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On the Planar Translation Structures.

MAURO BILIOTTI - GIUSEPPE MICELLI (*)

SUMMARY - We investigate the planar translation Andr6 structures with a finite
number of points. A description of all these structures in terms of planar
translation structures over an abelian group is obtained.

1. Introduction.

, 

A planar translation structure (p. t. structure) is an Andr6 transla-
tion structure (t. structure) E, endowed with a set c of subspaces such
that any three non-collinear points of 2: lie in exactly one element of E.

Herzer [9] investigated these structures, obtaining several exam-
ples and some results about the structure of the translation group. Sub-
sequently, Schulz [12] proved that, in the finite case, the translation
group of E must be either an elementary abelian or a Frobenius group.

In this paper, we carry on the study of finite p. t. structures. When
the translation group T off is a Frobenius group, we prove that T is

isomorphic to a dilatation group of a p.t.structure ~’ with an abelian
translation group. Furthermore, the points off are the points of a reg-
ular orbit of T on z’ and the line-plane structure off is that induced
by the line-plane structure of L’ in ,~ . Thus, all finite p. t. structures can
be described in terms of p.t.structures over an abelian group.

The rest of the paper is devoted to the p.t.structures over an
abelian group, mainly for what concerns their representation in an
affine space. In particular, we introduce the concept of «minimal di-
mension of an affine representation» and we obtain some results in this
connection. Some examples are also given.

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita, Via Ar-
nesano, 73100 Lecce, Italia.

This research was supported by a grant form the M.P.I. (40% funds).
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2. Preliminary results.

A partition. (of a finite group T) is a set II(T ) of non-identical sub-
groups of T, such that 7" ~ II(T ) and each g E T, with g # 1, belongs to
exactly a subgroup of II(T ). When T E II(T ) we shall call of a trivial
partition. The elements of II(T ) are called the components of II(T ). To
any partition II(T ) one can associate a geometric structure with paral-
lelism (~, 2, II) by taking (see [3])

- the elements of T as the point-set 0,
- the right cosets of the components of II(T ) as the line-set 2,
- the binary relation «II» one defined as follows

77~6~77=7~, a, b E T, H, K E II(T )

as the parallelism relation.
The triple (fP,2, II) is called the t.structure 2:(H(T)). Let A =

fOC E Aut (T): 77~=77, tlH E H(T)l For a E T and « E A, the map
(a, «): r - r ~ a of T onto itself is a collineation of ~(II(T )) preserving the
parallelism. It is called a dilatations. The dilatations make a group D.
The map a = (a, 1) is a translations and acts f.p.f on 0-when a # 1.
T = ~ ~: a E ~ is a subgroup of D which is transitive on the points of
.E(H(T)) and T = T. An element of D - T is a proper dilatation and fixes
exactly one point. The dilatations fixing the point 1 are the elements of
A. D = TA is a Frobenius group and A is cyclic (see [2] and [7]).

When T is an abelian group, the dilatations of ~(II(T )) fixing the
point 0 we use the additive notation for abelian groups-, together
with the null endomorphism of T, make a subfield F of End (T )
(see [3]). F is called the kernel of and the dimension of T, re-
garded as a vector space over F, is called here the global dimension of
£(17(T)) (over the kernel F). It will be denoted by 

A subgroup S of T is II(T)-admissible [4] if H fl ,S = (1) or H f1 S =
= H for each H E II(T). A right coset Sa of T, for ,S a II(T)-admissible sub-
group of T, is called a subspace of 2:(H(T)).

According to Herzer [9] the partition 77(7") is linear if it satisfies the
following condition:

(1) There exists a set F(T ) of II(T )-admissible subgroups of T such
that every element of s(T) contains more than one components of
II(T ) and is different , from T and any pair of distinct component

contained in exactly one element. of E(T).

The cosets Sa, where E E(T), are the planets of ~(II(T )), and
£(17(T)), together with the plane-set ~(7"), is called a plantar transla-
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tion structure (p. t. structure). It is easily seen that any three non-
collinear points of 2:(H(T)) lie in exactly one plane.

To each linear partition (II(T ), E(T)) is associated a linear space
E(T)) having II(T ) as the point-set and E(T) as the line-set.

,7(H(T), E(T)) can be regarded as the «geometry at infinity» of the
t.structure ~(II(T ), -(T)).

RESULT 2.1 (Herzer [9], Schulz [12]). A group with a linear pad-
tion is either an elementary abelian or a Frobenius group.

3. Some more on groups admitting linear partitions.

The following result extends Prop. 2 of [9].

PROPOSITION 3.1. Let (H(T), E(T)) be a linear partition and let H
be a subgroup of T. Put

If H r¡ F E E(T), then (II(H), E(H)) is a linear partition.

PROOF. II(H) is non-trivial since H r¡ F E ~(T ). Let H1, H2 e II(H)
with H2 . There exist Tl, T2 E 77(r) with HI c T, and H2 c T2 . Let N
be the unique element of containing both T 1 and T2 . Then

H2 E -(H). Clearly, is the unique element of -(H)
containing both H1 and H2.

Now, we can prove the following.

PROPOSITION 3.2. Let (H(T), E(T)) be a linear partition of a Frobe-
nius group T with Frobenius kernel K. Then the following hold:

(2) II(K) is a non-trivial partition of K and K is an elementary
abelian group.

(3) Every component of is normal in T.

PROOF. Suppose that is a trivial partition. If K ~ H E II(T ),
then H = T, since a Frobenius complement admits only trivial parti-
tions. So, K E II(T ). Nevertheless, K ~ E for some E E ~(T ). As before,
this yields E = T, contrary to (1).

Therefore, is non-trivial. If K c N for some then
N = K since N ~ K yields N = T. Hence K is elementary abelian
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by [9], Remark 2. Otherwise, (II(K), e(K)) is a linear partition by Prop.
3.1. Again, K is elementary abelian by Result 2.1. Indeed, K is a nilpo-
tent group (see [10]) and any nilpotent group with a non-trivial parti-
tion is a p-group. This proves (2).

We notice that in any subgroup of T of the form Ko . H, where Ko ~ K
and H is a Frobenius complement, the subgroup Ko is normal in T. In-

since
K is abelian and Ko = Ko because H normalizes Ko . Now, we shall prove
(3). Let Kl E II(K), where for some yie77(!T). If

Tl , then T, = Kl H for a suitable Frobenius complement H of T
and hence Kl a T.

Suppose that K1 = There exist at least two distinct elements M,
N in -(T) such that Kl C N V K and K1 ç M r¡ K. Indeed, an element of
e(T) cannot contain all Frobenius complements since it would coincide
with T. So, M = K’H’ and N = K"H", where K’, K’ K K and H’, H" are
Frobenius complements. We have that K’, T, =
= K’ n K" since T, K. Therefore, Tl a T and the proof is complete.

4. On the representation of p.t.structures.

In this section we shall see as a p.t.structure can be represented in
an affine space. Among other things, we shall prove that each

p.t.structure over a Frobenius group arises from a p.t.structure over
an abelian group.

Let a be any affine space over a field F and 0 a point of a. A 0-parti-
tion of a is a set = of proper subspaces of a containing 0,
such that rzi n dry = 0 for each ai # aj and U aj = a. The geometriciEI

structure having the same point-set of rz and whose lines are
the translate of the elements of o(a) is a t.structure. Each t.structure
~(77(r)), with T an abelian group, is isomorphic to a suitable structure
~(0(~)) (see [6]). a = rz(T, Fo ) is the affine space associated to T, when
T is regarded as a vector space over any subfield Fo of the kernel of

and the rzi correspond to the vector subspaces Ti E II(T ). Like-
wise, a p.t.structure ~(77(r), ~(T )) is isomorphic to £(aa), F(C~)), for a
suitable set E(a) of subspaces of a.

Let E = 1;(ð(tl), E(a)) and let G be any dilatation group of a-and
hence of ~.If G contains only translations, then G acts regularly on each
point-orbit. Suppose that G contains both non-identical translations
and proper dilatations. Then G is a Frobenius group of the form K X H
with kernel K and complement H. K consists of the translations of G,
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while H consists of the dilatations of G fixing a given point of a. By a
well known result of Frobenius (see [12]), G acts regularly on each
point-orbit, but one, of a. In the exceptional orbit r(G), the group G
acts as a Frobenius group in its usual representation.
Let be an orbit of G and assume that ~ ~ r(G) when G is a Frobe-

nius group. Denote by
- 2(E) the set of lines of 2: with at least two distinct points in

common with E, 
.

- the set of planes in -(Z) intersecting E in at least two dis-
tinct lines.

Then it is not difficult to see that tl(~, G, ~ ) _ (E, E(E)) is a

p.t.structure with respect to the same parallelism relation of a or,
which is the same, of 2:(o(a), ~(a)). G is the translation group of

a(2:, G, Z-) and a(2:, G, Z-) is called the structure induced by 2: in the orbit
E of G. When G is elementary abelian, a point-orbit D of G on a =
a(T, Fo ) is a subspace of a if and only if Fo is contained in the kernel of
a(f, G, 0). When Fo is contained in the kernel of a(2:, G, 0) for some or-
bit 0, then Fo is contained in the kernel of tl(2;,G,D’) for all orbits 0’ of
G. Indeed 0 may be mapped onto 0’ by a translation of a.

PROPOSITION 4.1. For each p.t.structure 2; = E(T)) there
exist a triplet (a, ~(c~)), a p.t.structure ~’ _ ~(9(tl), c(a)), a di-
lactation group G = T of rz and a point-orbit E of G on a such that
= a(2:1, G, -).

PROOF. If T is abelian, the assertion holds because 2;(II(T), ~(F)) =
= ~(ð( tl), E(a)) for a suitable 0-partition of the affine space a = tl(t, Fo ),
for Fo in the kernel of ~(II(T ), E(T)).

Suppose that T = K ~, H with kernel K and complement H. Let
F = GF(q) be the kernel of and m = g(~(II(K))). As we have
seen, we may represent in the affine space 1B = AG(m, q) by
means of a 0-partition 

By Prop. 3.2, we may think of H as a group of (f.p.f.) automor-
phisms of K mapping each component of II(K) into itself, that is as a di-
latation group of Since F is the kernel H is also a di-
latation group of 1B and hence we may suppose that H is isomorphic to a
subgroup of the dilatation group Do of 1B fixing the point 0. As it is well
known, Do = F * and the Frobenius group D = KDo is the whole dilata-
tion group of ~3.
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For each Ti e II(T ) let Di be the subgroup of D defined as follows
- if then Di = Ti ,
- if Ti = KoBHx with and x e K, then Di = 

Likewise, we define the subgroups D; for each T; e 
Put 77(D) = and E(D) = Then it is easily seen that

(II(D), E(D)) is a linear partition of D which induces the linear partition
~(T )) in T.

Now, suppose we regard 1B as a hyperplane of a m + 1-dimensional
affine space tl over the same field F. Then D may be regarded as the
subgroup of the dilatation group of a which leaves 1B invariant. D splits
the points of a into two orbits. 1B is the exceptional orbit. The other or-
bit will be denoted by E.

Let q be a point of E and for each Di e II(D) let Qi be the orbit of q un-
der Di . We have that

- if Di c K, then Qi is a subspace of tl,
- if Di = Ko with and x e K, then

where Fix D0xk denotes the point of 1B which is fixed by the group is
a subspace of a.

In the same manner, we define ë(tl) starting from E(D).
It is strightforward to show that Q(a) = is a q-partition of a

and that the structure rz(~’ , D, ~ ) induced by £’ = ~(~(c~), E(a)) in the
orbit of D is isomorphic to E(D)). Since the lines and the
planes of E(T)) are represented by the intersections of the lines
and the planes of E(D)) with the suborbit of KH = T on E, our
assertion is proved.

5. On ’the dimension of the affine representations of a p.t.struc-
ture.

Let 2: be a p.t.structure over an abelian group. As we have seen, if
~ has the global dimension g(£) = m over its kernel F then E may be
represented in the form ~(C~(~), for a suitable 0-partition of
the m-dimensional affine space rz over F. In other words, 2: may be
trivially represented in the form for tl a m-dimensional
affine space, by assuming as T the whole translation group of rz (and as
~ the point-set of a). Nevertheless, it can happen that ~ may be also
represented in the form a(E, T, ~ ) for a an affine space of dimension
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smaller than m, as we shall see in the following. Put

a(~) = min {dim a: ~ = T, ~ ) for some 

Here, the question arises whether a ranges over all affine spaces
or, rather, over all finite affine spaces. Following the line of this paper,
we are inclined to assume that a ranges only over the finite affme
spaces.

We call a(2:) the minimal dimension of the affine representation of
E or, briefly, the minimal affine dimension of E.

Why, this definition? One may start by observing that from a given
p.t.structure E with g(Z) = m and kernel F, we obtain many p.t.struc-
ture in the following way. We put E in the form 2:(cg(a), ë(tl» for a suit-
able 0-partition o(cl) of the m-dimensional affine space a over F and
then we construct all p.t.structures of the form Gg where G is
any proper translation subgroup of a and is a point-orbit of G. If we
attempt to classify all p.t.structures over an abelian group, the struc-
tures of the form C‘x(~, G, ~ ) originate from 2: in a rather natural

way.
Actually, a p.t.structure ~ is essentially new when a(~) and co-

incide. Indeed, such a structure does not apper, as an induced struc-
ture, in any affine space of dimension smaller than 9(Z). It seem natural
to call a p.t.structure ~ such that a(~) = g(~) a basic p.t.structure. We
have the following.

PROPOSITION 5.1. If 2: is a p. t. structure then 2: = for
some basic p.t.structure 1;.

PROOF. Let a(~) = n. G, ~ ) for a quadruple
G, ~, where (~ is a n-dimensional affine space. Suppose that 1 =

= 1B(2, G, E) for some aff’me space 1B with dim dim a. Since £ can be

regarded as the structure induced in the point-orbit H of G over 2: by
the line-plane structure of 1;, then Z = 1B(2, G, ~ ). This contradicts the
assumption that a(Z) = n.

Certainly, our definition is not completely satisfactory. Indeed, if
~ = G, ~ ), where dim tl = a(~), then 2 induces in Z the line-plane
structure, but, in general, it does not induce in 2: the structure of the
remaining subspaces. This makes clair when we determine the minimal
affine dimension of p.t.structures of the form where the

line-plane structure is just that induced by the corresponding line-

plane structure of the affine space a. Indeed, we have the following
proposition.
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PROPOSITION 5.2. If 1J is a p. t. structure of the form tl(tl,G,E)
for some affine space t1, then a(E) = 3.

PROOF. It is enough to prove that for any n-dimensional vec-
torspace V over a field F, there exists a 3-dimensional vector space W
over a overfield Fo of F such that

(4) V is a F-invariant subgroup of W,

(5) each 1-dimensional (2-dimensional) subspace of W (over Fo)
meets V in a subspace of V which is at most 1-dimensional (2-di-
mensional) over F.

Let pij i = 1, 2, 3, j = 1, ..., n, be 3n pairwise distinct prime num-
n

bers, different from 1. Put mi = fl p2~ and GF(q),
let Fo = Assume J-

and let

The vectors of i3 are linearly independent over F. Indeed

n

Nevertheless, E hj «j = 0 for some 0 yields
J = 1

that is

and this is impossible.
Denote by V the vector space generated by the elements on 93 over

F. Let WI be a 1-dimensional subspace of W which meets V in a vector

Suppose that
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for somme 6 E Fo, kj E F. In particular, this yields

As we have previously seen, v ~ 0 yields

Now, let W2 be a 2-dimensional subspace of W which meets V in two
vectors

which are independent over F and hence over Fo for what we saw
above. Suppose that 1u + ~v = z for some ~, ~ E Fo , z E V. If

we have

Using (8) and (9) we obtain
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This on condition that

Likewise, we obtain

This yields e E F by (8) and (9) and hence = Fu EÐ Fv. So, the
proof is complete if we prove that (11) must hold in any case. Suppose
that (11) does not hold, that is

Then, (12) yields

and the elements

p; are independent over GF(q ml ), relation (13) yields

or also

for j = 1, ... , n. Again, as hj ki - kj hi E F and the elements ai are inde-
pendent over F, (15) yields

for i, j = 1, ..., n. By (16), hi = = 0. Let hm ~ 0, 0, for some
m E (i, ..., n). Then, hs = hm /km for all s E (1,.... n) such that

0, 0, by (16). This yields u = hv for some h E F, contrary to our
assumptions.
We have also the following.

PROPOSITION 5.3. P. t. structures ~ with a(~) = 4 do not exist.
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PROOF. Let £ = c~(~, T, ~ ) for some quadruple ~, _~, T, ~, with
dim tl = 4. It is enough to prove that a(.~) = 3. Lest 1 = 1;(ð(tl), e(a)).
Clearly, can contain at most one subspace ai with dim ai = 2, be-
cause £ must have more than one plane.

Suppose that dim rz2 = 1, for each ai E In this case ë(tl) can con-
tain at most one subspace 6j with dim 6j = 3. If dim 6j = 2 for each
8j E -(a) then £ = a-with respect to the line-plane structure-and
a(~) = 3 by Prop. 5.2. Assume that dim 81 = 3, 81 E E(a). Then, con-

sists of 81 and all 2-dimensional subspaces of a which meets 81 in a 1-di-
mensional subspace. Such a structure 1; = 1;(ð(tl), E(a)) is unique-up
to an isomorphism.

Suppose that a is an affine space over the field F = GF(q). As in
Prop. 5.2, in order to prove that a(~) = 3 we shall construct a vector
space W-over a overfield Fo of F-which contains a subgroup V satis-
fying the following conditions

- V is a 4-dimensional vector space over F,
- dimF Wl n v 1 for each 1-dimensional subspace of W,
- dimF W2 n V K 2 for each 2-dimensional subspace of W with

exactly one exception, that is there is a 2-dimensional subspace of W
which meets V in a 3-dimensional subspace (over F).

Let = 1, ..., 4, j = 1, ..., 4, be 8 pairwise distinct prime num-
bers different from 1, and let Fo = GF(q m ) where m = Assume

W = Fo = ~ (a, ~, y): and let ~, J

Denote by V the vector space generated by the elements of % =
= B1 U T2 over F. As in Prop. 5.2, one can prove that

(18) if WI is a 1-dimensional subspace of W, then dimF W1 n V ~ 1.

Furthermore, the vectors in ~2 generate a 2-dimensional subspace
of W (over Fo ) which meets V in a 3-dimensional subspace (over F). It is
easily seen that no other 2-dimensional subspace of W can meet V in a
subspace of dim &#x3E; 2 by (18).

Now, suppose that dim ai = 2 and dim tlï = 1 for each ai E 
1. In this case c(a) consists of the 3-dimensional subspaces of a con-

taining a1 and the 2-dimensional subspaces of a meeting a1 in 0. Such a
structure £ = ~(0((~), E(a)) is unique-up to an isomorphism. The proof
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that a(!) = 3 is similar to the previous one. Indeed, let plj, j = 1, ..., 4,
P22 be 6 pairwise distinct prime numbers, different from 1, and let

Fo = GF(q ~ ), where m is the product of these numbers. Put W = Fo
and let

Put V = (?1 , ~2 , i3~ ). It is easily seen that T3 generates the unique
1-dimensional subspace U of W meeting V in a 2-dimensional subspace,
while all 2-dimensional subspaces of W containing U meet V in a 3-di-
mensional subspace. This completes the proof.

In Section 7, we shall see an example of a p.t.structure ~ with
a(2:) = 5.

6. P.t.structures induced by an affine space.

One may ask under what conditions a p.t.structure 2:
" £(H(T » c(T))
can be represented in the form G, E) for a suitable affine space a,
that is when 2: can be embedded in a so that the line-plane structure of
~ is induced by the line-plane structure of a. No intrinsic characteriza-
tion of these structures is known to the authors. Nevertheless, the
question seems to be difficult also in view of Prop. 5.2, because, in gen-
eral, there is not a natural dimension for the embedding.

However, this question is strictly related to the more general ques-
tion of the embedding of a planar linear space in a projective space.
There are several results in this connection. In particular, the problem
has been solved for the locally projective semimodular lattices (e.g.
see [5]). The connections between the results on this last subject and
the representation of a particular class of p.t.structures deserve some
attention.

Suppose that ~= 5(H(T), ë(T» is a projective space. In this case,
(H(T), -(T)) is called a projective partition. If we assume as flats 
= ~(II(T ), -(T)) the subspaces of 2: which meet fin a subspace of .1r, then
2: satisfies the exchange property:

(E) if x, y are points of E and U is a flat of £ then
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where x V U denotes the flat of 2: generated by x and U (see [8],
Teorema 2.1).

From a lattice-theoretical point of view, £ is what is usually called a
locally projective semimodular lattice (e.g. see [5]). It is well known
that if rank E &#x3E; 5, then E can be embedded in a projective space. We
recall as the embedding can be accomplished following [5].

Let,E = (~, 2, 11). Two lines L and L’ of ~ are B-parallel-we use the
symbol ||B-if they are coplanar and disjoint. Notice that L||L’ -
- LII B L ’ . Let L, L’ be two B-parallel lines of E. One can prove that any
two distinct planes A, A’ of E such that L c A, L ’ c A ’ either are dis-
joint or meet in a line. Put

for some planes A, A ’ of 2: with L c A, L ’ c A ’ ~ .
The set [L,L’] satisfy the following conditions:

(19) [L, L’ ] is a (set-theoretical) partition of the points of 2:,
(20) [L, L’ ] is the unique partition of the points of 2: containing both L

and L’ and consisting of pairwise B-parallel lines.

So, then [R, R ’ ] _ [L, L ’ ].
We introduce a new structure P whose point-set T* consists of the

points of 2: and of the sets [L,L’] as defined above.
For any point x E 1P* and any line L E 2 we put

For any flat S of £, we write x i S ~ x I L for fome line L c S. For dis-
tinct planes 7t, n’ of 2: such that rank 7t V 7t’ = 4, define a line [7~, 7r’] of P
to be

The line-set ~* of P consists oaf 2 and of these new lines.
The structure P = (,T*, ~* , I) is a projective space.

LEMMA 6.1. The x = [L, L ’], a hyperplane of
P.

PROOF. Notice that [L, L’ ] is a class of parallel lines of 2: by condi-
tions (19) and (20). L et x, y be two points of To*. So, x = [L, L ’ ] with

and y = [M, AT ] with M ~ ~ M’ . We can suppose that L and M (L’
and M’) meet in a point and that L V M. Let n = L V M and ~c’ =
= L ’ V M’ . Then it is easily seen that ¡r 11¡r’ , 7r n7r, = h and [n, 7r’l is the
line through x and y.
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Suppose that z i [1t, 1t’ ] with z = [N, N’ ], N c n, N’ c n’ , and assume
that N))B N ’ , but N ~ N’ . R E 2 such that p E R and 
We have that R c 1t since R))N ’ c 1t’ and So, R V N = 1t. Neverthe-
less, N V N’ = R V N’ because R c N V N’ as R I IN’. Thus, 1t =

= R V N = N V N’ and hence N’ c 1t. This is a contradiction since 1t and
n’, are disjoint. Therefore, the line [7r, 7r’] can contain only points of J# .
Since every line of £ lies in some class of parallel lines, then it meets To*
in a point.

LEMMA 6.2. Any coLLineation of 2: = ~(II(T ), E(T)) preserving the
planes of E extends to a collineation of P in a unique way. In particu-
lar, any translation of 2: extends to a collineation of P fixing the hy-
perplane To* pointwise.

PROOF. Let a be any collineation of 2: preserving the planes and let
L and L’ be two B-parallel lines of 2:. The set [L, L’ ] is mapped by a- into
a set of pairwise B-parallel lines as o preserves the planes. So,
[L, L ’ ] ~ _ [La, and hence a may be well-defined on the points of
1P* . Likewise, [1t, 7r’ I a- = [1ta, It is straightforward to show that a
preserves the incidence relation I and hence extends to a collineation
of P. Using Lemma 6.1, we obtain the latter assertion.

From an affme point of view, the previous results may be reworded
as follows.

PROPOSITION 6.3. E(T)) be a p.t.structure such
that 3(II(T), e(T)) = PG(n - 1, q) with n ~ 4. Then the group 
to isomor~phism-a dilatation group of the space a = AG(n, q)
and there is a regular of T on a such that 2: is isomorphic
to the p. t. structure a(a, 7’, ~’) induced by a on the orbit E of T.

Conversely, as we have seen in Section 4, if a is an affme space, G is
a dilatation group of a and is a regular point-orbit of G, one can define
the p.t.structure a(a, G, ~) induced by rz in the orbit of G. The fol-
lowing proposition shows under what conditions on G the geometry at
infmity of a(a, G, ~) coincides with that of a.

PROPOSITION 6.4. Let a = AG(n, q), n ; 3, be an affine space. Let
G be a dilatation group of a and be a point-orbit of G. The
p. t. structure G, ~ ) has PG(n - 1, q) as the geometry at infinity if
and only if one of the following holds

(21) G is a translation group and I G I &#x3E; q n -1
(22) G contains some proper dilatation and if K denotes the transla-

tion subgroup of G, then 
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PROOF. Let x be any point in ~. The p.t.structure G, ~) has
PG(n - 1, q) as the geometry at infinity if and only if GL ~ ~ 1 ) for every
line L of a through x. Suppose that G is a translation group and that

(1) for every line L of a through x. Since there are (qn - 1)/(q - 1)
lines of a through x we must have

Conversely, if I G I &#x3E; then (1) for each line L of c9 since G
fixes the class [L] consisting of the lines of ~1, which are parallel to L and

[ q n
Suppose that G is a Frobenius group with kernel K, where K is the

translation subgroup of G. Assume that (1) for every line L of Q
through x. Then I G I &#x3E; qn -1. Thus GL ~ (1) for each line L of a. Let
r(G) be the exceptional point-orbit of G. For what we have seen above,
if I &#x3E; q n -1 there exists a line L through a point of r(G) such that
KL = (1). This yields KM = (1) for each line M in [L]. Since GM ~ (1)
there exists a proper dilatation a e G fixing M. The centre of a lies in
r(G). So, M meets r(G) in a point. Thus, each line of [L] has a common
point with r(G). This yields q n -1, contrary to the assumption
~ K ~ I  q n -1 as K acts transitively on r(G). Conversely, if 
then I G I &#x3E; q n -1 and hence (1) for each line L of A.

For what concerns the Sperner spaces, we have the following
proposition which does not require that the projective dimension of the
geometry at infinity is greater than 2.

PROPOSITION 6.5. Let (II(T ), E(T)) be a projective partition. If
is a Sperner space is an affine space and the ele-

ments of H(T) (E(T)) are the 1-dimensional (2-dimensional) subspaces
of -Y(H(T)).

PROOF. It is well known [11] that if E(T)) is a Sperner
space, then T is a p-group and hence T is elementary abelian. Let

I = p h for Ti E and assume that E(T)) has order q t for q
a prime. Pick any two distinct components Tl , If

V [ = pk, then the following relation holds

So, p = q and relation (23) yields

Therefore, h = t and = 2h. Thus T1 V and hence
T, V T2 = TI EÐ T2 for each pair Tl , T2 of components of 77(T). So, 77(T)
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is a geometric partition (see [4]) and ~(77(r), c(T)) is an affme space
over GF(p h ) since the projective dimension of 1’(H(T), E(T)) is greater
than I2013recall that I &#x3E; 1 by (1).

7. Example of linear partitions

As we have seen, each linear partition is obtained starting from a
linear partition of an abelian group. Nevertheless, it seem very diffi-
cult to carry out any systematic investigation on the linear partitions of
elementary abelian groups. A very large class of p.t.structures over an
abelian group is given by the p.t.structures a(a,T,---), where tl is an
affme space, T a translation group of a and a regular orbit of T on ci.
Such p.t.structures may be or not associated to a projective partition.
Certainly, there exist p.t.structures which are not of the form

a(a, T, ). Below, we produce a class of such structures by extending a
construction of Herzer (see [9], Theorem 2).

EXAMPLE 7.1. Let VI be a linear partition of a vector space V over
a field F and assume that every component of II is a subspace of
V-here, we assume that E(T) can also consist of a unique element. Let
VI be a vector space over F such that v c V, and dimF Vl IV = 1.
Put

It is very easy to see that (Ih , F1 ) is a linear partition of Vi . Fur-
thermore, starting from (III, ei) we may repeat the same construction,
thus obtaining (II2 , F2 ) and so on.

Let start from a linear partition (II, c) such that 2: = ~(II, E) is a non-
desarguesian translation plane (see [1]). In this case 2: is the unique
plane in E. The p.t.structure ~n = ~(77~, ~), ~ ~ 1, contains a plane
which is isomorphic to ~. Now, suppose that ~n = ~3(~3, T, ~ ) for some
affine space 83. Since rank 83 ~ 3 because ~n has more than one plane,
we realized an embedding of 1:, as an affine subplane, in a desarguesian
affine plane. This is absurd.

The same argument shows that a(2:,,) &#x3E; 3. So, a(2:n) -&#x3E; 5 by Prop.
5.3. In particular, if 2: = 2:(H, ë) is a translation plane with

g(~) = 4-that is ~ has dimension 2 over its kernel F in the usual termi-
nology for translation planes-then ~1 = 2:(Hl, gives an example of
a basic p.t.structure with a(£1 ) = 5.

As we have seen, when (77(r), E(T)) is a projective partition and the
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projective dimension of 3(II(T), -(T)) is greater than 2, then

~(II(T ), ë(T» is-up to an isomorphism-of the form a(a, T, ~) for a
suitable affine space a. When dim 5(II(T), e(r)) = 2 this does not hold.
A counterexample is given by the structure ¿:(III, in the Example
7.1, when E) is a non-desarguesian affine plane. In this case,

ei) is isomorphic to the projective extension of E).
Similar examples can be constructed for p.t.structures over a

Frobenius group using the results of Section 4. Nevertheless, they also
appear in [9].
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