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Direct and Inverse Problems in the Theory
of Materials with Memory.

A. LORENZI - E. PAPARONI (*)

SUMMARY - We prove some existence, uniqueness and stability results for a di-
rect and an inverse problem related to the linear integrodifferential equa-
tions arising in the theory of materials with memory having a non-smooth
memory function.

0. Introduction.

In this paper we deal with two different, but related, problems aris-
ing in the theory of materials with memory. The former is a direct
problem, while the latter is an identification problem. Both are charac-
terized by the fact that the function k describing the history of the ma-
terial is assumed to be non smooth.

Our direct problem is the following: determine a function u E
E W1 + ~~ p ((o, fl W ~~ p ((o, T); ~ such that

We assume that X is a Banach space, b, fe wa,p«o, T); X) (1  p 
 + ~ ), k E L q (o, T) for some q E (1, DA = Y c X -~
~ X, B: are two linear closed operators such that:

(*) Indirizzo degli AA.: Dipartimento di Matematica, Università degli Studi
di Milano, Via C. Saldini 50, Milano.
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(0.3) there exist two positive constants M and ~ E (7r/2, 7r) such that

We recall that denotes the Banach space of all bounded linear op-
erators from X into itself endowed with the Sup-norm. Moreover DA
and DB are equipped with the graph-norm.

Under assumption (0.3) A defines an analytic semigroup e" of
bounded linear operators satisfying the following estimates for some
positive constant Mo and Ml:

We assume also that A admits an inverse A -1 E This is not a re-
striction : in fact, it suffices to replace our unknown (u, k) and datum
(b, f ) by the pairs (u, k), and (b, fi respectively, where = 

k(t) = 6 ’~), b(t) = 6 ’~), = e -’‘t f (t) and A is any (fixed) posi-
tive constant. By such a procedure we get the equation (A, B) _
= (A - A, B).

According to the closed graph theorem we can assume that BA -1 E
E ~(~. Hence there exists a positive constant M2 such that

REMARK 0.1. The presence of a known function b inside the inte-

gral allows a unified treatment of our direct and inverse problems.

Assume now that k is unknown too. We consider the following in-
verse problem: determine a pair of functions (u, k) E
E [W 2 + a, p ((0, T); ~ n WI + a, p ((0, T); Y)] W7, p (0, T ) solution to prob-
lem (0.1), (0.2) and satisfying the additional information

4l and g being, respectively, a prescribed functional in X* (the dual to
X) and a function in (0, T ). As far as b, f and ug are concerned,
we assume that T ); X) and uo E DA .

Also in this case we can assume that A admits an inverse A -1 E
E 2(X). It suffices, in fact, to perform the same transformation as before
and to set = e -’‘t g(t).
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Several authors studied direct linear problems similar to ours. They
proved existence, uniqueness and regularity theorems. However, we
limit ourselves to mentioning only papers [ 1 ] and [3], since they deal
with non-smooth memory operators.

We note that in [3] the author studies a more general equation, but
under more restrictive assumptions than ours. In fact, in our case she
should require that T) ( 1 /p 1), while it suffices to

require k E L q (o, T) for some q E (1, + 00] (cfr. Section 1).
As far as our inverse problem is concerned, we recall that similar

problems (with b = 0) were studied in [4], [5] and solved in the class 
of functions k such that t1-a k E CB([0, T]), where « E (0, 1) and B E
E (0, min (a, 1 - a)). In the quoted papers results of existence, unique-
ness and continuous dependence with respect to data were obtained in
the class of smooth data f E C 1 + a ([o, T]; X) and g" E ~,", a .

On the contrary, in this paper we consider the case of admissible
data with nonsmooth derivatives. This means that we are allowed to
deal with and g E W2 + ~~ p (o, T ), possibly
with o and p near 0 and 1 respectively. This choice of spaces allows the
function g" to have (weak) singularities spread over points of the inter-
val [0, T ] other than 

Moreover we observe that the fractional Sobolev space W ~~ ~° (o, T)
contains class iff a E (1/p’, 1) and o E (o, min (a - lip’, 1 - a)).
We conclude this section by noting that an application of our ab-

stract result to a concrete case is given in Section 5.

1. Equivalent problems and main results.

In this section we prove that our direct and inverse problems are
equivalent to two integral equations, both being particular cases of a
more general integral one.

We begin by considering first the direct problem (0.1), (0.2). To this
purpose we introduce the intermediate spaces DA ([3, p) between DA and
X defined by (see e.g. [1, Section 1]):

and
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Moreover p) is a Banach space, when endowed with the
norm

Under the previous assumptions on data 1~, b, f and the membership
of uo in DA (a + 1/p’, p), we can show (reasoning as in [2]) that problem
(0.1), (0.2) is equivalent to determining a solution u E

E ((0, T ); x) ((0, T ); ~ to the following operator integral
equation:

Introduce then the auxiliary function

and apply operator A to both members in (1.1). Using again the argu-
ments in [2] it easy to check that equation (1.1) is equivalent to deter-
mining a solution w E ((0, T ); X) to the following integral equa-
tion, where * denotes convolution:

To derive (1.3) we have used the following formula (see e.g. [1, Sec-
tion 7, Lemma 2]):
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Now we can state our existence uniqueness and continuous depen-
dence theorems for the direct problem, whose proofs we postpone to
Section 2.

THEOREM 1.1. Let A: Y = DA c X - X and B: DB C X - X satisfy
properties (0.3), (0.4) and let (b, f, uo ) E W7, p ((0, T); X) x
x W?~ p ((o, T ); X) x + 1/p’, (0, be a triplet such
that

Assume further that:
ii) T) for some q E=- (1, + 00] 

ill) kELP ((0, T); tp(1- a) dt) when 0" E (1 / p,1).
Then problem (0.1), (0.2) admits a unique solution

REMARK 1.1. The singular is not covered by the
methods developed in this paper.

REMARK 1.2. If k satisfies property iii), then k E L (0, T ) for any
qE~l,p(1+(1-~)p)-1].

Now we can state our stability result, where

p, Mo , M1, M2 , T) denotes (here and throughout the paper) a posi-
tive constant depending continuously and increasingly on Mo , M1,
M2 .

THEOREM 1.2. Let A: Y = DA C X- X and B: satisfy
properties (0.3), (0.4). Assume further that fj, Uo, j) E
E T) x W7, p ((0, T); X) x W7, p ((0, T); X) x X are two quadru-
plets fulfilling assumptions listed in the statement of Theorem 1.1 and
the following bounds:
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Then the solution uj =1, 2) to problems (0.1), (0.2) corresponding to
data fj, =1, 2) satis, fy the estimate

Assume now that kernek k is itself unknown. Then our identifica-
tion problem is the following: determine a pair of functions (u, k) E

We assume that

Introduce the function

It is easy to realize that the pair (v, k) belongs to + Q~ p ((0, T ); X) n
n WO", p «0, T ); Y)] x WO", p (0, T ) and solves the problem
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Introduce then the auxiliary function w defined by

Consequently we derive the following equations for v and k:

where we have assumed that

Finally apply the linear operator A to both members of equation (1.19).
You obtain the equivalent inverse problem for the pair (w, k):
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REMARK 1.3. We observe that equations (1.3) and (1.22) are spe-
cial cases of the following integral equation

for a suitable e E (o,1) (see e.g. Lemma 4.1).
We note also that integral equations (1.24) corresponding to differ-

ent values of A differ only in their free members.

REMARK 1.4. From equations (1.11)-(1.13) it is easy to deduce the
following consistency conditions:

Recall now the embedding W ~~ p ((o, T ); ~ ~C([o, T ]; ~ when
cr E (1/p, 1) and use the membership Auo + f(o) E DA . Then from equa-
tion (1.17) we derive the further consistency condition

Owing to (1.20) we get

Now we can state our existence, uniqueness and continuous depen-
dence results related to inverse problem (1.1l)-(1.13).

THEOREM 1.3. Let A: Y = DA c X - X acnd B: DB c X - X sactisfy

(~ e (0, 1) B {1/p}) is a quadruplet enjoying the following proper-
ties :

Then, if conditions (1.21) and (1.25)-(1.28) acre fulfilled, problem
(1.11~-(1.13) admits_a unique solution (u,k) E [ W 2 + ~~ p ((0, T);x) n
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THEOREM 1.4. Let A: Y = and B: satisfy
properties (0.3), (0.4). Assume further that fj, E

are

two quadruplets enjoying properties i)-iv) listed in the statement of
Theorem 1.3 and fulfilling conditions (1.21), (1.25)-(1.28) and the fol-
lowing estimates for some positive constants M5 and 0 E (0, 1):

Then the solutions ( j =1, 2) to problems ( 1.11 )-(1.13) corre-

sponding to data fj, gj ( j = 1, 2) satisfy the following estimactes
for some T E (0, To ], where ’XJ-I = + ( j =1, 2):
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2. Proof of Theorem 1.1.

First we state some preliminary lemmas.

LEMMA 2.1. Let f E W~~ P ((0, T); X), 7,E (0, 1) B ~1/p~. Then the

function F defined by

belongs to W7, p ((0, T); ~ and satisfies the estimates

where Mo and MI are the positive constants appearing in (0.5) and

PROOF. See the proof of Lemma 2 and Theorem 24 in [1, Section 7]
and recall estimates

We note that the embedding constants c; (j = 3, 4) are independent
of T. In fact, (2.4), (2.5) hold with T =1 (see e.g. Lemmas 7 and 8 in [1,
appendix]). To derive the general case, associate with any f E

the function fT (t) = f(tT) (t E (0, 1)) belonging to

1); X). Apply then the previous result to fT .

LEMMA 2.2. T); X) (y e (0, and let x E
E + 1/p’, p). Then the following estimates hold:
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PROOF. Estimates (2.6) follows from Theorem 4
and 10 in [1]. On the contrary estimate (2.6) with 7 E is implied
by Theorem 8 in [I] and equation since Az « DA (y -
1/p, P).

Finally, estimates (2.7), (2.8) can be proved reasoning as in Lemma
2 and Theorem 24 in [1] and using estimates (2.4), (2.5).

LEMMA 2.3. Let 7 E (0, 1) E L p (0, T). Then the funetion
t

k(t) = k(s) ds belongs to W7, p ((0, T); ~ and satisfies the estimate
0

PROOF. For any triplet (tl, t, t2 ) such that 0 ~ t1  t ~ t2 ~ T con-
sider the identity

From it (performing simple computations) we get the following chain of
inequalities which proves the assertion:
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LEMMA 2.4. Let k and w be two functions belonging respectively to
L 1 (0, T) and W7, p ((0, T); (0" E (0, 1) B ~ 1/~~, p E (1, + (0» respect-
ively. When 0" E (1 / p, 1) assume moreover that ((0, T); t ~1- Q~’ dt).
Then the following estimates hold for any t E (0, T]:

PROOF. From the inequalities
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we easily get the following estimates for any t E (o, T ] and any

ee[0,l):

We observe that (2.11) is an immediate consequence of (2.14) with 0=0.

To prove (2.12) we consider the identity

First we observe that
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Hence we derive the following chain of inequalities

As far as function F1 is concerned, first we observe that
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Proceeding as above, from (2.6) we get the following estimates

Finally from (2.15)-(2.17) we deduce immediately estimates (2.12).
To prove (2.13) we consider the identity

The same arguments as above show that the following estimates for FI
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and F2 hold true

From Lemma 2.3 we derive the estimate

Finally from (2.18)-(2.20) we derive estimate (2.13).

LEMMA 2.5. Let k E L q (0, T) (1  q  + (0). Then the following
estimates hold:

(k *)’~ denoting the convolution k * ... * k (k is convolved by itself m
times).

PROOF. From the estimate
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we get

Then we deduce

Since

from (2.24) we deduce (by induction) the estimates

From (2.23), (2.25) we easily derive estimates (2.21).

PROOF OF THEOREM 1.1. First we rewrite equation (1.3) in the fol-
lowing fixed-point form:

where operator B is defined by the right hand-side in (1.3).
Our aim consists in showing that N satisfies the hypotheses of gen-

eralized Banach’s contraction principle. We assume first that o-e

E (0, 1/p) and we observe that N maps the Banach space W, P ((0, T ); X)
into itself according to Lemmas 2.1, 2.2, 2.4.

Hence it remains to prove that N k is a contraction for large enough
k.

From Lemmas 2.1, 2.2, 2.4 and (0.6) we infer the following esti-
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mates valid for any t E (0, T ]:

From (2.27) and (2.28) we immediately derive the estimates

Assume now from (2.29) we deduce the integral
inequalities

where we have set
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Since ~o is a non-decreasing function, from (2.30) we easily get

From (2.31) and (2.32) we derive the desired estimates

From Lemma 2.5 we deduce that Nm is a contraction in t); X)
for large enough m.

Assume now Using the embedding D A (0" +
+ p) 4ÐA, from (1.3) we get the fixed-point equation

Observe now that, according to Theorem 8 in [ 1 ], we deduce that
N4 [Auo + f(0)] E W7, p ((0, t); ~ and N4 [Auo + f(0)1(0) = 0. Using Lem-
mas 2.1-2.4 and the embedding W~((0,!T);~O~C([0,r];~0 (a E
E ( 1 /p, 1)) it is easy to check that N maps the complete metric space
WeT, p =IW E T); X): = Auo ~ into itself.

Finally, reasoning as in the previous case, from Lemma 2.1-2.4 we
deduce again estimate (2.32). Hence N m is a contradiction in for

large enough m. Summing up, fixed-point equation (1.3) admits, for
a unique solution Conse-

quently the function u defined by ( 1.1 ) (with Bu replaced by BA -1 w)
belongs to W 1 + °~~ p ((0, T); x) fl T); ~ accordingly to our as-
sumptions on data, to Lemma 2.4 and Theorem 30 in [1].

3. Proof of Theorem 1.2.

Also in this section we need prove some preliminary lemmas. To
this purpose we introduce the following complete metric spaces defined
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by the equations:

Consider then the (nonlinear) operator

defined by equation

w being the solution to problem (1.3) corresponding to the quadruplet
of data (k, b, f, uo ) satisfying properties listed in the statement of Theo-
rem 1.1.

From now on c(a, p, Mo, MI, M2, ... , T) will be denoting a posi-
tive constant depending continuously and increasingly on Mo , Mi,
M2 , ..., T.

LEMMA 3.1. Assume k E K (M3) and the triplet (b, f, uo) fulfil
properties listed in the statement of Theorem 1.1. Then operator W de-
fined by equation (3.5) satisfies the following estimates for any
t E (0,T] : 

PROOF. Assume first a~ E (0,1/ p). From equation (1.3), Lemmas
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2.1-2.4 we derive the following chain of estimates, where we have set

Consider then the case o-e (1 /p,1). Proceeding as above, from formula
(2.34), Lemma 2.4 and the membership of w in we weasily derive
the estimate

Thus we have proved that w satisfies the following inequality for any
t E (0, T ~, any a E (0, l)B{l/p} and suitable functions GEL 00 (0, T):

Set then

Hence (3.10) can be rewritten as a convolution inequality
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From (3.11) we easily derive the estimate

It, together with (2.21), implies

Since 1~ E %(M3) (see also Remark 1.2), this proves estimates (3.6),
(3.7).

LEMMA 3.2. Assume that kj E %(M3) (~’ =1, 2) and the triplets
fj, uo, j) ( j =1, 2) fulfil properties listed in the statement of Theo-

rem 1.2. Then operator W satisfies the following estimates:

PROOF. We limit ourselves to proving the case when y E (0, 1/ p),
since the case when a- E (1 lp, 1) cam be proved similarly taking equa-
tion (2.34) (with w(O) = Auto) into account.

For the sake of simplicity we set Wj = fj, ( j =1, 2).
From equation (1.3) and Lemmas 2.1-2.4 we deduce the estimates valid
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for any t E (0, T ]:

Reasoning as in the proof of Lemma 3.1 and recalling that 1~2 E X(M3),
we easily deduce estimate (3.12).

PROOF OF THEOREM 1.2. It is an immediate consequence of Lem-
mas 3.2, 3.3, formula ( 1.1 ), Theorem 30 and the stability results
in [1]..

4. Proofs of Theorems 1.3, 1.4.

First we prove the following

LEMMA 4.1. The function N3 ( f ) defined in the right-hand side in
(1.22) belongs to W(1, p ((0, T); X) for any f E W(1, p ((0, T); DA (0, ~ro)) (0" E
E (0, 1) B 0 E (0, 1)) such that f(O) (0" - 1/p, p) when a- E

E (llp, 1 ). Moreover N3 ( f ) satisfies the following estimate, where Y+ de-
notes Heaviside’s function:
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PROOF. Assume We consider the inequalities
valid for any f E W", P ((0, T); DA ), any t E (0, T ] and any e E (0, 0):

They imply

We note that the last equality has been obtained by an integration by
parts. Consider then the following identities, where 0 £ ti  t2 :::; T:

Interchanging the order of integrations and performing simple changes
of variables, from (4.3) and (2.4) we deduce
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To derive the last equality we have again integrated by parts.
By a similar procedure we get the chain of inequalities
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From (4.2), (4.4) and (4.5) we easily deduce (4.1) when o-e (0,1/p) and
T); DA ). A density argument proves the general case.

When je we have to consider the additional identiy

Apply then Lemma 2.2 and the same procedure as above.

We observe now that, by virtue of Remark 1.4 and Lemma 4.1, the
integral equation (1.22) is uniquely solvable in for any k E
E W ~~ p (o, T ) and any triplet (b, f, uo ) fulfilling the hypotheses listed in
the statement of Theorem 1.3.

We note then that, by virtue of Remark 1.4 and Lemma 4.1, the in-
tegral equation (1.22) is uniquely solvable in for any 1~ E
E W7, P (0, T) and any triplet (b, f, uo ) fulfilling the hypotheses listed in
the statement of Theorem 1.3. In fact, the quadruplet (k, b, g 
= (k, b ’, f ’, Auo + f(0)) belongs to L P ((0, T); x

x W Q~ p ((o, T ); X) x W ~~ p ((o, T ); X) x D A (0" + 1 /p ’ , p) and function 1 =
= k[Auo + f(O)] satisfies the assumptions of Lemma 4.1 according to the
equation

and hypothesis iv) in Theorem 1.3.
Hence we can introduce the (nonlinear) operator

defined by equation
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w being the solution to problem (1.22) corresponding to the quadruplet
of data (k, b, f, uo ) with the stated properties.

Moreover from Lemmas 3.1, 3.2, 4.1 it is immediate to deduce that
W enjoys the properties listed in the following Lemma 4.2, where

To this purpose we use the following estimate, implied by (1.28), where
zi 1 = + bj (0)] (j = 1, 2):

LEMMA 4.2. Assume that k, 1~2 E and the triplets
(b, f, uo )~
(b, , fi , uo,1 ), (b2 , f2 , uo, 2 ) fulfil properties listed in the statement of
Theorem 1.3. Then operator W defined by equations (4.8) satisfies the
following estimates for any t E (0, T ]:



132

PROOF OF THEOREM 1.3. First we replace the first function w ap-
pearing in the second term in the right-hand side in (1.23) by the right-
hand side in (1.22). Then we substitute W(k, b, g uo ) for w. Thus we get
the following (equivalent) fixed-point equation for k:
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where operator S is defined by

Then we prove that S satisfies the hypotheses of Banach’s contraction
principle for small enough T E (0, To ]. To this purpose we introduce a
positive constant Me such that (see estimates (4.10), (4.11))

Then, from Lemmas 2.1-2.4, 4.1, 4.2 we deduce the following estimate,
where for the sake of simplicity we drop out the dependence of S’ on
data:

We choose now Mg &#x3E; C24(a, p, 0, ë, Mo , Ml , M2 , + Ms ). Since
the positive constant c~4 is bounded as T - 0 +, we deduce that S maps

into itself for small enough T.
In order to show that ,S is a contraction for small enough T we con-

sider first the following identity, where we drop out also the depen-
dence of W on data:

Then we use again the above mentioned Lemmas. They easily imply
the following estimate, which proves our assertion:
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REMARK 4.1. From the previous proof we deduce that the solution
k to fixed-point equation (4.14) exists in the interval [0, T] c [0, To ],
where To satisfies the inequality

We note that T depends on data only through (M6, Ixl).

PROOF OF THEOREM 1.4. Consider the identity

From Lemmas 2.1-2.4, 4.1, 4.2 and estimates (4.18), (4.19) we easily
derive estimates (1.29), (1.30). To this purpose we use the following es-
timate valid when a E (1 lp, 1):

5. Some applications.

Let 0 be an open bounded set in R n with a boundary 9~ of class
C2 + r for some y E (0, 1) and let ah , ao , bh , bo : Q - R (h, j =
= 1, 2, ..., n) be continuous functions.

Consider then the differential operators

In addition assume that a is uniformly elliptic in 0, i.e.

Given the functions b, l: [0, T ] x 0 --+ R, 1~: [0, T ] -~ R, con-
sider the following direct problem: determine ac function z: [0, T ] x
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x Q - R such that

Introduce now the new unknown u = z - b. It is immediate to realize
that u solves the following problem:

where we have set

To write (5.4)-(5.6) in the abstract form (0.1), (0.2) we choose X =
= (1  p  + 00), DA = W 2~ p (~) DB = W2,P(D) and
A = a, B = ~3. Such a choice implies the equations (see [1, Section 9])

From the results states in Section 1 we derive

THEOREM 5.1. Assume that b E P ((0, T); L p (S2)) fl
nW’7, P «0, T); ~T2~ p (.0», 1 E Wrj, P «0, T); L p (.0» and zp E + 1/p’), p (.0)
for some 7 E (0, 1 ) ~ ~ 1 /p, 1 /p - 1 /2 ~ and p E ( 1, + (0) satisfy the fol-
lowing equations:

(5.11 ) b(O, .) = zo , on 90 in the sense of traces, if 7 E (1Ip, 1),
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on 90 in the sense of traces,

Assume further that:

Then problems (5.1)-(5.3) admits a unique- solution z E

T);L P (Q» P ((0, T ); W 2~ P (0)) depending continuous-
ly on data (k, b, l, zo ) (belonging to the previous class of admissible
data) with respect to the nor;ms pointed out (see estimates (1.7),
(1.8)).

REMARK 5.1. Theorem 5.1 holds also 

(p E (1, 2)): in this case we have to assume that zo E B 1~ p (S2), the Besov
space of order 1 and exponent p.

Consider now the problem of identifying kernel k. We assume that
we are given the following additional information

where h: S~ -~ R is a fixed function and g: [0, T ] -~ R is our measure-
ment.

Since in our case we have to replace b by ~Bb in equation (0.1),
the corresponding result is reported in the following Theorem 5.2,
where
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THEOREM 5.2. Assume that for some 7 E (0, 1) B {1/p, 1/2},
0 E (0, 1/2) and p E (1, + oo) the following properties hold:

Assume further that data (b, l, g, zo ) satisfy the following condi-
tions :

(5.15) b(O, .) = zo , on 30 in the sense of traces,

Then problem (5.1 )-(5.3) admits a unique solution

depending continuously on (b, l, g, zo) (belonging to the previous class
of admissible data) with respect to the norms pointed out (see estimates
(1.29), (1.30)).

REMARK 5.2. Theorem 5.2 holds also 1 / 2
(p E (1, 2)): in this case we have to assume that azo + 1(0, .) - Dt (0, .) E
E the Besov space of order 1 and exponent p.
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