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Chain Conditions and Continuous

Mappings on Cp(X).
N. D. KALAMIDAS(*)

ABSTRACT - Let X, Y Tychonoff spaces and 8: ~ Cp (Y) a one-to-one, con-
tinuous linear mapping. We prove that if Y satisfies a certain kind of chain
conditions (caliber, c.c.c. e.t.c.) so does X. As a consequence of this, we
prove 10, 11 1 (T regular) cannot be embedded into Cp (X), if X has r caliber.
More generally, we prove that if X has T caliber then does not contain

compact subspaces of weight r. It follows, subject to GCH, that if B is a Ba-
nach space and (B, w) has mi and W2 calibers then B is separable. Finally we
prove that Cp (X ) with X dyadic of weight r (of uncountable cofinality) does
not admit a strictly positive measure.

All topological spaces are assumed to be infinite Tychonoff spaces.
In the notations and terminology left unexplained below, we follow [4].
The symbols X, Y, Z always denote spaces and the symbols r, A denote
infinite cardinals. The cofinality of a cardinal r, denoted by cfr, is the
least ordinal {3, such that r is the cardinal sum of p many cardinals each
smaller than z. A cardinal r is regular if r = cf z. The symbol N stands
for the set of all positive integers and the symbols k, 1, m, n are used
only to denote members of N. Further d is the density, w is the weight
and 1.1 I is the cardinality. A space X satisfies r.c.c. if there is no family
Y c (the set of all non-empty, open subsets of X) of pairwise dis-
joint elements with lyl I = r. We set c.c.c. for WI.C.C.. A space X has

(r, A) caliber (pre-caliber) if for every family y c 5*(X) with I y I = r
there is a subfamily y1 c Y with |y1| I = A andn (Yl is centered). We
set r caliber for (r, r) caliber. A space X satisfies property Kz if for
every family with I = r, there is a subfamily y1 c y with

[ = r with the 2-intersection property. It is well known that if X has

(*) Indirizzo dell’A.: Department of Mathematics, University of Athens,
GR-15781 Panepistimiopolis, Athens, Greece.
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z caliber then X has also cfr caliber, and so If F =

..., is a non-empty, finite subfamily of then cal (F) is
the largest K such that, there is ,S c F with S ~ I = x and If
J c then x(J) = inf ~cal (F)/ ~ F ~ : F c J, finite}. A space X satisfies
property (**) if can be written in the form, ~’* (X) = U ~, with
K(5g ) &#x3E; 0, for all n = 1, 2, .... A space X admits a strictly pos it ive mea-
sure, if there is a non-negative Borel probability measure t4 on X with

&#x3E; 0 for all non-empty open U. For a compact space, Kelley
(see [4]), proved that property (**) is equivalent with the existence of a
strictly positive measure on the space. It is well known that if X admits
a strictly positive measure then it has (r, c~) caliber for every cardinal r
with [4].

If X is a space, Cp (X ) is the space of all real-valued continuous func-
tions on X with the topology of pointwise convergence. For different
points x1, ..., xK in X and El , ..., EK non-empty, open intervals of R,
let

It is clear that V(x1, ..., xK : E1, 9 ..., form a base of Cp (X). It is well
known that Cp (X) is a dense subspace of R lxl the set of all real-valued
functions on X with the topology of pointwise convergence. It follows
from well known properties of Rlxl, that has pre-caliber r, for
every cardinal r with and also satisfies property (**). In the
case of a compact space X with w(X) = 7 and Arhangel’skii
and Tkacuk in [3], proved that Cp (X) does not have cfr caliber and also
by a result of Tulcea [9], it follows that Cw (X) (the space C(X) with the
weak topology) does not admit a strictly positive measure, although it
satisfies property (**).

For A c X and f E Cp (X) we set f I A for the restriction of f on A, and
supp f = Ix E X: 01 for the support of f.

THEOREM 1. Let 3: Cp (X) ~ Cp (Y) be a 1-1, continuous mapping.
Then we have the following:

(b) Let be cardinals with c regular, c * h and 

We suppose that Y has (r, A) caliber. Then X has (r, A) caliber.

PROOF. (a) We can suppose that 8(0) = 0. Let D be a dense subset
of Y. For every y E D and n E N, it follows from the continuity of a at
0 E Cp (X) that there exist ..., pairwise different elements of
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X, and ~’~...,2~’~ open intervals in R containing such
that 

’

We claim that the set A = U 
D 
U is dense in X and

since |A|  |D|, (a) follows. Indeed, let then there exists
= 0 for every

y E D and n E N and so = 0 so a(f) = 0. This ~’is contradiction
since a is one-to-one.

(b) i  71 For every i  r we choose fi E Cp (X)
with fi # 0 and supp f c Ui and set Vi = lyE Y: 01. From the
regularity of r, it follows that either exists r Vi’s equal elements or 7
pairwise different. In both cases, since Y has (r, ~) caliber, it follows
that there exists ACT, I =À and yo E A 1. Since cfA &#x3E; w

and 0 for every i E A it follows that either there exists ~11 c A,
I = A and r, &#x3E; 0 such that rl, for every i E A,, or A2 c A,

~ ~12 ~ - ~1 and r2  0 such r2 for every i E A2 . We can sup-
pose that we have the first. From the continuity of a at 0 E Cp (X) there
exist xl , ..., xK pairwise different elements of X, and Ei , ..., EK open
intervals of R containing 0 E R, such that

Then f ~ V(xl , ..., xx : E1, ..., EK ) for every i E Aland so

..., n for every Now (b) follows immediately.

REMARK. We note that the (a) of the above theorem follows also
from well known results [7]. We also note that in the (b) of the above
theorem the assumption that Y has (r, À) caliber cannot be relaxed to
have pre-caliber. Indeed, since Cp (X) is contained homeomorphically
into Cp (Cp (Cp (X))) and Cp (Cp (X)) has 7 precaliber if ef 7 &#x3E; (ù, however
X in general does not satisfy c.c.c..

COROLLARY 2. Let z be an uncountable regular cardinal. Then X
has r caliber if and only if Cp (Cp (X)) has 7 caliber. In particular the
space has not r caliber.

PROOF. From results in [8], follows that Cp (Cp (X)) = U Pn,n e N

where Pn is a continuous image of the space X n x If X has
r caliber, it follows that each Pn has r caliber and so the space
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Cp (Cp (X)). The «if» part follows from the fact that Cp (X) is contained
homeomorphically into Cp (Cp (Cp (X))) and Th. l(b).

COROLLARY 3. Let X be a space with r caliber, r regular. Let,
also, di E R 1" with di = (dij)j  T, aij = 0 for and = 1. Then there is
no, one-to-one continuous mapping from the compact subspace

i  1"} U ~0~ of R~ into Cp (X) and so there is no, one-to-one, contin-
uous mapping from 10, 1}1" into Cp(X).

PROOF. On the discrete space r, we consider the family
 1"} and the set of continuous functions i  1"} and repeat

the argument of Th. 1 (b).

REMARK. In the case that X is compact the above corollary follows
also from well known arguments. Indeed in the case that X is compact
and has r caliber, if there exists a: i  1"} U f 01 - Cp (X), a one-to-
one continuous mapping then  1"} U (0)) would be a compact
subspace of Cp (X), of weight r, contradiction (see [3]). Also, if X is com-
pact and 10, homeomorphically then {0, 11’ would be Eber-
lein compact and since it satisfies c.c.c., would be metrizable [6].

In connection with the above we prove the following stronger
result.

THEOREM 4. Let X be a space and we suppose that there exists
some F c Cp (X) compact with w(F) = r and Then X has not cf z
caliber.

PROOF. Let  1"} be a 11 II-dense subset of C(F). We claim that
for every i  r, there exist f , gi E F, fi ;d gi and for all

j  i. This follows easily from Stone-Weierstrass Theorem. Since fi ;d gi
there exist ri E &#x3E; 0 such that either

or

Since without loss of generality, we can suppose that there
exist T and r E &#x3E; 0 such that
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suppose, if possible, that X has cf r caliber. Then there is a cofinal
with B [ = cfr and In case that

there are no cfr pairwise different elements  this fol-
lows immediately. Otherwise this follows from the assumption that X
has cf z caliber. Let x E i E B}. Then dx E C(F) and so there exists

io  T such that

If i E B with i &#x3E; io we have and so gi (x) I  ~/2
contradiction, since f (x) E ( - 00, r) and gi (x) E (r + 8, + (0).

COROLLARY 5. (Arhangel’skii and Tkacuk, [3]). Let X be a com-
pact space with w(X) = r and elf 7 &#x3E; c~. Then Cp (X) does not have cfr
caliber.

PROOF. It follows from the fact that X is contained homeomorphi-
cally into Cp (Cp (X)) and Th. 4.

COROLLARY 6. Suppose that 2Wl = W2. Then we have the follow-

ing :
(a) If X has c~l and c~2 calibers, every compact F c Cp (X) is

metrizable.

(b) If X is compact and Cp (X) has oil and W2 calibers then X is
metrizable.

PROOF. (a) We claim that F is separable. If not, there exists

{fi: i  w1} c F such that fj E {fi: i  j}. Then w({fi: i  w1})  2w1 = 
= W2 and so  = c~1 or c~2 contradiction by Corol. 5. There-
fore F is separable and so w(IJ £ 2W :::; 2Wl = W2 - It follows as before
from Corol. 5 that F is metrizable.

(b) It follows from the fact X q Cp (Cp (X)) homeomorphically and
(a).

NOTE 1. I have recent information that Th. 4 follows also Corol. 5
and results in [8].

NOTE 2. The (b) of the above corollary has already been proved
in [3].

NOTE 3. The above theorem is not valid if the assumption r caliber
is relaxed to pre-caliber. Indeed, in general X q Cp (Cp (X)) and Cp (X)
has 7 pre-caliber if cfr &#x3E; or, although X may have weight z.
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THEOREM 7 (GCH). If B is a Banach space, such that the space
(B, w) has oil and (V2 calibers, then B is separable.

PROOF. It is well known that (,SB * , w * ) the unit ball of B* with the
w*-topology is contained homeomorphically into Cp (B, w), and also that
B is contained isometrically into C(,SB * , w * ). The result follows from
Corol. 6.

For a set 1’ we set ~(II~r) _ It e R : ly: t(y) ~ 01 is countable} with
the relative topology in 

PROPOSITION 7. We assume that Cp (X) has oil caliber and there
exists a: Cp (X) ~ £(R~), a 1-1, continuous mapping. Then X is separa-
ble.

PROOF. We claim that there exists a countable A c 1’ such that

8( f)(y) = 0 for every y E r~A. Indeed, if not, there exists  cui in
r and fE,  w1 in Cp (X) with 8( fj )(yj ) &#x3E; 0 for every E  We may
suppose that 8~fj ) % r for some r E R. Since Cp (X) has oil caliber there
exist I B oil and f E Cp (X) such that 8( f) E B (r, + oo ))

E E B

contradiction, because 8(f) 
It follows that the continuous remains 1-1, and

the result follows from Th. l(a).
In Corol. 2 we have that Cp has not r caliber, if r is an uncount-

able regular cardinal. In connection with this we have the following
stronger result.

PROPOSITION 8. Let T be a cardinal with cfr &#x3E; (v, then the space
Cp(R~), does not have (z, c~) caliber (and so it does not admit a strictly
positive measure).

PROOF. For every i  T, let 8i E Rr with 8i = (8ij)j  T’ and 8ij = 0 for
i ~ j and 8ii = 1. Then the family

does not contain an infinite subfamily with non-empty intersection. In-
deed, let A c r and f e fl V(8i, 8i + 1: (o,1 ), (2, 3)). We set 0 = (0)j  ~ .

i EA

We may assume that (o,1). We consider r &#x3E; 0 with 
+ r) n (0, 1) = 0. From the continuity of f at 0 there exist il , 9 ..., ix

in r and I1, ..., IK open intervals of R, containing 0 such that
If 

then 8i E nil 1 (I1 ) rl ... and so (0, 1), contradiction.
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COROLLARY 9. Let X be a dyadic space with w(X) =,r and
cfr &#x3E; w. Then Cp (X) does not have (r, to) caliber, so it does not admit a
strictly positive measure.

PROOF. By a result of Efimov, [5], it follows that 10, If we

repeat the proof of Prop. 8 we can prove that Cp ~0, does not have

(T,W) caliber. Now the mapping a: with a( f ) _
= f is continuous, linear and onto. So if Cp (X) had (T, w) caliber,
then Cp (f 0, 1)~) would have (T, c~) caliber, contradiction.

The above theorem gives a partial answer to the following.

PROBLEM. Is there a non-metrizable compact Hausdorff space such
that Cp (X) has a strictly positive measure?

D. Fremlin in note of 10 Oct. 1989 proved that this problem is con-
nected with the following

PROBLEM. (A. Bellow). Is there a probability space (Z,.~, v) with a
Y c 20 (~) ( = the space of real-valued measurable functions on Z) such
that Y is compact and non-metrizable in the topology of pointwise con-
vergence and any pair of distinct members of Y differ on a non-negligi-
ble set?

THEOREM 10. Let 3: Cp (X) -~ Cp (Y) be a 1-1, continuous, linear
mapping and 7 be an uncountable regular cardinal. Then we have the
following implications.

(a) If Y has (r, to) caliber, so does X.

(b) If Y admits a strictly positive measure then X has (r, c~) cal-
iber and satisfies property KT .

PROOF. (a) i  T} be a family of non-empty open sets in
X. For every i  r we find f E Cp (X) with supp f c U, fi # 0 and set Vi =
= ~y E Y: 01. From the regularity of T, it follows that either
there exist r Vi’s equal elements, or T pairwise different. In both cases
there exists A c r, infinite and Then there exist

xl , ..., x,, pairwise different elements in X, and E1, ..., E,, open inter-
vals of R each containing 0 such that

We claim that if f ~ fxl, ..., xK} = 0 then Indeed, if

0, there is a ~ E R such that 9(Af)(yo) = ( -1, 1),
by the linearity of a, but A/’eV(~i,...,~:Oi,...,0~), contradic-
tion.
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(b) If Y admits a strictly positive measure u, then Y has (z, to) cal-
iber and so X has (~, to) caliber by (a).

In the following we shall prove that X satisfies property K-r; . We
suppose, if possible, that there exists a family {Ui: i  rl of non-emp-
ty, open subsets of X which does not contain subfamily of the same car-
dinality with the 2-intersection property. Let f , Vi , i  r as in (a). We
can suppose that ,u(T~2 ) ; ~ for all i  r, for some 8 &#x3E; 0.

For every A cr, we set

~’A = the has the 2-int-property}.

The set ~A is non-empty by (a), partially ordered by inclusion and satis-
fies the assumptions of Zorn’s Lemma. Let BA be maximal. Then

I  r. For every i E A B BA there exists ji E BA with Ui n Uji = 0.
Then 

"

From the regularity of T, there exists ji E BA , such that the set Al =
li E A: ji = has cardinality T. We repeat the same argument withAl
in place of A.

Inductively we find jI, j2 , - - -, 9 jn 9 ... pairwise different elements of
z, such that U~1 fl 0, for every 1 ;,-, m, 1, m = 1, 2, .... Now since

= 1, 2, ... it follows that there exists a infinite with
0. Now similar arguments as in (a) lead to contradiction.

1,E B Ji

COROLLARY 11. Let r be an uncountable regular cardinal. If X ad-
mits a strictly positive measure, there is no, 1-1, linear continuous

mapping from R" into Cp (X).

REMARK. Let X, Y be compact spaces and a: Cp (X) z Cp (Y) be a
one-to-one, continuous linear mapping, then the mapping
a: (C(X), II il)-(C(Y), ~’ ~~) is also continuous (see Arhangel’skii[2]).
However the existence of a 1-1, continuous linear mapping
a: (C(X)g 1111&#x3E; -~ (C(Y), ’~ ~~) does not imply the existence of a 1-1, contin-
uous ~: Cp (X) - Cp (Y). By Dixmier’s Theorem L 00 [0, 1] = C(Q) where
S2 is a compact extremelly disconnected space. On the other hand
L °° [0, 1] is isomorphic to The space 13 is not separable, so from
Th. l(a) there exists no a one-to-one, continuous ~: 
-3 Cp @N).
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