(c), we note that, for an arbitrary element x in G, H = ~Zp _ 1 (G), x) is a
nilpotent group of class at most p - 1. Let P be the Sylow p-subgroup
of H, and let x = u ~ v, where u E P and (Ivl p) = 1. Because H is nilpo-
tent, ( gr~P’ = vpt. Since g E Zp - 1 (G) fl P c Zp _ 1 (P), Lemma 3.3
implies Consequently, To

prove (d), we note that Hence by (c), N ~

c EPM(G)..

We conclude this section with an expansion formula for powers
and commutators in metabelian groups which can be found in [5,
Lemma 1].

LEMMA 3.6. Let G be a metabelian group, n E N, and v, w E G.
Then
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4. The set of exact power margin elements.

In this section we investigate the set of exact power margin ele-
ments, and in particular torsion groups in which every element is an
exact power margin element. Our first theorem describes the behavior
of exact power margin elements in case of a direct product.

THEOREM 4.1. Let A, B be groups and G = A x B their direct
product. Then:

(a) EPM(A) x EPM(B) c EPM(A x B).

(b) There exist groups A, B such that EPM(A) x EPM(B) is a
proper subset of EPM(A x B).

(c) Let A and B be finite groups of relatively prime order.
Then

PROOF. The proofs of (a) and (c) are straightforward and omitted
here. To show (b), let A = B = S3 , the symmetric group on three let-
ters. It is easy to see that consists only of the identiy. How-
ever, as shown in Example 4.2, EPM(S3 x S3 ) is nontrivial. Thus, by
(a), EPM(A) x EPM(B) is a proper subset of EPM(A x B).

The question may be rasied on whether the set of exact power mar-
gin elements always forms a subgroup. The following example answers
this question in the negative.

EXAMPLE 4.2. Let G = S3 x S3. Then EPM(G) # 1, whereas
x = 1 and EPM(G) is not a subgroup of G.

PROOF. Since = 1, it follows that

Consider g E G with g ~ I = 6. Since exp (G) = 6, Lemma 3.5 (a) implies
that g E EPM(G), thus 1. Assume EPM(G) is a subgroup.
Then 1 ~ g 2 E EPM(G). However, g 2 is completely contained in one of
the components, and thus should be an exact power margin element
with respect to the elements in this component. Since EPM(S3) = 1,
this is a contradiction, hence EPM(G) is not a subgroup.

Even if G is a finite p-group, EPM(G) does not have to be a sub-
group, as Example 6.3 demonstrates. In the next example we give a fi-
nite p-group, p any prime, in which EPM(G) is a proper subgroup of in-
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dex p. For p odd, these examples originate in a paper by Cody [1, Theo-
rem 2], where they occur as the generic groups for the lowest values of
the parameters, in which the Hp-subgroup has index p. Note that for
any group G with 1 we have Hp (G) = (g e 1), and Hp (G) =
= 1, if Gp = 1. These groups could likewise be obtained as homomorphic
images of the p-groups in Example 6.1.

EXAMPLE 4.3. Let p be a prise. For p = 2, define K = D4, the di-
hedral group of order 8, and for p odd we define K as follows: Let B =

_ (b) x A, where lbl ] = p2 and x ... x (a P-2), an elementary
abelian p-group of rank p - 2. Moreover, define K = [B]. (c) to be a
semidirect product of B by a cyclic group (c), where

Then for every prime p, the group K is a finite metabelian of
order which is a proper subgroup of index p.

PROOF. First let p = 2. It follows from (a) in Lemma 3.5 and the
fact that M2 (G) c Z(G) for any group G that EPM(D4 ) _ (c), where (c)
is the cyclic subgroup of order 4 in D4.

Now let p be an odd prime. According to [1] we have 
and c(K) = p. Moreover, = B and K’ - (b P) x A thus K’ c Hp (K)
and K’ consists of all elements of order dividing p in Hp (K).
We claim EPM(K) = Hp (K), and thus EPM(K) is a subgroup of in-

dex p in K. We first show that Hp (K) c EPM(K). Let If

lhl ] _ ~ 2, then h E EPM(K) by (a) in Lemma 3.5. Thus. we can assume
I h I = p, hence h E K’ by the above. But I = pp -1. Thus, by Lemma
3.5 (d), K’ c EPM(K). Hence Hp (K) c EPM(K), as claimed. Let g f/.
f/. Hp (K). Then gb -1 f/. Hp (li~, and hence 1 = (gb -I)p. Thus b -p
for all such g. This implies EPM(K) g Hp (K), and our claim fol-
lows.

We conclude this section with a characterization of those torsion

groups, in which every element is an exact power margin element.

THEOREM 4.4. Let G be a torsion group. Then G = EPM(G) if and
only if G is an exact power margin group. Moreover, if G = EPM(G),
then G is the direct product of its Sylow subgroups. In particular, if G
is finite, then G is nilpotent.
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PROOF. Suppose G = EPM(G). First we show that G is the direct
product of its Sylow subgroups. Let x, y E G with (I x I, I y I) = 1. Since
x E Mlxl (G) and it follows by (c) of Lemma 3.1 that

[x, y] = 1. Hence elements of relatively prime order commute in G, and
our claim follows.

To show that G is an exact power margin group, we need to show
G[n] = Mn (G) for all n E N. Since Mn (G) c G[n] holds always, it suffices
to prove the other inclusion. Suppose Obviously x ~ I divides
n. Since x is an exact power margin element, we obtain by (a) of Lem-
ma 3.1 that X E M I x I (G) c M,,, (G). Thus G[n] c Mn (G).

Conversely, if G is an exact power margin group, then for any
x E G, Hence x E EPM(G). This shows G =
= EPM(G).

The following theorem is an immediate consequence of Lemma 3.2
and Lemma 3.3:

THEOREM 4.5. A regular p-group is an exact power margin
group.

Thus, being an exact power margin group is one of the conse-

quences of regularity. But the class of regular p-groups is properly con-
tained in the class of the exact power margin groups, as can be seen
from Example 6.1. On the other hand, since, for any group G and any
integer n, is a subgroup of G, we conclude:

THEOREM 4.6. An exact power margin group is exponent closed.
That is, 

Theorems 4.5 and 4.6 specify boundaries for exact power margin
groups. These boundaries will be further elaborated in the following
sections.

5. Comparison of power structure conditions for finite p-groups.

In this section we give a complete analysis of the interrelationships
of the classes 9t, 6, 9N, 0152, and $ in the case of finite p-groups. For a
class X of groups and p a prime we denote by 36(p) the sublcass of finite
p-groups in X. Furthermore, denotes the class of finite regular
p-groups. The following proposition is crucial for the investigation. It
allows us to establish membership in the classes 25(p), 3K(p), ~( p) and
~3( ~) by just checking the relevant p-powers.
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PROPOSITION 5.1. Let G be a finite p-group and let 36 e
E 6, 0152, ~3 ~. Then G e £ if and only if G E Ipi for all i.

PROOF. One of the directions in each case follows immediately from
the definitions, namely if G E N, then obviously G E Ipi for all i. Thus it
suffices to establish in each case that G E £pi for all i implies G E X. In
case G E l0lpi for all i, we obtain as an immediate consequence of Lemma
3.2 that G E 3K. Assume G E 6pi for all i. By Theorem 2.5 and Definition
2.2 (a) it follows that G E Ppi for all i, and thus, by the above, G E 3K.
Therefore, it suffices to show that a n = b n implies (ab -1 )n = 1 for a, b E
E G and n E N. Let n = with (k, p) = 1. Then there exist integers a, f3
such that 1 = «k + f31 G I. Assume a n = b n, then (a rJ.k)pt = (b ak )pt. By our
assumption, this yields = 1. Since ak = 1 - f31 G I, this im-
plies = 1, the desired result. In case G E ~pi for all i, the proof
follows in a similar manner as in the preceding case.

Finally, we have to show that G E ~~ for all i implies G E for all
n E N. Again let n = kp with (k, p) = 1 and integers a, B such that ak +
+ 1. By our assumption we obtain a n ~ b n = = c P’ for
some c E G. Now c E (c ") by the above, and hence an. bn = (Cx )n, the de-
sired result.

With the help of Proposition 5.1 and the results of the second sec-
tion, we establish now a stronger and more general version of Xu’s re-
sults, quoted in the introduction. It also shows that Xu’s definition of
regular power structure and our definition coincide in the case of finite
p-groups. The following theorem shows that condition (ii) in Xu’s defi-
nition is redundant.

THEOREM 5.2. Let G be a finite p-group with gGp - g Pi a well-
defined bijection of GIG p i onto for all i. Then G is exponent
closed.

PROOF. Proposition 2.7 implies that G E for all i. By Proposi-
tion 5.1 it follows that G E 0152, the desired result.

The above theorem and the following one justify to define regular
power structure in terms of semi-n-abelian.

THEOREM 5.3. Let G be a finite Then G is strongly semi-
abelian if and only is a well-defined bijection of G/Gpi
onto 

PROOF. By Theorem 2.8, G E 6pi if and only if gGpi--+gPi is a
well-defined bijection of G/Gpi onto Obviously if G e Q5, then
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G E Cpi for all i. Conversely, if G E for all i, then G E 6 by Proposi-
tion 5.1.

We conclude our investigations with a complete comparison of

power structure conditions for finite p-groups. First, we present the
following:

THEOREM 5.4. Let p be a prime. Then

and

PROOF. Let G be a finite regular p-group. If p = 2, then G is

abelian, and it is trivial to show that G E If p is odd, then Haupt-
satz 10.5(b) and Satz 10.6(a) of [6] show that G E Bpi n Cpi = Mp. for all
i. Thus, Proposition 5.1 yields G E Hence (p) c The rest
of the proof follows trivially from Corollary 2.9.

REMARK. By Proposition 5.1 we can claim that the set-inclusion or-
der of Theorem 5.4 is equivalent to the order of implications shown in
(1.0.2). Each arrow in this graph means that the conditions of the
source node imply the conditions of the target node. There are 24 - 1
non-empty combinations for the four basic conditions (i), (ii), (iv) and
(v) specified in Section 1. It can be easily seen that each combination is
equivalent to the representative conditions of a particulr node in the
graph.

We now show that the set inclusions of Theorem 5.4 are all proper
inclusions, i.e., the graph (1.0.2) cannot be further reduced. Here strict
inclusion is denoted by «c».

THEOREM 5.5. Let p be a prime. Then

PROOF. That the inclusions hold is an immediate consequence of
Theorem 5.4. It suffices to show here that the inclusions are

strict.
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Case 1: p &#x3E; 2. In [2], Groves gives a regular p-group H( p), p ~ 3,
such that, for any regular p-group G, which is not p-abelian, the direct
product H(p) x G is not regular. However, by Theorem 5.4 and Theo-
rem 2.10, H(p) x G has a regular power structure. Thus fi* (p) c 
To show that the other inclusions are strict, we turn to the examples of
Section 6. The group G in Example 6.1 is strongly semi-abelian but not
power closed. Hence c 6(p), n ~(p) c l%(p) n s(p) c
c @(p) and ~(p). To show that c n ~(p), we use the
group of Example 6.6, which is power closed and an exact power mar-
gin group, but not strongly semi-abelian. This same group also shows

c 

Next, consider the group F of Example 6.5. We have F E (S 
but F o Tt. Thus c ~(~) and n s(p) c @(p) n ~(p). Finally,
we consider the group K of Example 6.4, which is power closed but not
exponent closed. Hence ~(~) n $(p) c ~(~) and 

Case 2: p = 2. In [9, Theorem 3], Xu gives an example of a non-
abelian 2-group with a regular power structure. This proves fi* (2) c
c fi(2), because regular 2-groups are abelian. Now consider the group U
of Example 6.7, which is strongly semi-abelian but not power-closed.
Hence fi(2) c @(2), 8ll(2) n ~(2) c ?(2), @(2) n ~(2) c @(2) and

G(2)  ~(2).
Now we consider the quaternion group Q of order 8. Obviously, Q is

power closed and not strongly semi-abelian. Moreover, by (a) and (b) of
Lemma 3.5, Q is an exact power margin group. Hence, fi(2) c ik(2) n
n $(2) and 15(2) c IDl(2).

Next we consider the group V of Example 6.8, which is shown to be
exponent closed, power closed, but not an exact power margin group.
Thus c @(2) and ?(2) n ~(2) c @(2) n ~(2).

Finally, to show that e(2) n ~(2) c ~(2), we observe that the dihe-
dral group D of order 8 is power closed but not exponent closed. Thus it
also shows that ~(2) ~ @(2). a

6. Examples.

This section is comprised of two parts, the first assuming an odd
prime p. The group exhibited in the first example of this part can be
considered generic, since all the groups presented in the other exam-
ples of this part are either homomorphic images, or in one case an ex-
tension of the group at hand.
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semidirect product of X by a cyclic group (b), where I b I = p Z and

Then G is a strongly semi-abelian group of order and nilpotency
class p and which is not power closed. Hence G has not a

regular power structure, in particular G is not regular.

PROOF. We note that the mapping induced by b on X is an auto-
morphism of order p on X, hence bP E Z(G). In fact,

It is also easy to see that G’ = x ... x with exp (G ’ ) = p,
and c(G) = p as well as IGI [ = p ~ + 3 .

We first show that G E 3K. By Proposition 5.1 and the fact that
it suffices to show G[p] = Mp (G). For an arbitrary ele-

ment u in G the class of (G B u) is at most p - 1. Hence (G ’ , u) is regu-
lar, and so by Theorem 4.5 it is an exact power margin group. This
shows that G ’ c EPM(G). For an arbitrary element g in G, there exist
integers i, j and y E G’ such that g = Xi b - j y. By the above we obtain

Since G is metabelian, we may apply (3.6.1). This

yields

Observing exp (G ’ ) = p and using the relations of G, we obtain

Now consider g E G[p]BG’. Then (6.1.2) implies i = j = 0 mod p, thus
E Z(G). So, for any element w E G, this together with the fact that

G ’ c EPM(G) yields

Hence g E EPM(G). It follows that G E 3K.
Next we show that G is strongly semi-abelian. By Proposition 5.1

and the fact that exp (G) = p 2, it suffices to show that G E 6p. Using
Theorem 2.5, Definition 2.4 (a) and the fact that G is an exact power
margin group, it suffices to show that g p = h p implies = 1 for

g, h E G. There exist integers i, j, and u, v E G’ such that g =
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for some w E G’ . This implies 
~ (b~ -’~ ~’ = 1. It follows that G E 6.

Finally we show that G lPl is not a subgroup of G, hence ~3. As-
sume to the contrary, and consider By (6.1.2) we obtain

= -P. This implies yp - 1 = gP for some g = Xi bj U, U E
eGB Again, by (6.1.2), it follows This togetherE G’. Again, by (6.1.2), 1 follows yp - 1 xP biP - Yp - 1 18 oge er

with (6.1.1 ) yields i = j = 0 mod p. Thus a contradiction.
Since 9t = 6 n s, it follows now that G does not have a regular power
structure, and, in particular, G is irregular.

To show that being power closed is not inherited to subgroups, we
use an extension of the group in the preceding example.

EXAMPLE 6.2. Let H = G ~ (z), where G is the group of Example 6.1
with [ g, z] = 1 for all g E G and z P = yp _ 1. Then H is power closed but
the subgroup G c H is not. Moreover, H has a regular power structure.
But it contains a subgroup and a quotient group which do not have a
regular power structure.

PROOF. It was shown in Example 6.1 that G is not p-power closed.
In view of Proposition 5.1 and the fact that it suffices to
show that = T, where T = c Z(H). For h E H we have

where and k an integer. Thus Now g =
= Xi b -j u for some u E G’ and i, j integers. By (6.1.2) it follows h p =

HP c T. Conversely,
let t = with integers a, /3, y be an arbitrary element in T. If
{3 = 0 modp, then t = If (3$Omodp, then let
h = x " b -~ z r - ". It follows that z ~°~Y - ") = t. Therefore

hence HEPI = HP, and we conclude that H is power closed.
Next we prove that H E 6. Again, it suffices to prove that for all

g, h E H gp = hp if and only (gh-1)p = 1. Let g = xi · bj · u · zk and h = 
= v’ z t, where u, v E G’ and i, j, k, r, s, t are integers. Then g p =

= 

for some 
If gP=hP, then i = r mod p, j = s mod p, and k = t mod p. Hence

x x (yp -1 ) _ ~1 (Z(G)), and therefore
On the other hand, if ( gh -1 ~" = 1, then 

1 mod G ’ . Hence and so 1 = ( gh -1 ~’ _
- z ~k - t)p. t. In other words, i = r mod p, j == s modp and k =
- So g p = hP.

Thus, being strongly semi-abelian and power closed, H has a regu-
lar power structure. However, G, as a subgroup of H, does not have a
regular power structure. Moreover, HI(XP) does not have a regular
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power structure. This is because, if has a regular power struc-
ture, then H/(xP) is an exact power margin group, and so is G/(xP),
contradicting the claims of Example 6.3.

The group W in the next example is exponent closed, but not an ex-
act power margin group. Since W is a homomorphic image of the
strongly semi-abelian group G in Example 6.1, this shows that the
classes 6 and 3M are not quotient closed.

EXAMPLE 6.3. Let W = G/(xP), where G is the group defined in
Example 6.1. Then W is exponent closed but not power closed and not
an exact power margin group, and EPM(W) is not a subgroup of W.

PROOF. We first note that xP e Z(G) by (6.1.1). To prove W E 0152, we
note that exp (4T~ = p 2. Thus by Proposition 5.1, it suffices to show that
W[p] is a subgroup. Let N = (xP) and u = gN e W[p], where g e G.
Since G = [X]. (b), g = hb for some element h e X and some integer i.
But ( gN)P = 1, and N c X. Hence = 1. In other words, b i e (b P). This
shows that W[p] is a subset of (X x (bP))/N, which is an elementary
abelian subgroup of W. Hence W[p] is a subgroup of W.

To prove W ~ ~3 and we note that (6.1.2) implies

Similarly, as in Example 6.1 it can be shown that is not a p-
power in W, and we conclude that ~3. To show set u = xN
and v = b -1 N. Then lul [ = p and Ivl [ = luvl [ = p . By (6.3.1), we obtain

= vP (yp _ 1 N) ~ vP. Hence u is not an exact power margin ele-
ment, and thus W g ik. Finally, we note that by (a) of Lemma 3.5, both
uv and are elements of But u = is not an exact

power margin element, showing that EPM(W) is not a subgroup
of W.

It can be shown that the group in the next example is isomorphic to
the wreath product of a cyclic group of order p with another such group
([6, Satz 10.3.d]). We present this group as a homomorphic image of G
in Example 6.1. In addition to facilitating our calculations, this shows
that the class 0152 is not quotient closed.

EXAMPLE 6.4. Let K = GIN,, where G is the group defined in
Example 6.1 and N, = (xP) x Then K is power closed but
not exponent closed.
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PROOF. We first note that Nl c Z(G) by (6.1.1). By Proposition 5.1
and the fact that exp (K) = p 2, it suffices to show that K E ~p . Consider
(gN, )P E where g E G with g = x’b -J y, i, j integers and y E G’ . If
j = 0 mod p, then Suppose j 0 0 mod p. Then by
(6.1.2) we obtain 
Thus c Since obviously (bP Nl) c KLII, it follows that Kip] =
= (b P Ni), and thus is a subgroup of K. To prove that K g 0152, it suffices
to show that K[p] is not a subgroup. By (6.1.2) we have xb N, E
E K[p] and

Thus -1 NI f/. K[p], and K[ p] is not a subgroup.

The group in the next example, again a homomorphic image of the
group in Example 6.1, shows that a group which is exponent and power
closed is not necessarily an exact power margin group.

EXAMPLE 6.5. Let F = GIN2 with N2 = x 

where G is the group of Exacmple 6.1. Then F is power closed and expo-
nent closed, but not an exact power margin group.

PROOF. We note that N2 c Z(G) by (6.1.1). To show that FE’ and
F E 0152, it suffices to show that F E ~p and F E ~p . This follows by Propo-
sition 5.1 and the fact that exp (F) = p 2. By (6.1.2) we have g’° E Z(G)
for all g E G, and hence (gN2)P E Z(G)/N2 , which is a central cyclic sub-
group of F of order p. Thus = Z(G)/N2 , and F E ~p .

To show consider L = G’ ~ Z(G) ~ (xb -2~. Because c(L)  p,

L/N2 is regular. Moreover, since by (6.1.2)

we have exp (L/N2 ) = p. Now we show that f[p] = L/N2 . Suppose
(gN2)P = 1 for g = x i b -jy e G, i, j integers and y e G’ . This means gP E
E N2, and, by (6.1.2), we obtain gp = xip · b -jp·yi·jp-1 p-1 = y-tp-1 xpt y-8p-1 · bps,
for some integers s,~If~=0 mod p, then 8=0 mod p, s + t = 0 mod p
and Hence If j # 0 mod p, then I * - t -
- s mod p, i = t mod p and s == - j mod p. Consequently j = 2i mod p, and
so g = (xb -2 )i mod G’. Z(G). Thus in either case g E L, and hence 
= L/N2 , showing that F E ~p .

Finally, we exhibit an element in F which is not in EPM(F). Con-
sider Then by the above. If 
then (~’~2~’~2F=~’~~2. On the other hand

(x -1 N2 xb -2 N2)p = b -2p N2. Thus -2p E N2 , i.e. there exist integers
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s, t such that Hence t = -
- 2 mod p and s + t = 0 mod p. It follows 1 = 0 mod p, a contradiction.
Thus F is not in U. m

The final example of this part is yet another homomorphic image of
the group in Example 6.1, serving to demonstrate a different set of
power structure conditions:

EXAMPLE 6.6. Let E = GIN3 with N3 = x 

where G is the group of Example 6.1. Then E is power closed and an
exact power margin group, but it is not strongly semi-abelian.

PROOF. Note that N3 c Z(G). Let gN3 be an arbitrary element in E.
Then there are integers i, j,i and y E G’ such that g = Xi b -’ y. By (6.1.2)
we obtain gP = If j --- 0 mod p, then = Ifj 0

= =

and E E ~. Moreover, if = 1, then i = j = 0 mod p, and
g E G ’ Z(G). Since by Lemma 3.5 (d), 
E EPM(E). This shows E E 3M.

Finally, we show E ~ C~. Because (x -1 N3 ~’ _ (bN3)P.
However, by (6.1.2). Thus (bN3 - xN3 )P * N3 ,
and E it 6..

The second part of this section is comprised of the following two ex-
amples of 2-groups, which are needed for proving Theorem 5.5 in the
case p = 2.

EXAMPLE 6.7. Let v = [~x~ x ~y~] ~ (b~, where I x _ ~ b ~ [ = 4, 1 y [ =
= 2, [x, b] = y and [y, b] = 1. Then U is a strongly semi-abelian 2-group
of order 32, and U is not power closed.

PROOF. We note that U and G of Example 6.1 are actually defined
in the same way, where G is defined for p &#x3E; 2 and U for p = 2. It is triv-
ial to see that U is a 2-group of order 32 with exp (0 = 4, U’ - ~y~ and
Z( U) _ ~x 2~ x ~y~ x ~b 2~. Moreover, then 1 =

Hence 2 ~ i and 2 ~ k, and so In fact,
v[2] = Z( U) = M2 ( U). By (a) and (b) of Lemma 3,5, U E 9Jl.

To show that U E 6, we only need to prove that, for any g, y E U,
(gh ) - 1 if g 2 = h . Suppose g - h , and let g = and h =

= x ~ ~ y~2 ~ b ~. Then X2i1. b2k1 = x 2~ ~ b ~ mod U’, and hence 2 ~ il - z2 and
2 ~ 1~1 - k,~ . This implies that Thus and
therefore ( gh -1 )2 = 1.

To show that U g ~, we note that (xb)2 = = x 2 · b 2 ~ y. If
U E ~ then there exists g E U such that y = g 2. Let g = Then
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1 --- X2il. b2kl mod U’. This implies tfiat 2 1 ii and 2 ) ki. So y = g 2 = 1, a
contradiction.

EXAMPLE 6.8. Let V = [(u) x (z)] ~ (c), where 1 u 1 = 2, 1 z 1 _ ~ c ~ 1 =
= 4, [u, c] = z 2 and [z, c] = 1. Then V is an exponent closed and power
closed 2-group of order 32, and V is not an exact power margin
group.

PROOF. It is easy to see that V is a 2-group of order 32, with
exp (kJ = 4, V’ = (Z2 ) and Z(V) = (z) x (c 2). To show that V e 0152, we
need to prove that V[2] is a subgroup of V. Because (z2) x (c’) is a sub-
group of Z(V), clearly (c2, u, z2) = (u) x (Z2) x (C2) c V[2]. For g e V[2]
there exist integers i, j, k such that Thus 1=~~’
~ c ~‘ mod Z’, and so 2 ~ k. Consequently, and 1 = g 2 = 
. c2k = z 2i. Hence 21j and g e (C2, u, z2). Thus V[2] = (C2, u, z2) is a sub-
group of V.

To show that V e ~3, we only need to prove that is a subgroup of
V. Let D = (Z2) x (c2). Then V’ c D cZ(V), and V/D clearly has expo-
nent 2. Thus c D. But z2 ~ c2 = (ZC)2 e Hence = D is a sub-

group of V. Finally, to show that V w 3K, we observe that the element u
has order 2 but is not central. Hence ao g M2 (G), and our claim
follows.
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