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Hölder Regularity in Non Autonomous Degenerate
Abstract Parabolic Equations.

ANNA BUTTU(*)

ABSTRACT - We prove optimal H61der regularity results for a class of non-autono-
mous degenerate parabolic equations, in general Banach space.

0. Introduction.

We consider a parabolic evolution equation in general Banach
space X:

Here «parabolic» means that for every t E [0, T], the operator A(t):
generates an analytic semigroup in X. The domains

D(A(t)) may possibly be not constant and not dense in X. We assume
that the family IA(t): 0  t ~ T } satisfies some conditions guaran-
teeing that there exists an evolution operator for problem

The function g~: [0, T ] ~ R is continuous and nonnegative, and it is
allowed to vanish at t = 0 and at t = T. Therefore (0.1) is an abstract
degenerate parabolic initial value problem. We assume that

(*) Indirizzo dell’A.: Dipartimento di Matematica, Via Ospedale 72, 09124
Cagliari, Italy.
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and

Then we can state precise regularity results (mainly, H61der regularity
results) for the solution of (0.1). The solution is a strong, classical, or
strict one (see Def. 2.1, 3.1, 3.6) according to the regularity of the data.
We get a representation formula for the solution by setting

so that (0.1) becomes

Now, w is given by the variation of constants formula

so that

Here is the evolution operator associated to the family
~A(~ -1 (z), ), ~ E [0, ~(T )] ~ . Our results are shown by a careful study of
formula (0.3).

The literature on the subject is not very rich. In a previous
paper ([5]) we studied the case where A(t) = A is independent of

time, and &#x3E; 0 for t &#x3E; 0. Weak solutions to (0.1) are considered
in [9] and [12], in the case where X is a Hilbert space, and D(A(t)) = D
is constant and dense in X. A certain class of degenerate equations
could be studied also by means of the «sum of operators» method
of [6]. However, such a method seems to be more fruitful in singular
equations than in degenerate ones (see also [7], [8]). The paper is
structured as follows. Section 1 is devoted to notation and preliminary
estimates on the evolution operator relevant to problem (0.2). Section
2 deals with classical solvability of (0.1) and regularity properties
of the classical solutions, whereas strict and strong solutions are

studied in Section 3. Finally, in Section 4 we apply some of the
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abstract results to a class of initial boundary value problems for
second order degenerate parabolic equations.

1. Notation and preliminaries.

Let T &#x3E; 0 and let X be any Banach space whith norm .11. We shall
use in the sequel the following functional spaces B([O, T]; X) (the
space of all bounded functions f [0, T] - X endowed with the sup norm

Lip ([0, T )]; X) (the space of all Lipschitz continuous f: [0, T ] -~
-~ X), C([O, T ]; X), ca ([0, T ]; X), C(]O, T ]; X) with the usual meanings
and norms. We consider a continuous function ~: [0, T ] -~ R such that
q(t) &#x3E; 0 for t T [. We shall see that the behaviour of the solution of
(0.1) depends heavily on the behaviour of q as t - 0 and as t - T.

Therefore we assume:

with /3 ~ 0, and 
It is convenient to introduce the notation

Due to assumption (1.1), we get:

Let
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Then from (1.1) and (1.4) it follows:

and from (1.2), (1.3) and (1.4) it follows:

with k, = + 1), + 1)}, K, = K/((3 + 1).
Throughout the paper we shall assume that for each t e [0, ],

A(t): D(A(t)) generates an analytic semigroup e, s ~ 0 in X.
The domains D(A(t)) may change with t, however the resolvent sets
p(A(t)) are assumed to contain a common sector

with 60 e ]¡r/2, 7r[.
Moreover we shall assume, as in [2], [3]:

D(A(t)) is endowed with the graph norm and its closure in X is denoted
by D(A(t)). We refer to [13] and [3] for all properties of and of the
interpolation spaces DA~t~ (~, ~ ), DAct&#x3E; (6 + 1, 00), DA~t~ (6) and (-8 +
+ 1), 0  9  1. We set DA~t~ (o, ~ ) = X and = D (A(t)) Vt E
E [0, T]. Set
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Then the family satisfies assumption (1.7). More precisely, we
have (due to (1.1) and (1.3)):

We assume

By [2], [3] there exists an evolution operator G(r,7) relevant to the
family IB(,r) = A(~ -1 (’t"»: 0 £ c  ~(T )). It can be represented as

where a’ is defined in (1.10) (see [2], Lemma 2.2).
Moreover we have (recall that A(.) = B(~(~)):
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(see [3, Lemmas 1.8 and 1.10] and our assumptions (1.9), (1.10)).
Let 0 ~ s  z  t ~ ~(T ), and let a be defined in (1.10). We have:

(see [3, Thm. 6.1]).
The following lemma will be useful in the sequel.

for each a  ~  t  ~(T ), 0  a  1.

PROOF. It is an easy consequence of Propositions 2.1 (iv) and
2.6 (iii) (d) of [3] (with g = 0), together with the representation formula
(1.22) of [3].

Let us state other estimates which will be used throughout the
paper.



175

LEMMA 1.2. Let a be defined in (1.10). Then, both for 0 ~ s  T 
t~T/2 and for T/2  s  c  t £ T we have:

PROOF. (1.23) is a simple consequence of (1.18), (1.2), (1.4) and
(1.6). To show (1.24), ..., (1.27), we consider either 0 ~ s  z  t ~ T /2
or T/2  s  T  t , T. (1.24), for v = 0, holds with CI = 2C4 thanks to
(1.17). For v &#x3E; 0, thanks to (1.23), (1.4) and (1.5), we have .
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Concerning (1.25) and (1.26), thanks to [2, (2.10)] we

have:

By (1.15), (1.4), (1.5) and (1.6) we have:

Now if 6 E [o,1 [

and from (1.13), (1.4), (1.6) it follows:

Hence (1.25) holds. If 6 = 1 and v E ]o,1 ] we get:

and from (1.14), (1.4), (1.6) it follows, for 77 E [0,~[:

hence (1.26) holds. Finally from [2, (2.10)], (1.15), (1.14), (1.4), (1.5)
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and (1.6) it follows:

and (1.27) holds.

We are now in position to state the main properties of the
function

To simplify some statements, we introduce the following notation:

PROPOSITION 1.3. Let a be defined in (1.10). For each x E X, we
have:
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and

PROOF. (1.30), (1.34) and (1.35) follow from [2, Thm. 2.3 (i) and (v)
and Thm. 4.1 (ii)]. By (1.23) and (1.4) for 0  t ; T/2 we have:

In particular, setting

we have:

Therefore by (1.38) and (1.20) we have, for T /2 ~ t 5 T:
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(1.38), (1.27) and (1.4) we have:

Hence (1.32) holds. If B1 = 0, (1.33) follows from [2, Thm. 2.3 (v)], (1.34)
and (1.1). If fii &#x3E; 0, w E CI (10, T[; X) and by (1.34), (1.38), (1.23) and
( 1.1 ) we get:

Therefore w e C (]0, T ]; Let us show (1.36). The second equivalen-
ce follows from [3, thm. 6.1] and (1.33). Concerning the first equivalen-
ce, if (3 &#x3E; 0, thanks to (1.23) we have:

and thanks to [2, thm. 4.1 (iv)] we have:

and for each t E ]0, T]

Since D(A(0)) is dense
Hence flxed -E &#x3E; 0, : :.

so that

and Conversely
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Let us show that y = 0. Fix A E 54 ; then we have:

Therefore y = 0. Fixed - &#x3E; 0, for t close to 0, we have:

~~ ~p(t) B(~(t)) G(~(t), 0) x I  e, and consequently

Hence, thanks to [2, Thm. 4.2 (iv)], xED A(O) (1/{fi + 1)).
Concerning (1.37), if ~eD~o)(~+1/~+1), then by (1.23),

(1.1) and (1.4), for p &#x3E; 0 and 0 ~ t ; T /2 we have:

so that w’ is bounded in DA~t~ (~, ~ ), thanks to (1.31). If (3 = 0, then w’ is
bounded in DA~t~ (~, ~ ), thanks to [3, Thm. 6.1] and ( 1.31 ).

In the case where q is H61der continuous, we can show other regula-
rity properties of w’.

PROPOSITION 1.4. Let p E cr ([0, T ]), 0~l,~~if/3&#x3E;0,~
~ ,~1 if (~1 &#x3E; 0 (see (1.1)), and let ~ be defined in (1.10). Then
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PROOF. From (1.25) we obtain that B(9(t»W(t) = B(9(t»G(9(t), 0) x
is q-H61der continuos in [s, T ] for 0  -  T, 1)  8; then (1.36) is a con-
sequence of the H61der continuity of p. Let us show that (1.40) holds.
In the case 6  1, thanks to (1.23), (1.25), (1.1) and (1.4) for 0 ~ r  t 5
5 T/2 we have:

In the case 9 = 1, thanks to (1.23), (1.26), (1.1) and (1.4), for 0 ~ r  t ~
~ T/2 we have:

and w ’ E CYJ ( [o, T /2]; since YJ y. For T /2  1"  t 5 T, from (1.38),
(1.23), (1.27), (1.1) and (1.4) we get:
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and (1.40) holds. In the same way, (1.41) follows from (1.23), (1.27),
(1.1), and (1.4).

In the sequel we shall need also the following lemmas.

LEMMA 1.5. 0  ocl, v&#x3E;0 and let T/2~a;b~tT.
Then it holds:

PROOF. Let

get:

and (1.42) holds.
In the case g &#x3E; a, (1.43) follows setting (t - s) _ (T - t) y in I.
In the case g = a, for each v &#x3E; 0, from (1.43) it follows:

and (1.44) holds.
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LEMMA 1.6. Let p E C([0, T ]) and let d be defined in (1.10). Then it
holds:

PROOF. From [2, (2.10)] it follows, for 0 ~ s  t ~ T:

By (1.16), (1.12) and (1.10) we have:
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Hence by (1.48), (1.5) and (1.6) we get both for 0 ~ a :::; t % T/2 and for
T/2at~T:

Moreover from [13, (1.4)], for y E X it follows:

Therefore by (1.49) and (1.50), (1.45) holds. Let us show (1.46).
From [2, (2.10)] for 0 ~ s  t  T it follows:

Let 0 ~ a ~ b :::; t  T. From (1.48) it follows:

from ( 1.15) it follows:

and
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Therefore by (1.51), ..., (1.54) we get:

From (1.6) and (1.4) it follows:

By (1.6) we have, both for 0 ~ a  b 5 t ~ T/2 and for
 t  T:

Moreover by (1.4) we have:

Hence if 0 5 a  b 5 t  T/2, by (1.55), ..., (1.58) we have:

and the first inequality of (1.46) follows with
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If T /2  a 5 b :::; t ~ T and ,~1 = 0, by (1.55), (1.56), (1.57), ( 1.59) , and
(1.42) we have:

and the second inequality of (1.46) follows.
Finally, if T /2  a :::; b :::; t  T and ~31 &#x3E; 0, by (1.55), (1.56), (1.57),

(1.59), (1.43) and (1.44) we have:

with v = 0 in the case ~1 &#x3E; Y and v &#x3E; 0 in the case ~31 = Y.
Hence the third inequality of (1.46) follows with

The last inequality is a trivial consequence of the previous inequalities
and of (1.4). We introduced it to simplify some statements in the

sequel.

2. The classical solution.

DEFINITION 2.1. Let A function u E C([O, T]; ~
is said to be a classical solution of (0.1) in the interval [0, T] if u E

T [; X), t -A(t) u(t) belongs to C(]o, T [; X) and (0. 1) holds.

Argiung exactly as in [3, Prop. 3.7 (ii)] we get that x E D(A(0)) is a
necessary condition in order that problem (0.1) has a classical solution u
such that IIA(t) const t -fJ-, po E [0, 1 + 6t.
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In Section 1 we showed (see (1.33), (1.34) and (1.35)) that if x E
E D(A(0)) then the function w defined in (1.28) is a classical solution of
(0.1) for f = 0. In the general case, arguing exactly as in [2, Thm. 5.2],
we get that if problem (0.1) has a classical solution u, then u is given by
the representation formula (0.3). Consequently, the classical solution of
(0.1) is unique. We shall show that if f is either H61der continuous with
values in X, or bounded with values in some interpolation space, then .

the function given by (0.3) is in fact a classical solution of (0.1). We
begin by studying the function

We recall that, by (0.3) we have:

and

with Y = u(T/2).

PROPOSITION 2.2. For every continuous f [o, T ] -~ X, v enjoys
the following properties: for 0  a  1 we have:
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PROOF. (2.2) is a simple consequence of estimates (1.17) and (1.24).
By (1.17), (1.6) and (1.5) we get, for 0  t  T:

so that (2.3) holds. Concerning (2.4), by (1.17), (1.6) and (1.4) we have
for 

thanks to (1.42). Hence v is bounded with values in DA(t) as stated
in (2.4).

Now we state two existence and uniqueness results for the classical
solution of (0.1). The first one details with the case where f has values
in same interpolation space.

THEOREM 2.3. Let f E C([0, rl B([0, T ]; DA~.~ (a, ~ )), 0 

 a  1 and let x E D(A(0)). Then the function u defined in (0.3) is the uni-
que classical solution of (0.1). Moreover for e E ]0, T/2[, ~0 and q 5 ex,
77  ~, we have:

PROOF. Since u = w + v, with w given by (1.28), it is sufficient to
show that v is the classical solution of (0.1) with x = 0. From (2.2) and
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(2.1) it follows that v E C([O, T]; ~ and v(O) = 0. From (1.23) and (1.5)
we get:

and v(t) E D(A(t)) for each 0  t  T. By (2.1), (1.23) and (1.25), both for
0 $ o T  t~ T /2 and for T/2 % a  c  t  T we have:

and taking into account (1.4) we get, for c E ]0, T/2[:

Hence (2.5) follows from (1.32).
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Let us show that v is differentiable for
set:

As e goes to 1, v~ converges uniformly to v on each compact subset of
]0, T [; moreover Vt is differentiable in ]0, T [ vVith ,

Therefore, since

Hence v is differentiable in ]0, T[ with v’ (t) = + f(t).
Since )0 E C([O, T ]), by (2.5) it follows v’ E C(]O, T[; ~. Summing up, we
find that u = w + v is a classical solution of (0.1). Concerning (2.6), by
(1.31) w E B([~, T]; + 1, 00 ». Moreover setting, for 0  s  t  T
and 0  ~  1"  ~(T), ~(s) _ ~ and ~(t) =,r in (2.1), we have:

By (1.1) and (1.3) for 0 ~ t 5 T/2 and 0 :::; a :::; ~(T/2) it follows:

hence

Plugging (2.12) in (2.11) and applying Prop. 3.1 (vi) of [3] with x = 0,
g = + 1)  1, we get, if 6 = min la, ~~:
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hence

So that, plugging (2.14) in (2.11), we obtain that

Since u = w + v, then (2.6) holds.

Now we consider the case where both f and p are H61der continuous
functions.

THEOREM 2.4. 

,~1 &#x3E; 0 (see (1.1)), and let f E C" ([0, T]; 0  a  1, x E D(A(0)). Then
the function u defined in (0.3) is the unique classical solution of (0.1)
and

Moreover for each c E ]0, r/2[, ~ ~ min la, yl and q  ~ we have:

PROOF. As before, it is sufficient to show that v is the classical sol-
ution of (0.1) with x = 0. From (2.2) and (2.1) it follows v E C([O, T]; X)
and v(O) = 0. Let us estimate A(t) v(t). By (1.23) and (1.46), for 0  t 
 T we have (with either a = 0 and 0 ~ t ~ T /2, or a a = T /2 and
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and v(t) e D(A(t)) for 0  t  T. To show (2.16) we set, for 0  t 
 T:

Both and for have:

By (1.23) we get:



193

by (1.25) for 77  s we get:

by (1.46) we have:

and taking into account (1.4) and (1.1), for 0  c  T/2, we get:

On the other hand we have:



194

By (1.23) we have:

by (1.46) we have:

by (1.25) and (1.23) for 77  ~ we have:



195

Concerning I4 , set ~(s) = J. Then we obtain:

Thanks to (1.21), (1.22), (1.2), (1.6) and (1.4) we get:

Hence by (1.1) and (1.4), for 0  ë  T/2, we get:

Let us show that v is differentiable for 0  t  T. For 0  ~  1. let Ve be
defined by (2.10): then vE is differentiable in ]0, T [ with
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By (1.45) we get:

By (1.11), (1.12), (1.15) and (1.16), thanks to continuity of f, we
have:

Hence as - - 1, v~ (t) converges uniformly to the function

on each compact subset of ]0, T[. Therefore v is differentiable in ]0, T[
with v’ (t) = z(t) for 0  t  T and (2.15) follows. Since p e T ])
and u ’ (t) = w ’ (t) + v(t) + f(t), (2.16) follows from (1.39) and
(2.22). Summing up, we find that u = w + v is a classical solution of
(0.1). Finally from (1.32), (2.22) and (2.16) it follows that

so that (2.17) follows by interpolation (it is sufficient to argue as in [11,
Lemma 1.1], with obvious modifications).
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3. The strict solution.

DEFINITION 3.1. If f: [o, T ] ~ X is continuous, any function u e
E C~([0, T ]; X ) is said to be a strict solution of (0.1) in [0, T ], if t -

-~ A(t) u(t) belongs to C(]O, T [; X) and (0.1) holds.

Since any strict solution is also a classical one, then the strict sol-
ution of (0.1) is unique, and it is given by the representation formula
(0.3). If u is the strict solution of (0.1) then ~( ~ ) A( ~ ) u( ~ ) belongs to
C([O. T ]; X). We showed in Section 1 that in the case/= 0, the function
w defined in (1.28) is the strict solution of (0.1) if and only if either x E
E (1/(/3 + 1)) (in the case /3 &#x3E; 0), or x E D(A(0)), A(O) X E D(A(0)) (in
the case (3 = 0) (see (1.32) and (1.36)).

Let us give some sufficient conditions for the existence and unique-
ness of the strict solution to problem (0.1). As for the classical solution,
we begin with the case where f has values in an interpolation
space.

PROPOSITION 3.2. Let f E C([O, T];x) T ]; DA~.~ (a, ~ )), 0 
 a  1 and (1/(/3 + 1)) (in the case (3 &#x3E; 0), x E D(A(0)),
A(O) X E D(A(0)) (in the case (3 = 0). Then the function u defined in (0.3)
is the unique strict solution of (0.1) in [0, T ].

PROOF. By Theorem 2.3 u is the classical solution of (0.1). Moreo-
ver from (1.36) w belongs to C~([0, T ]; X). Therefore it is sufficient to
show that t -~ v ’ (t) is continuous at t = 0 and t = T.

Since v’ (t) _ g(t) A(t) v(t) + f(t), 0  t  T; by (2.1), (2.7) and (1.4)
we get lim v’ (t) = f(0) and, in the case 0, lim v’ (t) = f(T).

t o t T-

In the case {31 = 0, t - v’ (t) is continuous at t = T thanks to (2.9), so
that the statement follows.

Now we consider the case where both f and are H61der conti-
nuous.
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Then the function u given by (0.3) is the unique strict solution
of (0.1) in [0, T].

PROOF. From Theorem 2.4 we know that u is the classical solution
of (0.1). Therefore we have only to show that t ~ u’ (t) = w’ (t) + v’ (t) is
continuous at t = 0 and t = T. First we consider the behaviour near
t = T. By (1.36) w’ E C([O, T]; X). Moreover in the case f31 = 0, t - u’(t)
is continuous at t = T thanks to (2.16). We consider now the case f31 &#x3E; 0.

By (2.15) using notation (2.18) for T/2  t  T we have:

From (2.18), (1.23), (1.4) and (1.1) it follows:

Hence from (1.42), (1.43) and (1.44) it follows:

Moreover by (2.18) and (1.46) it follows:

Concerning the behaviour of u’ as t - 0, we set for 0  t 5 T/2:

By (2.15), using notation (2.18) and (3.1) for 0  t 5 T/2 we have:
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From (2.18), (1.23), (1.4) and (1.1) it follows, for [3 ~ 0:

From (3.1) and (1.46) it follows, for ~3 ~ 0:

By (3.1~ we get:

and by (1.45) we get:

We distinguish now two cases: j3 &#x3E; 0 and f3 = 0.
In the case /3&#x3E;0, from [2, Thm. 4.1 (iii)], (1.23) and (1.4) we

get:

Therefore by (3.2), (3.3) and (3.4), if [3 &#x3E; 0, lim = 0, since f (o) E
t - 0+
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Then, from (3.2), (3.3), (3.5), (1.34), [2, (2.10)], (1.12) and (1.16) it
follows:

since + f(O) E D(A(0)). Therefore both for [3 &#x3E; 0 and for [3 = 0
there exist lim u ’ (t).

t - 0+

Summarizing, under the previous assumptions u’ is continuous up
to t = 0 and t = T, with u’(0) = f(O) &#x3E; 0, u’(0) = x + f(O) if

0, and u’ (T ) = 0 if ~31 &#x3E; 0, u’ (T) = u(T) + f(T) if ~31 =
=0.

In Theorem 3.3 we assumed [3 - y  1 and [31 - y  1 for simplic-
ity.

In fact, we could study the existence of a strict solution to (0.1) for
any value and y; obviously, we should made much more re-
gularity assumptions on f.

Now we show some further regularity properties of the strict sol-
ution of problem (0.1): roughly speaking, the regularity of u up to t = 0
increases as the regularity of the initial value x increases.

PROPOSITION 3.4. Let f E C([O, T ]; DA~.~ (a, ~ )), 0 
 « ~ 8, and + 1, + 1/([3 + 1 ), m ),
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Let u be the strict solution of (0.1).

PROOF. Since u’ (t) = w’ (t) + v’ (t), and by ( 1.37) w ’ E
E B[O, T ]; ~A~.~ (a, ~ ), it is sufficient to show that v’ (t) = v(t) +
+ f (t) satisfies (3.6), (3.7) and (3.8). Arguing as in Theorem 2.3, in the ca-
se fi = 0, thanks to (2.11), (2.12) and (2.14), (3.6) follows from Prop.
3.1 (iii) of [3]. In the case (3 &#x3E; 0, by (1.3) we get:

Therefore from (2.11), (2.13) and (3.9) it follows that t °‘~ + 1&#x3E; v ~ (t) is
bounded with values in for 0 ~ t ~ T/2, so that (3.7) holds
thanks to (3.6). Moreover for each 9 and /3i, by (1.23) for 0  9  a, 0 ~
5 t 5 T we have:

Hence v’(t) belongs to B([O, T ]; and (3.8) holds.
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Let u be the strict solution of (0.1). Then

PROOF. By Prop. 3.2, p(t) A(t) u(t) = w ’ (t) + q;(t) A(t) v(t), 0 :::; t 5 T.

By (1.40) and (1.41) w’ E C’~ ([0, T]; Moreover from (2.1), (1.23),
(1.4), (2.7) and (2.8) it follows for 0 ~ z  t 5 T/2: .

and for

Hence (3.7) follows, thanks to (1.42).

DEFINITION 3.6. Let

A function u E C([O, T]; X) is said to be a strong solution of (0.1) in the in-
terval [o, T] if there is a sequence with ~(~) A(~) un (.) E
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E C([0, T]; X) such that

PROPOSITION 3.7. Let f E C([O, T]; X), x E D(A(0)). Moreover, in

the case (3 &#x3E; 0, we assume also f (o) E D(A(0)). Then the function defi-
ned in (0.3) is the unique strong solution of (0.1).

PROOF. Let us consider first the case g &#x3E; 0. Let qn E CY ([0, T ]; X),
y &#x3E; 0, be such that - q in C([0, T ]) and (t) &#x3E; 0 for every
t. Let fn E C~([0, T ]; X), 0  a  1, be such that fn - fin C([O, T ]; X) as
n ~ ~ , and fn (o) = f(O). Let finally xn E D(A 2 (0») be such that xn - x
in X. We can apply Theorem 3.3 to problem

By Theorem 3.3b), the function

t

where is the unique strict solution to (3.11). Recal-
o

ling that x E D(A(O)) and letting n - oo in (3.12), we obtain that 
uniformly in [0, T], where u is defined in (0.3). Let us consider now the
case ~3 = 0. Let rpn, fn be as before, and choose ~ E p(A(0)).

Let be such that

and set

Then xn belongs to D(A(0)) and lim xn = x; moreover
n - oo

By Theorem 3.3b), the function un defined in (3.12) is the strict solution
of (3.11) and the conclusion is the same as in the case A &#x3E; 0.
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4. An application.

We apply here some results of the previous sections to a degenerate
parabolic initial boundary value problem:

where 0 is a bounded open set in R n with regular boundary 30:

exterior normal vector to aD at x ,

Setting u(t,.) = u(t), = flt) we can write problem (4.1 ) as an ab-
stract Cauchy problem of the type (0.1) choosing:

Then D(A(t)) = X and A(t) generates, for t E [0, T], an analytic semi-
group in X thanks to [14].



205

The interpolation spaces DA~t~ (~, ~ ) are given by (see [1], [4]):

If in addition i

We state now two existence theorems for the classical and strict sol-
ution to (4.1) in the case where f is H61der continuous either with re-
spect to x or with respect to time.

PROPOSITION 4.1. Let p satisfy (1.1), let and let f E
E C([O, T ] x Q) be such that

with 0  2a  1. Then there is a unique function u E C([O, T] x :0) such
that there exist ut , A(.) u E C(]o, T [ x 5) and u satisfies (4.1).

Moreover, let ~ be defined by (4.2). The following statements hold
true:

1) if either f3 &#x3E; 0 and uo E ( 1 /((3 + 1 )), or A = 0 and uo E
E D(A(0)), then

2) if either {3 &#x3E; 0 and
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and ut , qAu enjoy the same regularity properties of f.

PROOF. Under our assumptions, belongs to

C([0, T ];x) T]; and uo E D(A(0)). Then Theorem
2.3 is applicable and yields the first part of the statement. (4.5) and
(4.6) follow from Propositions 3.2 and 3.4 respectively; (4.7) follows
from Proposition 3.4.

PROPOSITION 4.2. Lest ? E CY ([0, T]), 0  y  1 (y £ ~3 if ~3 &#x3E; 0, y 5
 B1 if B1 &#x3E; 0), satisfy (1.1); let Uo E C(Q) and let f E C([0, T] x Q) be such
that

Then there is a unique function u E C([O, T] x S~) such that there exist
ut , A(.)u E C(]O, T [ x Q) and u satisfies (4.1).

Moreover for each Er= ]0, T/2[,

uniformly with respect to XED,
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PROOF. Assumption (4.8) implies that belongs to

ca ([0, T]; ~. The first part of the statement, (4.9) and (4.10) follow ap-
plying Theorem 2.4. Finally (4.11) follows from Theorem 3.3.
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