RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

N. D. KALAMIDAS

Chain conditions and continuous mappings on $C_p(X)$

Rendiconti del Seminario Matematico della Università di Padova, tome 87 (1992), p. 19-27

http://www.numdam.org/item?id=RSMUP_1992__87__19_0

© Rendiconti del Seminario Matematico della Università di Padova, 1992, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Chain Conditions and Continuous Mappings on $C_p(X)$.

N. D. KALAMIDAS (*)

ABSTRACT - Let X, Y Tychonoff spaces and $\partial\colon C_p(X)\to C_p(Y)$ a one-to-one, continuous linear mapping. We prove that if Y satisfies a certain kind of chain conditions (caliber, c.c.c. e.t.c.) so does X. As a consequence of this, we prove $\{0,1\}^\tau$ (τ regular) cannot be embedded into $C_p(X)$, if X has τ caliber. More generally, we prove that if X has τ caliber then $C_p(X)$ does not contain compact subspaces of weight τ . It follows, subject to GCH, that if B is a Banach space and (B,w) has ω_1 and ω_2 calibers then B is separable. Finally we prove that $C_p(X)$ with X dyadic of weight τ (of uncountable cofinality) does not admit a strictly positive measure.

All topological spaces are assumed to be infinite Tychonoff spaces. In the notations and terminology left unexplained below, we follow [4]. The symbols X, Y, Z always denote spaces and the symbols τ , λ denote infinite cardinals. The cofinality of a cardinal τ , denoted by cf τ , is the least ordinal β , such that τ is the cardinal sum of β many cardinals each smaller than τ . A cardinal τ is regular if $\tau = cf \tau$. The symbol $\mathbb N$ stands for the set of all positive integers and the symbols k, l, m, n are used only to denote members of N. Further d is the density, w is the weight and $|\cdot|$ is the cardinality. A space X satisfies τ .c.c. if there is no family $\gamma \in \mathcal{T}^*(X)$ (the set of all non-empty, open subsets of X) of pairwise disjoint elements with $|\gamma| = \tau$. We set c.c.c. for ω_1 .c.c.. A space X has (τ, λ) caliber (pre-caliber) if for every family $\gamma \in \mathcal{F}^*(X)$ with $|\gamma| = \tau$ there is a subfamily $\gamma_1 \subset \gamma$ with $|\gamma_1| = \lambda$ and $|\gamma_1| \neq \emptyset$ (γ_1 is centered). We set τ caliber for (τ, τ) caliber. A space X satisfies property K_{τ} if for every family $\gamma \in \mathcal{J}^*(X)$ with $|\gamma| = \tau$, there is a subfamily $\gamma_1 \in \gamma$ with $|\gamma_1| = \tau$ with the 2-intersection property. It is well known that if X has

^(*) Indirizzo dell'A.: Department of Mathematics, University of Athens, GR-15781 Panepistimiopolis, Athens, Greece.

au caliber then X has also of au caliber, and so of $au > \omega$. If $F = \{U_1, ..., U_n\}$ is a non-empty, finite subfamily of $\mathcal{T}^*(X)$, then cal (F) is the largest κ such that, there is $S \subset F$ with $|S| = \kappa$ and $\cap S \neq \emptyset$. If $J \subset \mathcal{T}^*(X)$ then $\kappa(J) = \inf \{\operatorname{cal}(F)/|F| \colon F \subset J, \text{ finite}\}$. A space X satisfies property (**) if $\mathcal{T}^*(X)$ can be written in the form, $\mathcal{T}^*(X) = \bigcup_{\mathcal{T}_n} \mathcal{T}_n$, with $\kappa(\mathcal{T}_n) > 0$, for all $n = 1, 2, \ldots$ A space X admits a strictly positive measure, if there is a non-negative Borel probability measure μ on X with $\mu(U) > 0$ for all non-empty open U. For a compact space, Kelley (see [4]), proved that property (**) is equivalent with the existence of a strictly positive measure on the space. It is well known that if X admits a strictly positive measure then it has (τ, ω) caliber for every cardinal τ with cf $\tau > \omega$, [4].

If X is a space, $C_p(X)$ is the space of all real-valued continuous functions on X with the topology of pointwise convergence. For different points $x_1, ..., x_{\kappa}$ in X and $E_1, ..., E_{\kappa}$ non-empty, open intervals of \mathbb{R} , let

$$V(x_1, ..., x_{\kappa}: E_1, ..., E_{\kappa}) = \{ f \in C_p(X): f(x_i) \in E_i, \text{ for } i = 1, ..., \kappa \}.$$

It is clear that $V(x_1, \ldots, x_\kappa \colon E_1, \ldots, E_\kappa)$ form a base of $C_p(X)$. It is well known that $C_p(X)$ is a dense subspace of $\mathbb{R}^{|X|}$ the set of all real-valued functions on X with the topology of pointwise convergence. It follows from well known properties of $\mathbb{R}^{|X|}$, that $C_p(X)$ has pre-caliber τ , for every cardinal τ with $\operatorname{cf} \tau > \omega$ and also satisfies property (**). In the case of a compact space X with $w(X) = \tau$ and $\operatorname{cf} \tau > \omega$, Arhangel'skii and Tkačuk in [3], proved that $C_p(X)$ does not have $\operatorname{cf} \tau$ caliber and also by a result of Tulcea [9], it follows that $C_w(X)$ (the space C(X) with the weak topology) does not admit a strictly positive measure, although it satisfies property (**).

For $A \in X$ and $f \in C_p(X)$ we set $f|_A$ for the restriction of f on A, and supp $f = \{x \in X: f(x) \neq 0\}$ for the support of f.

Theorem 1. Let $\partial \colon C_p(X) \to C_p(Y)$ be a 1-1, continuous mapping. Then we have the following:

- (a) $d(X) \leq d(Y)$,
- (b) Let τ , λ be cardinals with τ regular, $\tau \ge \lambda$ and $cf \lambda > \omega$. We suppose that Y has (τ, λ) caliber. Then X has (τ, λ) caliber.

PROOF. (a) We can suppose that $\partial(0) = 0$. Let D be a dense subset of Y. For every $y \in D$ and $n \in \mathbb{N}$, it follows from the continuity of ∂ at $0 \in C_p(X)$ that there exist $x_1^{y,n}, \ldots, x_{\kappa_{u,n}}^{y,n}$, pairwise different elements of

X, and $E_1^{y,n}, \ldots, E_{\kappa_{y,n}}^{y,n}$ open intervals in $\mathbb R$ containing $0 \in \mathbb R$, such that

$$\partial(V(x_1^{y,\,n},\,...,\,x_{\kappa_{y,\,n}}^{\,y,\,n}\colon\,E_1^{\,y,\,n},\,...,\,E_{\kappa_{y,\,n}}^{\,y,\,n})) \in V\bigg(y\colon\left(-\,\frac{1}{n}\,,\,\,\,\frac{1}{n}\,\right)\bigg).$$

We claim that the set $A=\bigcup\limits_{y\in D}\bigcup\limits_{n\in \mathbb{N}}\{x_1^{y,\,n},\,...,\,x_{\kappa_y,\,n}^{y,\,n}\}$ is dense in X and since $|A|\leqslant |D|$, (a) follows. Indeed, let $x_0\in X\diagdown \overline{A}$, then there exists $f\in C_p(X)$ with $f(x_0)\neq 0$ and $f|_{\overline{A}}=0$. But then $f|_{\{x_1^{y,\,n},\,...,\,x_{\kappa_y,\,n}^{y,\,n}\}}=0$ for every $y\in D$ and $n\in \mathbb{N}$ and so $\partial(f)|_D=0$ so $\partial(f)=0$. This is contradiction since ∂ is one-to-one.

(b) Let $\{U_i\colon i<\tau\}\subset \mathcal{T}^*(X)$. For every $i<\tau$ we choose $f_i\in C_p(X)$ with $f_i\neq 0$ and $\operatorname{supp} f_i\subset U_i$ and $\operatorname{set}\ V_i=\{y\in Y\colon \partial(f_i)(y)\neq 0\}$. From the regularity of τ , it follows that either exists $\tau\ V_i$'s equal elements or τ pairwise different. In both cases, since Y has (τ,λ) caliber, it follows that there exists $\Lambda\subset\tau$, $|\Lambda|=\lambda$ and $y_0\in\cap\{V_i\colon i\in\Lambda\}$. Since $\operatorname{cf}\lambda>\omega$ and $\partial(f_i)(y_0)\neq 0$ for every $i\in\Lambda$ it follows that either there exists $A_1\subset\Lambda$, $|A_1|=\lambda$ and $r_1>0$ such that $\partial(f_i)(y_0)\geqslant r_1$, for every $i\in\Lambda_1$, or $A_2\subset\Lambda$, $|A_2|=\lambda$ and $r_2<0$ such that $\partial(f_i)(y_0)\leqslant r_2$ for every $i\in\Lambda_2$. We can suppose that we have the first. From the continuity of ∂ at $0\in C_p(X)$ there exist x_1,\ldots,x_κ pairwise different elements of X, and E_1,\ldots,E_κ open intervals of $\mathbb R$ containing $0\in\mathbb R$, such that

$$\partial (V(x_1,\;...,\;x_\kappa\colon E_1,\;...,\;E_\kappa)) \in V(y_0\colon (-r_1,\;r_1))\,.$$

Then $f_i \notin V(x_1, ..., x_{\kappa} : E_1, ..., E_{\kappa})$ for every $i \in \Lambda_1$ and so $\{x_1, ..., x_{\kappa}\} \cap U_i \neq \emptyset$ for every $i \in \Lambda_1$. Now (b) follows immediately.

REMARK. We note that the (a) of the above theorem follows also from well known results [7]. We also note that in the (b) of the above theorem the assumption that Y has (τ,λ) caliber cannot be relaxed to have pre-caliber. Indeed, since $C_p(X)$ is contained homeomorphically into $C_p(C_p(X))$ and $C_p(C_p(X))$ has τ precaliber if $\operatorname{cf} \tau > \omega$, however X in general does not satisfy c.c.c..

COROLLARY 2. Let τ be an uncountable regular cardinal. Then X has τ caliber if and only if $C_p(C_p(X))$ has τ caliber. In particular the space $C_p(\mathbb{R}^{\tau})$ has not τ caliber.

PROOF. From results in [8], follows that $C_p(C_p(X)) = \overline{\bigcup_{n \in \mathbb{N}} P_n}$, where P_n is a continuous image of the space $X^n \times \mathbb{R}^m$. If X has τ caliber, it follows that each P_n has τ caliber and so the space

 $C_p(C_p(X))$. The «if» part follows from the fact that $C_p(X)$ is contained homeomorphically into $C_p(C_p(C_p(X)))$ and Th. 1(b).

COROLLARY 3. Let X be a space with τ caliber, τ regular. Let, also, $\delta_i \in \mathbb{R}^{\tau}$ with $\delta_i = (\delta_{ij})_{j < \tau}$, $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ii} = 1$. Then there is no, one-to-one continuous mapping from the compact subspace $\{\delta_i \colon i < \tau\} \cup \{0\}$ of \mathbb{R}^{τ} into $C_p(X)$ and so there is no, one-to-one, continuous mapping from $\{0, 1\}^{\tau}$ into $C_p(X)$.

PROOF. On the discrete space τ , we consider the family $\{\{i\}: i < \tau\}$ and the set of continuous functions $\{\delta_i: i < \tau\}$ and repeat the argument of Th. 1(b).

REMARK. In the case that X is compact the above corollary follows also from well known arguments. Indeed in the case that X is compact and has τ caliber, if there exists $\partial\colon \{\delta_i\colon i<\tau\}\cup\{0\}\to C_p(X)$, a one-to-one continuous mapping then $\partial(\{\delta_i\colon i<\tau\}\cup\{0\})$ would be a compact subspace of $C_p(X)$, of weight τ , contradiction (see [3]). Also, if X is compact and $\{0,1\}^\tau\subseteq C_p(X)$ homeomorphically then $\{0,1\}^\tau$ would be Eberlein compact and since it satisfies c.c.c., would be metrizable [6].

In connection with the above we prove the following stronger result.

THEOREM 4. Let X be a space and we suppose that there exists some $F \in C_p(X)$ compact with $w(F) = \tau$ and cf $\tau > \omega$. Then X has not cf τ caliber.

PROOF. Let $\{\mu_j\colon j<\tau\}$ be a $\|\|$ -dense subset of C(F). We claim that for every $i<\tau$, there exist $f_i,\,g_i\in F,\,f_i\neq g_i$ and $\mu_j(f_i)=\mu_j(g_i)$ for all j< i. This follows easily from Stone-Weierstrass Theorem. Since $f_i\neq g_i$ there exist $r_i\in\mathbb{Q},\,\delta_i>0$ such that either

$$f_i^{-1}(-\infty, r_i) \cap g_i^{-1}(r_i + \delta_i, +\infty) \neq \emptyset,$$

or

$$g_i^{-1}(-\infty, r_i) \cap f_i^{-1}(r_i + \delta_i, +\infty) \neq \emptyset.$$

Since $\operatorname{cf} \tau > \omega$, without loss of generality, we can suppose that there exist $A \subset \tau$, $|A| = \tau$ and $r \in \mathbb{Q}$, $\delta > 0$ such that

$$U_i = f_i^{-1}(-\infty, r) \cap g_i^{-1}(r + \delta, +\infty) \neq \emptyset$$
, for every $i \in A$.

Let $\{i_\eta\colon\, \eta<\mathrm{cf}\, au\}\in A$ with $i_\eta< i_{\eta'}, \ \mathrm{if}\ \eta<\eta'<\mathrm{cf}\, au$ and $\sum\limits_{\eta<\,\mathrm{cf}\, au}i_\eta= au.$ We

suppose, if possible, that X has cf τ caliber. Then there is a cofinal $B \subset \{i_{\eta} \colon \eta < \operatorname{cf} \tau\}$ with $|B| = \operatorname{cf} \tau$ and $\cap \{U_i \colon i \in B\} \neq \emptyset$. In case that there are no cf τ pairwise different elements in $\{U_{i_{\tau}} \colon \eta < \operatorname{cf} \tau\}$, this follows immediately. Otherwise this follows from the assumption that X has cf τ caliber. Let $x \in \cap \{U_i \colon i \in B\}$. Then $\delta_x \in C(F)$ and so there exists $i_0 < \tau$ such that

$$\|\mu_{i_0}-\delta_x\|<rac{\delta}{4}$$
.

If $i \in B$ with $i > i_0$ we have $\mu_{i_0}(f_i) = \mu_{i_0}(g_i)$ and so $|f_i(x) - g_i(x)| < \delta/2$ contradiction, since $f_i(x) \in (-\infty, r)$ and $g_i(x) \in (r + \delta, +\infty)$.

COROLLARY 5. (Arhangel'skii and Tkačuk, [3]). Let X be a compact space with $w(X) = \tau$ and cf $\tau > \omega$. Then $C_p(X)$ does not have cf τ caliber.

PROOF. It follows from the fact that X is contained homeomorphically into $C_p(C_p(X))$ and Th. 4.

COROLLARY 6. Suppose that $2^{\omega_1} = \omega_2$. Then we have the following:

- (a) If X has ω_1 and ω_2 calibers, every compact $F \in C_p(X)$ is metrizable.
- (b) If X is compact and $C_p(X)$ has ω_1 and ω_2 calibers then X is metrizable.

PROOF. (a) We claim that F is separable. If not, there exists $\{f_i\colon i<\omega_1\}\subset F$ such that $f_j\notin\overline{\{f_i\colon i< j\}}$. Then $w(\overline{\{f_i\colon i<\omega_1\}})\leqslant 2^{\omega_1}=\omega_2$ and so $w(\overline{\{f_i\colon i<\omega_1\}})=\omega_1$ or ω_2 contradiction by Corol. 5. Therefore F is separable and so $w(F)\leqslant 2^{\omega}\leqslant 2^{\omega_1}=\omega_2$. It follows as before from Corol. 5 that F is metrizable.

- (b) It follows from the fact $X \subseteq C_p(C_p(X))$ homeomorphically and (a).
- NOTE 1. I have recent information that Th. 4 follows also Corol. 5 and results in [8].
- NOTE 2. The (b) of the above corollary has already been proved in [3].
- NOTE 3. The above theorem is not valid if the assumption τ caliber is relaxed to pre-caliber. Indeed, in general $X \subseteq C_p(C_p(X))$ and $C_p(X)$ has τ pre-caliber if $cf \tau > \omega$, although X may have weight τ .

THEOREM 7 (GCH). If B is a Banach space, such that the space (B, w) has ω_1 and ω_2 calibers, then B is separable.

PROOF. It is well known that (S_{B^*}, w^*) the unit ball of B^* with the w^* -topology is contained homeomorphically into $C_p(B, w)$, and also that B is contained isometrically into $C(S_{B^*}, w^*)$. The result follows from Corol. 6.

For a set Γ we set $\Sigma(\mathbb{R}^{\Gamma}) = \{t \in \mathbb{R}^{\Gamma} : \{\gamma : t(\gamma) \neq 0\} \text{ is countable}\}$ with the relative topology in \mathbb{R}^{Γ} .

PROPOSITION 7. We assume that $C_p(X)$ has ω_1 caliber and there exists $\partial\colon C_p(X) \to \Sigma(\mathbb{R}^\Gamma)$, a 1-1, continuous mapping. Then X is separable.

PROOF. We claim that there exists a countable $A \in \Gamma$ such that $\partial(f)(\gamma) = 0$ for every $\gamma \in \Gamma \setminus A$. Indeed, if not, there exists γ_{ξ} , $\xi < \omega_1$ in Γ and f_{ξ} , $\xi < \omega_1$ in $C_p(X)$ with $\partial(f_{\xi})(\gamma_{\xi}) > 0$ for every $\xi < \omega_1$. We may suppose that $\partial(f_{\xi}) \ge r$ for some $r \in \mathbb{R}$. Since $C_p(X)$ has ω_1 caliber there exist $B \subset \omega_1$, $|B| = \omega_1$ and $f \in C_p(X)$ such that $\partial(f) \in \bigcap_{\xi \in B} V(\gamma_{\xi}: (r, +\infty))$ contradiction, because $\partial(f) \in \Sigma(\mathbb{R}^{\Gamma})$.

It follows that the continuous mapping $f \to \partial(f)|_A$ remains 1-1, and the result follows from Th. 1(a).

In Corol. 2 we have that $C_p(\mathbb{R}^{\tau})$ has not τ caliber, if τ is an uncountable regular cardinal. In connection with this we have the following stronger result.

PROPOSITION 8. Let τ be a cardinal with $\operatorname{cf} \tau > \omega$, then the space $C_p(\mathbb{R}^{\tau})$, does not have (τ, ω) caliber (and so it does not admit a strictly positive measure).

PROOF. For every $i < \tau$, let $\delta_i \in \mathbb{R}^{\tau}$ with $\delta_i = (\delta_{ij})_{j < \tau}$, and $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ii} = 1$. Then the family

$$V(\delta_i, \delta_{i+1}: (0, 1), (2, 3)), \quad i < \tau$$

does not contain an infinite subfamily with non-empty intersection. Indeed, let $A \in \tau$ and $f \in \bigcap_{i \in A} V(\delta_i, \delta_{i+1})$: (0,1), (2,3)). We set $0 = (0)_{i < \tau}$.

We may assume that $f(0) \notin (0,1)$. We consider r > 0 with $(f(0) - r, f(0) + r) \cap (0,1) = 0$. From the continuity of f at 0 there exist i_1, \ldots, i_{κ} in τ and I_1, \ldots, I_{κ} open intervals of \mathbb{R} , containing 0 such that $f(\pi_{i_1}^{-1}(I_1) \cap \ldots \cap \pi_{i_{\kappa}}^{-1}(I_{\kappa})) \subset (f(0) - r, f(0) + r)$. If $i \in A \setminus \{i_1, \ldots, i_{\kappa}\}$ then $\delta_i \in \pi_{i_1}^{-1}(I_1) \cap \ldots \cap \pi_{\kappa}^{-1}(I_{\kappa})$ and so $f(\delta_i) \notin (0, 1)$, contradiction.

COROLLARY 9. Let X be a dyadic space with $w(X) = \tau$ and of $\tau > \omega$. Then $C_p(X)$ does not have (τ, ω) caliber, so it does not admit a strictly positive measure.

PROOF. By a result of Efimov, [5], it follows that $\{0, 1\}^{\tau} \subseteq X$. If we repeat the proof of Prop. 8 we can prove that $C_p\{0, 1\}^{\tau}$ does not have (τ, ω) caliber. Now the mapping $\partial \colon C_p(X) \to C_p(\{0, 1\}^{\tau})$ with $\partial(f) = f|_{\{0, 1\}^{\tau}}$, is continuous, linear and onto. So if $C_p(X)$ had (τ, ω) caliber, then $C_p(\{0, 1\}^{\tau})$ would have (τ, ω) caliber, contradiction.

The above theorem gives a partial answer to the following.

PROBLEM. Is there a non-metrizable compact Hausdorff space such that $C_p(X)$ has a strictly positive measure?

D. Fremlin in note of 10 Oct. 1989 proved that this problem is connected with the following

PROBLEM. (A. Bellow). Is there a probability space (Z, Σ, ν) with a $Y \in \mathcal{L}^0(\Sigma)$ (= the space of real-valued measurable functions on Z) such that Y is compact and non-metrizable in the topology of pointwise convergence and any pair of distinct members of Y differ on a non-negligible set?

THEOREM 10. Let $\partial: C_p(X) \to C_p(Y)$ be a 1-1, continuous, linear mapping and τ be an uncountable regular cardinal. Then we have the following implications.

- (a) If Y has (τ, ω) caliber, so does X.
- (b) If Y admits a strictly positive measure then X has (τ, ω) caliber and satisfies property K_{τ} .

PROOF. (a) Let $\{U_i\colon i<\tau\}$ be a family of non-empty open sets in X. For every $i<\tau$ we find $f_i\in C_p(X)$ with $\operatorname{supp} f_i\subset U, f_i\neq 0$ and set $V_i=\{y\in Y\colon \partial(f_i)(y)\neq 0\}$. From the regularity of τ , it follows that either there exist τ V_i 's equal elements, or τ pairwise different. In both cases there exists $\Lambda\subset\tau$, infinite and $y_0\in\cap\{V_i\colon i\in\Lambda\}$. Then there exist x_1,\ldots,x_κ pairwise different elements in X, and E_1,\ldots,E_κ open intervals of $\mathbb R$ each containing 0 such that

$$\partial(V(x_1, ..., x_{\kappa}: E_1, ..., E_{\kappa})) \subset V(y_0: (-1, 1)).$$

We claim that if $f|_{\{x_1, \ldots, x_\kappa\}} = 0$ then $\partial(f(y_0) = 0$. Indeed, if $\partial(f)(y_0) \neq 0$, there is a $\lambda \in \mathbb{R}$ such that $\partial(\lambda f)(y_0) = \lambda \partial(f)(y_0) \notin (-1, 1)$, by the linearity of ∂ , but $\lambda f \in V(x_1, \ldots, x_\kappa \colon O_1, \ldots, O_\kappa)$, contradiction.

(b) If Y admits a strictly positive measure μ , then Y has (τ, ω) caliber and so X has (τ, ω) caliber by (a).

In the following we shall prove that X satisfies property K_{τ} . We suppose, if possible, that there exists a family $\{U_i\colon i<\tau\}$ of non-empty, open subsets of X which does not contain subfamily of the same cardinality with the 2-intersection property. Let $f_i,\ V_i,\ i<\tau$ as in (a). We can suppose that $\mu(V_i)\geq \delta$ for all $i<\tau$, for some $\delta>0$.

For every $A \subset \tau$, $|A| = \tau$ we set

$$\mathcal{P}_A = \{B \in A: \text{ the family } \{U_i: i \in B\} \text{ has the 2-int-property}\}.$$

The set \mathcal{P}_A is non-empty by (a), partially ordered by inclusion and satisfies the assumptions of Zorn's Lemma. Let B_A be maximal. Then $|B_A| < \tau$. For every $i \in A \setminus B_A$ there exists $j_i \in B_A$ with $U_i \cap U_{j_i} = 0$. Then

$$A=B_A\,U\bigcup_{j\,\in\,B_A}\bigl\{i\in A\colon j_i=j\bigr\}\,.$$

From the regularity of τ , there exists $j_1 \in B_A$, such that the set $A_1 = \{i \in A \colon j_i = j_1\}$ has cardinality τ . We repeat the same argument with A_1 in place of A.

Inductively we find $j_1, j_2, ..., j_n, ...$ pairwise different elements of τ , such that $U_{j_l} \cap U_{j_m} = \emptyset$, for every $l \neq m, l, m = 1, 2, ...$ Now since $\mu(V_{i_l}) \geq \delta, \ l = 1, 2, ...$ it follows that there exists a $B \subset \mathbb{N}$, infinite with $\bigcap_{l \in B} V_{j_l} \neq 0$. Now similar arguments as in (a) lead to contradiction.

COROLLARY 11. Let τ be an uncountable regular cardinal. If X admits a strictly positive measure, there is no, 1-1, linear continuous mapping from \mathbb{R}^{τ} into $C_p(X)$.

REMARK. Let X, Y be compact spaces and $\partial\colon C_p(X)\to C_p(Y)$ be a one-to-one, continuous linear mapping, then the mapping $\partial\colon (C(X), \|\ \|)\to (C(Y), \|\ \|)$ is also continuous (see Arhangel'skii [2]). However the existence of a 1-1, continuous linear mapping $\partial\colon (C(X), \|\ \|)\to (C(Y), \|\ \|)$ does not imply the existence of a 1-1, continuous $\phi\colon C_p(X)\to C_p(Y)$. By Dixmier's Theorem $L^\infty[0,1]=C(\Omega)$ where Ω is a compact extremelly disconnected space. On the other hand $L^\infty[0,1]$ is isomorphic to $C(\beta\mathbb{N})$. The space Ω is not separable, so from Th. 1(a) there exists no a one-to-one, continuous $\phi\colon C_p(\Omega)\to C_p(\beta\mathbb{N})$.

REFERENCES

- [1] A. V. Arhangel'skii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Mat. Nank., 39:5 (1984), pp. 11-50.
- [2] A. V. Arhangel'skii, On linear homeomorphisms of function spaces, Soviet Math. Dokl., 25, No. 3 (1982).
- [3] A. V. Arhangel'skii V. V. Tkačuk, Calibers and point-finite cellularity of the space $C_p(X)$ and questions of S. Gulko and M. Husek, Topology and its Applications, 23 (1986), pp. 65-73, North-Holland.
- [4] W. W. COMFORT S. NEGREPONTIS, Chain Conditions in Topology, Cambridge Tracts in Mathematics, Vol. 79, Cambridge University Press, Cambridge (1982).
- [5] B. A. Efimov, Mappings and embeddings of dyadic spaces, Mat. Sb., 103 (1977), pp. 52-68.
- [6] H. ROSENTHAL, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Mathematica, 124 (1970), pp. 205-248.
- [7] V. V. TKAČUK, The spaces $C_p(X)$: Decomposition into a countable union of bounded subspaces and completeness properties, Topology and its Applications, 22 (1986), pp. 241-253.
- [8] V. V. TKAČUK, The smallest subring of the ring $C_p(C_p(X))$ containing χ_U is everywhere dense in $C_p(C_p(X))$, Vestnik Moskovskogo Universiteta Matematica, 42, No. 1 (1987), pp. 20-23.
- [9] A. I. Tulcea, On pointwise convergence, compactness and equicontinuity, Adv. Math., 12 (1974), pp. 171-177.

Manoscritto pervenuto in Redazione il 4 giugno 1990.