Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

Alain Escassut
 The equation $y^{\prime}=f y$ in \mathbb{C}_{p} when f is quasi-invertible

Rendiconti del Seminario Matematico della Università di Padova, tome 86 (1991), p. 17-27
http://www.numdam.org/item?id=RSMUP_1991__86__17_0
© Rendiconti del Seminario Matematico della Università di Padova, 1991, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

The Equation $y^{\prime}=f y$ in C_{p} when f is Quasi-Invertible.

Alain Escassut (*)

Abstract

Summary - Let K be a complete algebraically closed extension of C_{p}. Let D be a clopen bounded infraconnected set in K, let $H(D)$ be the Banach algebra of the analytic elements on D, let $f \in H(D)$ and let $S(f)$ be the space of the solutions of the equation $y^{\prime}=f y$ in $H(D)$. We construct such a set D provided with a T-filter \mathscr{F} such that there exists a quasi-invertible $f \in H(D)$ such that $S(f)$ has non zero elements g which approach zero along \mathscr{F}. In extending this construction we show that for every $t \in \mathbf{N}$, we can make a set D and an $f \in H(D)$ such that $s(f)$ has dimension t. That answers questions suggested in previous articles.

I. Introduction and theorems.

Let K be an ultrametric complete algebraically closed field, of characteristic zero and residue characteristic $p \neq 0$.

Let D be an infraconnected bounded clopen set in K and let $H(D)$ be the Banach algebra of the Analytic Elements on D (i.e., $H(D)$ is the completion of the algebra $R(D)$ for the uniform convergence norm on D) $\left[\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{R}\right]$.

Recall that a set D in K is said to be infraconnected it for every $a \in D$ the mapping $x \rightarrow|x-a|$ has an image whose adherence in \mathbb{R} is an interval; then $H(D)$ has no idempotent different from 0 and 1 is and only if D is infraconnected $\left[\mathrm{E}_{2}\right]$ On the other hand, an open set D is infraconnected if and only if $f^{\prime}=0$ implies $f=c t$ for every $f \in H(D)\left[\mathrm{E}_{6}\right]$. Let $f \in H(D)$; we denote by $\mathcal{E}(f)$ the differential equation $y^{\prime}=f y$ (where $y \in H(D)$) and by $S(f)$ the space of the solutions of $\varepsilon(f)$.

In $\left[\mathrm{E}_{7}\right.$] we saw that $\mathcal{S}(f)$ has dimension 1 as soon as it contains
(*) Indirizzo dell'A.: Université Blaise Pascal (Clermont II), Département de Mathématiques Pures, 63177 Aubière Cédex, France.
a g invertible in $H(D)$. If $H(D)$ has no divisor of zero, $s(f)$ doesn't have dimension greater than one.

In $\left[\mathrm{E}_{8}\right]$ we saw that if the residue characteristic of K is zero, then $S(f)$ never has dimension greater than one.

But when the residue characteristic p is different from zero, in [E_{9}] we saw that there does exist infraconnected clopen bounded sets with a T-filter $\mathscr{F}\left[\mathrm{E}_{4}\right]$ and an element f annulled by \mathscr{F} such that the solutions of $\mathcal{E}(f)$ are also annulled by \mathfrak{F}. Thanks to such T-filters, for every $n \in \mathbb{N}$ we could construct infraconnected clopen bounded sets D with $f \in H(D)$ such that $S(f)$ has dimension n, and we even constructed sets D with $f \in H(D)$ such that $s(f)$ is isomorphic to the space of the sequences of limit zero.

Thus $\left[\mathrm{E}_{8}\right]$ suggested that a situation where the solutions of $\mathcal{E}(f)$ were not invertible in $H(D)$ should be associated to a non quasi-invertible element f, and so should be spaces $S(f)$ of dimension greater than one.
(Recall that f is said to be quasi-invertible in $H(D)$ if it factorizes in the form $P(x) g(x)$ where P is a polynomial the zeros of which are in D and g is an invertible element of $H(D))\left[\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}\right]$.

Here we will prove this connection does not hold in constructing an infraconnected clopen bounded set D with a T-filter \mathscr{F} and a quasi-invertible element $f \in H(D)$ such that $\varepsilon(f)$ has solutions strictly annulled by \mathfrak{F}.

Next, for every fixed integer t, an extension of that construction will provide us with a set D and a quasi-invertible $f \in H(D)$ such that $\operatorname{dim} S(f)=t$.

Theorem 1. There exist an infraconnected clopen bounded set D with a T-filter \mathfrak{F} and quasi-invertible elements $f \in H(D)$ such that $\mathcal{E}(f)$ has solutions strictly annulled by \mathfrak{F} and $\mathcal{S}(f)$ has dimension 1.

More precisely, we will concretely construct such a set D and $f \in H(D)$ in Proposition B.

Theorem 2. Let $t \in \mathbb{N}$. There exist an infraconnected clopen bounded set D and quasi-invertible elements $f \in H(D)$ such that $\operatorname{dim}(s(f))=t$.

Theorem 2 will also be proven by a concrete construction.
Remark. We are not able to construct an infraconnected clopen bounded set D with a quasi-invertible $f \in H(D)$ such that $S(f)$ has infinite dimension. By then, the following conjecture seems to be likely.

CONJECTURE. If f is quasi-invertible, $s(f)$ has finite dimension.

The following Proposition A will demonstrate Theorem 1 by showing how to obtain the set D, the T-filter \mathfrak{F}, and the element f.

Proposition A. Let $\left(b_{m}\right)_{m \in \mathbf{N}}$ be a sequence in $d^{-}(0,1)$ such that $\left|b_{m}\right|<\left|b_{m+1}\right|$, and let $\left(p_{m}\right)_{m \in \mathrm{~N}}$ be a sequence of integers in the form $p^{q_{m}}$ where q_{m} is a sequence of integers satisfying

$$
\begin{equation*}
\lim _{m \rightarrow \infty} q_{m}=+\infty, \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\left|p_{1}\right|>\left|p_{m}\right| \quad \text { whenever } m \geqslant 2, \tag{2}\\
\lim _{m \rightarrow \infty}\left|\frac{b_{m}}{b_{m+1}}\right|^{p_{m+1}}=0 \tag{3}
\end{gather*}
$$

Let R be $\geqslant 1$, and let $D=d(0, R) \backslash\left(\bigcup_{m=1}^{\infty} d^{-}\left(b_{m},\left|b_{m}\right|\right)\right)$. For each $m \in \mathbb{N}^{*}$
let

$$
h_{m}=\prod_{j=1}^{m} \frac{1}{\left(1-x / b_{j}\right)^{p_{j}}} \in R(D) .
$$

Then the sequence $\left(h_{m}\right)$ converges in $H(D)$ to a limit h that is strictly annulled by the increasing T-filter \mathfrak{F} of center 0 of diameter 1 , and $h \in S(\mathscr{F})$.

The series $\sum_{m=1}^{\infty} p_{j} /\left(b_{m}-x\right)$ converges is $H(D)$ to a limit f quasi-invertible in $H(D)$ and h is a solution of $\&(f)$.

II. The proof of Proposition A

The proof of proposition will use the following Lemma B.
Lemma B. Let q and n be two integers such that $C<n \leqslant p^{q}$. Then $\left|C_{\left(p^{q}\right)}^{n}\right| \leqslant p^{-q} /|n|$.

Proof. If n is a multiple of some p^{h}, then $p^{q}-n$ is obviously multiple of p^{h}. Let b the bijection from $\{1, \ldots, n\}$ onto $\left\{\left(p^{q}-n+1\right), \ldots, p^{q}\right\}$ defined by $b(j)=p^{q}-j+1$. By the last sentence, when j is divisible by $p^{h}, b(j+1)$ is also divisible by p^{h} hence $|b(j+1)| \leqslant|j|$ therefore $\left|\left(p_{q}-1\right)\left(p_{q}-2\right) \ldots\left(p^{q}-n+1\right)\right| \leqslant|(n-1)!|$ and finally $\left|C_{p^{q}}^{h}\right| \leqslant p^{-q} /|n|$.

Proof of Proposition A. Since $\lim _{m \rightarrow \infty}\left|b_{m} / b_{m+1}\right|^{\mid p_{m+1}}=0$ we have $\lim _{m \rightarrow \infty}\left(p^{q_{m+1}} \log \left|b_{m+1} / b_{m}\right|\right)=+\infty$. Thus we can easily define a sequence of integers l_{m} such that $\lim _{m \rightarrow \infty}\left(q_{m}-l_{m}\right)=+\infty$ and $\lim _{m \rightarrow \infty}\left(p^{l_{m+1}} \log \left|b_{m+1} / b_{m}\right|\right)=$ $=+\infty$. We put $t_{m}=p^{l_{m}}, \omega_{m}=\left|p_{m} / t_{m}\right|, \varepsilon_{m}=\left|b_{m-1} / b_{m}\right|^{\mid{ }^{t}}$. Then we have $\lim _{m \rightarrow \infty} \omega_{m}=\lim _{m \rightarrow \infty} \varepsilon_{m}=0$.

As the holes of D are in the form $d^{-}\left(b_{m},\left|b_{m}\right|\right)$ it is easily seen that

$$
\begin{equation*}
\left\|\frac{1}{1-x / b_{j}}\right\|_{D} \leqslant 1 \tag{4}
\end{equation*}
$$

Let us consider $\left|h_{m+1}(x)-h_{m}(x)\right|$ when $|x| \geqslant\left|b_{m}\right|$. We have

$$
\begin{equation*}
\left|h_{m}(x)\right| \leqslant\left.\prod_{j=1}^{m-1} \frac{1}{\mid 1-x / b_{j}}\right|^{p_{j}} \leqslant \varepsilon_{m} \tag{5}
\end{equation*}
$$

and in the same way $\left|h_{m+1}(x)\right| \leqslant \varepsilon_{m}$ hence

$$
\begin{equation*}
\left|h_{m+1}(x)-h_{m}(x)\right| \leqslant \varepsilon_{m} . \tag{6}
\end{equation*}
$$

Now let us consider $h_{m+1}(x)-h_{m}(x)$ when $|x|<\left|b_{m}\right|$ and let us put

$$
u(x)=\frac{1}{\left(1-\frac{x}{b_{m+1}}\right)^{p_{m+1}}}-1=-\frac{\sum_{j=1}^{p_{m+1}}\binom{p_{m+1}}{j}\left(-\frac{x}{b_{m+1}}\right)^{j}}{\left(1-\frac{x}{b_{m+1}}\right)^{p_{m+1}}}
$$

Then it is clear that $|u(x)| \leqslant \max _{1 \leqslant j \leqslant p_{m}}\left|\binom{p_{m+1}}{j}\right| \cdot\left|\frac{b_{m}}{b_{m+1}}\right|^{j}$ and then for $1 \leqslant j \leqslant t_{m+1}$, as $|j| \geqslant\left|t_{m+1}\right|$, we obtain $\left|\binom{p_{m+1}}{j}\right| \leqslant\left|\frac{p_{m+1}}{t_{m+1}}\right|$ by Lemma B.

Now for $j>t_{m+1}$ we see that $\left|\frac{b_{m}}{b_{m+1}}\right|^{j} \leqslant\left|\frac{b_{m}}{b_{m+1}}\right|^{t_{m+1}}=\varepsilon_{m}$ and then every term $\binom{p_{m+1}}{j}\left(-\frac{x}{b_{m+1}}\right)^{j}$ is upper bounded by $\max \left(\omega_{m+1}, \varepsilon_{m}\right)$ and therefore $|u(x)| \leqslant \max \left(\omega_{m+1}, \varepsilon_{m}\right)$ whenever $x \in D \cap d\left(0,\left|b_{m}\right|\right)$.

Finally by (6) we see that $\left\|h_{m+1}-h_{m}\right\|_{D} \leqslant \max \left(\omega_{m+1}, \varepsilon_{m}\right)$ hence the sequence h_{m} converges in $H(D)$ to the convergent infinite product

$$
h(x)=\prod_{j=1}^{\infty} \frac{1}{\left(1-x / b_{j}\right)^{p_{j}}} .
$$

By (3) and by the definition of D it is easily seen that the increasing filter \mathcal{F} of center 0 , of diameter 1 , is a T-filter and it is the only one T filter on $D\left[\mathrm{E}_{4}\right]$.

On the other hand, by (5) we have $|h(x)| \leqslant \varepsilon_{m}$ whenever $x \in D \backslash d^{-}\left(0,\left|b_{m}\right|\right)$ and therefore h is clearly annulled by \mathscr{F}, and it is strictly annulled by \mathscr{F} (because \mathscr{F} is the only T-filter on D), and $h(x)=0$ whenever $x \in \mathscr{P}(\mathscr{F})$ hence $h \in J_{0}(\mathscr{F})$.

Now let us consider the series $\sum_{j=1}^{\infty} p_{j} /\left(b_{j}-x\right)$. Since $\lim _{m \rightarrow \infty}\left|p^{m}\right|=0$, by (4) we see that series series converge to a limit $f \in H(D)$. Moreover, it is easily seen that $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in D}}\left|p_{j} /\left(b_{j}-x\right)\right|=\left|p_{j}\right|$ for every $j \in \mathbf{N}^{*}$, hence, by (2), we have $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in D}}|f(x)|=p_{1}$, hence f is not annulled by \mathfrak{F}.

Since \mathscr{F} is the only T-filter, f is then quasi-invertible.
At last, we shortly verify that h is solution of $\varepsilon(f)$.
By Corollary of $\left[\mathrm{E}_{6}\right]$ we know that $h^{\prime} \in H(D)$ and the sequence h_{m}^{\prime} converges to h^{\prime} in $H(D)^{\prime}$. On the other hand, it is easily seen that

$$
h_{m}^{\prime}=\left(\sum_{j=1}^{m} \frac{p_{j}}{\left(1-x / b_{j}\right)^{p_{j}}}\right) h_{m}=h_{m} \sum_{j=1}^{m} \frac{p_{j}}{b_{j}-x}
$$

hence

$$
\lim _{m \rightarrow \infty} h_{m}^{\prime}=h\left(\sum_{j=1}^{\infty} \frac{p_{j}}{b_{j}-x}\right)=h f
$$

and therefore h is a solution of $\varepsilon(f)$, and that ends the proof of Proposition A .

III. The proof of Theorem 2.

Lemma C. Let q, n be integers such that $0<n<q$. Then $|q!/ n!| \leqslant p^{1-(q-n) / p}$.

Proof. $q!/ n!$ has $q-n$ consecutive factors. It is easily seen among these $q-n$ factors, the number of them that are multiple of p, is at least $\operatorname{Int}(q-n) / p)$ and therefore $v(q!/ n!) \geqslant \operatorname{Int}((q-n) / p)>(q-$ $-n) / p-1$ and that ends the proof of Lemma C.

Lemma D. Let $R \in\left[p^{-1 / p}, 1[\right.$, let $\varepsilon \in] 0,1 / p\left[\right.$ and let $\varphi(x)=\sum_{-\infty}^{+\infty} a_{n} x^{n}$ be a Laurent series convergent for $|x|=R$, such that $\sup \left|a_{n}\right| R^{n}=$ $=\left|a_{q}\right| R^{q}$ with $q<0$. Then φ does not satisfy the inequality

$$
\begin{equation*}
\left|\frac{\varphi^{\prime}(x)}{\varphi(x)}-1\right|<\varepsilon \quad \text { for all } x \in C(0, R) \tag{1}
\end{equation*}
$$

Proof. We suppose φ satisfies (1) and we put $M=\left|a_{q}\right| R^{q}$. By (1) it is easily seen that

$$
\begin{equation*}
\left|n a_{n}-a_{n-1}\right| R^{n-1} \leqslant \varepsilon M \quad \text { for every } n \in \mathbf{Z} \tag{2}
\end{equation*}
$$

If $q=-1$, relation (2) gives $\left|-a_{-1}\right| / R \leqslant \varepsilon\left|a_{-1}\right| / R$ hence $\varphi=0$. We will suppose $q<-1$ and we will prove that (3) $\left|a_{n}\right|=\left|a_{q}(-n-1)!\right| / \mid(-$ $-q-1)!\mid$ for $n=q+1, q+2, \ldots,-2,-1$. Indeed, suppose it has been proven up to the range t with $q \leqslant t<-1$ and let us prove it at the range $t+1$. By (2) we have
(3) $\left|(t+1) a_{t+1}-a_{t}\right| R^{t} \leqslant \varepsilon\left|a_{q}\right| R^{q} \quad$ hence $\quad\left|(t+1) a_{t+1}-a_{t}\right| \leqslant \frac{\varepsilon\left|a_{q}\right|}{R^{t-q}}$ hence by (3)

$$
\begin{equation*}
\left|(t+1) a_{t+1}-a_{t}\right| \leqslant \frac{\varepsilon\left|a_{t}\right||(-q-1)!|}{R^{t-q}|(-t-1)!|} \tag{4}
\end{equation*}
$$

Now by Lemma C we know that $|(-q)!/(-t)!| \leqslant p^{1-(t-q) / p}$. Since $R \geqslant p^{-1 / p}$, we see that $R^{t-q} \geqslant p^{-(t-q) / p}$; hence $|(-q)!/(-t)!| \leqslant p R^{t-q}$ and therefore $\varepsilon|(-q)!/(-t)!| \leqslant R^{t-q}$. Then by relation (4) we have

$$
\begin{equation*}
\left|(t+1) a_{t+1}-a_{t}\right|<\left|a_{t}\right| \quad \text { hence } \quad\left|(t+1) a_{t+1}\right|=\left|a_{t}\right| \tag{5}
\end{equation*}
$$

and therefore

$$
\left|a_{t+1}\right|=\left|\frac{a_{t}}{t+1}\right|=\frac{\left|a_{q}\right| \mid(-t-2)!}{|(-(t+1)!)|}
$$

so that relation (3) is proven at the range $t+1$. It is then proven for every n up to -1 . Then relation (2) for $n=0$ gives us $\left|a_{-1}\right| R^{-1} \leqslant \varepsilon\left|a_{q}\right| R^{q}$, hence by (3) we have $\left|a_{q}\right| /|(-q-1)!| \leqslant \varepsilon R^{q+1}\left|a_{q}\right|$ and therefore

$$
\begin{equation*}
\varepsilon|(-q-1)!| R^{q+1} \geqslant 1 \tag{6}
\end{equation*}
$$

but we know that $R^{q+1}|(-q-1)!| \leqslant p^{-(q+1) / p} p^{1+(q+1) / p}<1 / \varepsilon$ hence (6) is impossible.

Lemma D is then proven.
The following lemma was given in $\left[\mathrm{S}_{5}\right]$, in constructing the «Produits Bicroulants» (twice collapsing meromorphic products).

Lemma E. Let $\rho, R^{\prime}, R^{\prime \prime}, R \in R_{+}$with $0<R^{\prime}<R^{\prime \prime}<R$. There exist sequences $\left(b_{n}^{\prime}\right)_{n \in \mathbf{N}}$ and $\left(b_{n}^{\prime \prime}\right)_{n \in \mathbf{N}}$ in $\Gamma\left(0, R^{\prime}, R^{\prime \prime}\right)$ with $\left|b_{n}^{\prime}\right|>\left|b_{n+1}^{\prime}\right|$, $\lim _{n \rightarrow \infty}\left|b_{n}^{\prime}\right|=R^{\prime},\left|b_{n}^{\prime \prime}\right|<\left|b_{n+1}^{\prime \prime}\right|, \lim _{n \rightarrow \infty}\left|b_{n}^{\prime \prime}\right|=R^{\prime \prime}$, such that, if we denote by D the set $d(0, R) \backslash\left[\left(\bigcup_{n=1}^{\infty} d^{-}\left(b_{n}^{\prime}, \rho\right)\right) \cup\left(\bigcup_{n=1}^{\infty} d^{-}\left(b_{n}^{\prime \prime}, \rho\right)\right)\right]$ the algebra $H(D)$ has an element $\varphi \in H(D)$ satisfying $\lim _{\substack{|x| \rightarrow R^{\prime} \\ x \in D}} \varphi(x)=1$ and $\lim _{\left\{\begin{array}{l}|x| \rightarrow R^{\prime \prime} \\ x \in D\end{array}\right.} \varphi(x)=0$.

Proof of Theorem 2. Let $\omega_{1}, \ldots, \omega_{t}$ be points in $d(0,1)$ such that $\omega_{1}=0,\left|\omega_{i}-\omega_{j}\right|=1$ whenever $i \neq j$. Let $\left.r \in\right] 0,1\left[\right.$ and let $\left(b_{m}\right)_{m \in N}$ be a sequence in $d^{-}(0, t)$ such that $\left|b_{m}\right|<\left|b_{m+1}\right|$ and $\lim _{m \rightarrow \infty}\left|b_{m}\right|=r$ and let $\left(q_{m}\right)_{m \in \mathbf{N}}$ be a sequence of integers such that $q_{m-1}<q_{m}$ for all $m>1$, $\lim _{m \rightarrow \infty} q_{m}=+\infty$ and $\lim _{m \rightarrow \infty} \prod_{j=1}^{m-1}\left|b_{j} / b_{m}\right|^{\left(p^{q_{j}}\right)}=0$. Let $T_{m}=d^{-}\left(b_{m},\left|b_{m}\right|\right)$, let $p_{m}=p^{q_{m}}$ and let $A=d^{-}(0, r) \backslash\left(\bigcup_{m=1}^{\infty} T_{m}\right)$.

It is easily seen that A admits a T-sequence $\left(T_{m}, q_{m}\right)\left[\mathrm{S}_{1}\right]$. Let \mathcal{T} be the increasing T-filter of center 0 , of diameter r on A. First we will construct an infraconnected clopen set included in $d(0,1)$, of diameter 1 , satisfying the following conditions:
(1) $\Omega \cap d^{-}(0, r)=A$.
(2) Ω has an increasing T-filter \mathscr{F} of center 0 , of diameter 1 .
(3) Ω has a decreasing T-filter \mathcal{G} of center 0 , of diameter $R \in] r, 1[$.
(4) The only T-filters of Ω are $\mathfrak{J}, \mathscr{F}, \mathcal{S}$.
(5) There exists φ and $\psi \in H(\Omega) \backslash\{0\}$ such that

$$
\varphi(x)=1, \quad \psi(x)=0 \quad \text { for } x \in \Omega \cap d(0, R)
$$

and

$$
\varphi(x)=0, \quad \psi(x)=1 \quad \text { for } x \in \Omega \backslash d^{-}(0,1)
$$

Let $\rho \in] 0, f\left[\right.$. By Lemma E there exist sequences $\left(\beta_{n}^{\prime}\right)_{n \in \mathrm{~N}}$ and
$\left(\beta_{n}^{\prime \prime}\right)_{n \in \mathrm{~N}}$ in $\Gamma(0, R, 1)$ such that

$$
\begin{array}{ll}
R<\left|\beta_{n+1}^{\prime}\right|<\left|\beta_{n}^{\prime}\right|, & \lim _{n \rightarrow \infty} \beta_{n}^{\prime}=R \\
\left|\beta_{n}^{\prime \prime}\right|<\left|\beta_{n+1}^{\prime \prime}\right|<1, & \lim _{n \rightarrow \infty}\left|\beta_{n}^{\prime \prime}\right|=1
\end{array}
$$

and such that the set

$$
\Lambda=d(0,1) \backslash\left[\left(\bigcup_{n=1}^{\infty} d^{-}\left(\beta_{n}^{\prime}, \rho\right)\right) \cup\left(\bigcup_{n=1}^{\infty} d^{-}\left(\beta_{n}^{\prime \prime}, \rho\right)\right)\right],
$$

defines an algebra $H(\Lambda)$ that contains elements φ satisfying $\varphi(x)=1$ for $|x| \leqslant R, \varphi(x)=0$ for $|x|=1$. Let us put $\psi=1-\varphi$ and let Ω be the set $A \cup\left(\Lambda \backslash d^{-}(0, r)\right)$.
Ω has clearly three T-filter:
the filter \mathfrak{J} on A
the increasing filter \mathscr{F} of center 0 , of diameter 1 that strictly annulls φ.
the decreasing filter \mathcal{G} of center 0 , of diameter R that strictly annulls ψ.

It is easily seen these three T-filters are the only T-filters on Ω, and Ω, φ, ψ are then defined.

Let $f(x)=\left(\sum_{m=1}^{\infty} p^{q_{m}} /\left(1-x / b_{m}\right)\right)$ and let $f_{1}(x)=\varphi(x) f(x)+\psi(x)$.
Then $f_{1}(x)=f(x)$ when $x \in \Omega \cap d(0, R)$ and $f_{1}(x)=1$ when $x \in \Omega \backslash d^{-}(0,1)$. We can deduce that f_{1} is a quasi-invertible element in $H(\Omega)$. Indeed, by Proposition B, f is not annulled by \mathcal{T} and by \mathcal{G}, hence f_{1} is not annulled by \mathscr{T} and by \mathcal{G} either; on the other hand, as $f_{1}(x)=1$ when $|x|=1$, f_{1} is not annulled by \mathcal{F}; hence f_{1} is not annulled by any one of the three T-filters on Ω so that it is quasi-invertible in $H(\Omega)$.

By Proposition B $\&\left(f_{1}\right)$ has a solution $g_{1}=\prod_{m=1}^{\infty} 1 /\left(1-x / b_{m}\right)^{p_{m}}$.
Now, for each $y=2, \ldots, t$ let $\Omega_{j}=\omega_{j}+\Omega=\left\{x+\omega_{j} \mid x \in \Omega\right\}$ and let $f_{j} \in H\left(\Omega_{j}\right)$ defined by $f_{j}\left(x+\omega_{j}\right)=f_{1}(x)$. In Ω_{j} the equation $\mathcal{E}\left(f_{j}\right)$ has a solution g_{j} defined by $g_{j}\left(x+\omega_{j}\right)=g_{1}(x)$. Let $D=\bigcap_{j=1}^{t} \Omega_{j}$ and let $f(x)=$ $=\prod_{j=1}^{t} f_{j}(x) \in H(D)$. Obviously, $f(x)=f_{j}(x)$ when $\left|x-\omega_{j}\right|<1$ and $f(x)=1$ when $\left|\xi-\omega_{l}\right|=1$ for every $l=1, \ldots, t$. Each one of the f_{j} is quasi-invertible in $H(D)$ so that f is also quasi-invertible.

Now each $g_{j}(1 \leqslant j \leqslant t)$ is a solution of $\varepsilon(f)$. Indeed, when $\mid x-$ $-\omega_{j} \mid<1$ we have $g_{j}^{\prime}(x)=f_{j}(x) g_{j}(x)=f(x) g_{j}(x)$ and when $\left|x-\omega_{j}\right|=1$, $g_{j}(x)=0$.

On the other hand, the g_{j} clearly have supports two by two disjointed, hence they are linearly independent, and that shows $s(f)$ has dimension $\geqslant t$.

We will end the proof in showing that $\left\{g_{1}, \ldots, g_{t}\right\}$ generates $s(f)$.

Log will denote the real logarithm function of base p. Let v be the valuation defined in K by $v(x)=-\log |x|$ when $x \neq 0$ and $v(0)=+\infty$. When A is an infraconnected set containing 0 , and $f \in H(A)$ we put

$$
v(f, \mu)=\lim _{\substack{v(x) \rightarrow \mu \\ v(x) \neq \mu \\ x \in D}} v(f(x))\left[\mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}\right] .
$$

For each $j=1, \ldots, t$, let $D_{j}=d^{-}\left(\omega_{j}, 1\right) \cap D$ and $B_{j}=d^{-}\left(\omega_{j}, R\right)$; let $D^{\prime}=$ $=D \backslash \bigcup_{j=1} D_{j}$. By definition of f we see that $f(x)=1$ for all $x \in D^{\prime}$ and $d^{-}(\alpha, 1) \subset D^{\prime}$ for every $\alpha \in D^{\prime}$. Then it is well known that the equation $y^{\prime}=y$ has no solution y in $H\left(d^{-}(\alpha, 1)\right)$ but the zero solution. Let $h \in S(f)$. For every $\alpha \in D^{\prime}$, the restriction of h to $d^{-}(\alpha, 1)$ is a solution of the equation $y^{\prime}=y$ that belongs to $H\left(d^{-}(\alpha, 1)\right)$ hence we see that $h(x)=0$ for all $x \in D^{\prime}$. Since D^{\prime} is equal to $d(0,1) \backslash \bigcup_{j=1}^{t} d^{-}(\omega, 1)$ we see
that

$$
\begin{equation*}
v(h, 0)=+\infty \tag{6}
\end{equation*}
$$

Now let us consider $h(x)$ when $x \in B_{1}$.
Since $D_{1}=\Omega \cap d^{-}(0,1)$ the three T-filters $\mathcal{F}, \mathscr{F}, \mathcal{G}$ of Ω are secant to D_{1} and they are the only T-filters on D_{1}. Then \mathcal{T} is the only one T-filter on B_{1} because \mathscr{F} and \mathcal{G} are not secant to $d(0, R)$. The algebra $H\left(B_{1}\right)$ has no divisor of zero. Consider the restriction \tilde{f}_{1} of to D_{1} and the restriction \hat{f}_{1} to B_{1}. In $H\left(B_{1}\right)$ the space $s\left(\hat{f}_{1}\right)$ has dimension one by Theorem 3 of $\left[\mathrm{E}_{7}\right]$, hence there exists $\lambda_{1} \in k$ such that $h(x)=\lambda_{1} g_{1}(x)$ whenever $x \in B_{1}$.

Since $g_{1} \in J_{0}(\mathscr{J})$, that implies $h(x)=0$ whenever $x \in \Gamma(0, r, R)$ hence $v(h,-\log R)=+\infty$. We will deduce that $v(h, \mu)=+\infty$ whenever $\mu \in[0,-\log R]$.

Indeed, suppose this is not true. Then h is strictly annulled by an increasing T-filter of center 0 , of diameter $>R$, hence h is strictly an-
nulled by \mathscr{F}. Since $\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in D}} \varphi(x)=\lim _{\substack{|x| \rightarrow 1^{-} \\ x \in D}} \psi(x)=1$. there exists $\left.s \in\right] R, 1[1]$

$$
\begin{equation*}
\left|\frac{h^{\prime}(x)}{h(x)}-1\right| \leqslant \frac{1}{p^{2}} \quad \text { for } x \in D \cap \Gamma(0, s, 1) \tag{7}
\end{equation*}
$$

On the other hand, it is easily seen that $h(x)$ is equal to a Laurent series in each annulus $\Gamma\left(0,\left|b_{n}^{\prime \prime}\right|,\left|b_{n+1}^{\prime \prime}\right|\right)$ and for every $s<1$ there exist intervals $\left.\left[r^{\prime}, r^{\prime \prime}\right] c\right] s, 1[$ such that the function $v(h, \mu)$ is strictly decreasing in $\left[-\log r^{\prime \prime},-\log r^{\prime}\right]$ and such that $h(x)$ is equal to a Laurent series $\sum_{-\infty}^{+\infty} a_{n} x^{n}$. Let $\left.\rho \in\right] r^{\prime}, r^{\prime \prime}[$, since $v(h, \mu)$ is strictly decreasing in $\left[-\log r^{\prime \prime},-\log r^{\prime}\right]$ there exists $q<0$ such that $\left|a_{q}\right| \rho^{q}=\sup _{n \in \mathrm{Z}}\left|a_{n}\right| \rho^{n}$. Then h satisfies the hypothesis of Lemma D and relation (7) is impossible. But then $v(h, \mu)=+\infty$ for every $\mu \in[0,-\log r]$ It follows that $h(x)=0$ for every $x \in \Gamma(0, R, 1)$ because if there existed a point $\alpha \in \Gamma(0, R, 1)$ with $h(\alpha) \neq 0, \alpha$ should be the center of an increasing T-filter that would annull h but the unique T-filter of center α is \mathscr{F} and we have just seen that \mathscr{F} does not annull h.

Thus we have now proven that $h(x)=0$ for all $x \in B_{1}$ such that $r \leqslant|x|<1$. Since $g_{1}(x)=0$ whenever $x \in \Gamma(0, r, 1)$, the relation $h(x)=$ $=\lambda_{1} g_{1}(x)$ is then true in all B_{1}. In the same way, for each $j=2, \ldots, t$, we can show there exists $\lambda_{j} \in K$ such that $h(x)=\lambda_{j} g_{j}(x)$ for every $x \in B_{j}$ and then $h(x)=\sum_{j=1}^{t} \lambda_{j} g_{j}(x)$ is true in $\bigcup_{j=1}^{t} B_{j}$, and of course in D^{\prime}, hence it is true in all D. That finishes proving $\left\{g_{1}, \ldots, g_{t}\right\}$ is a base of $S(f)$.

REFERENCES

[A] Amice Y., Les nombres p-adiques, P.U.F. (1975).
[D] Dwork B., Lectures on p-Adic Differential Equations, Springer-Verlag, New York-Heidelberg-Berlin.
[E_{1}] Escassut A., Algèbres de Krasner, C.R.A.S. Paris, 272 (1971), pp. 598-601.
[E_{2}] Escassut A., Algèbres d'éléments analytiques en analyse non archimédienne, Indagationes Mathematicae, 36 (1974), pp. 339-351.
[E_{3}] Escassut A., Eléments analytiques et filtres percés sur un ensemble infraconnexe, Ann. Mat. Pura Appl. Bologna, 110 (1976), pp. 335-352.
$\left[\mathrm{E}_{4}\right]$ Escassut A., T-filtres, ensembles analytiques et transformations de Fourier p-adique, Ann. Inst. Fourier, Grenoble, 25 (1975), pp. 45-80.
[E_{5}] Escassut A., Algèbres de Krasner intègres et noethériennes, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 78, no. 4 (1976), pp. 109-130.
[E_{6}] Escassut A., Derivative of Analytic Elements on Infraconnected Clopen Sets, Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 92, no. 1 (1989), pp. 63-70.
$\left[\mathrm{E}_{7}\right]$ Escassut A. -Sarmant M. C., The differential equation $y^{\prime}=$ fy in the algebras $H(D)$, Collectanea Mathematica, 39, no. 1 (1988), pp. 31-40.
[E_{8}] Escassut A. - Sarmant M. C., The equation $y^{\prime}=$ fy in zero residue characteristic, Glasgow Mathematical Journal, 33 (1991) p. 149-153.
[E_{9}] Escassut A., The equation $y^{\prime}=$ fy in C_{D} when f is not quasi-invertible, Revista di Matematica Pura ed Applicata, no. 6 (1990), pp. 81-92.
[G] Garandel G., Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, Indagationes Mathematicae, 37, no. 4 (1975), pp. 327-341.
[K_{1}] Krasner M., Prolongement analytique dans les corps valués complets: préservation de l'analyticité par la convergence uniforme et par la dérivation; théorème de Mittag-Leffler généralisé pour les éléments analytiques, C.R.A.S. Paris, 244 (1957), pp. 2570-2573.
$\left[\mathrm{K}_{2}\right]$ Krasner M., Prolongement analytique uniforme et multiforme dans le corps valués complets. Les tendances géométriques en algébre et théorie des nombres, Clermont-Ferrand 1964, pp. 97-141. Centre Nationale de la Recherche Scientifique (1966) (Colloques internationaux du C.N.R.S., Paris, 143).
[R] Robba Ph., Fonctions analytiques sur les corps valués ultramétriques complets, Prolongement analytique et algèbres de Banach ultramétriques, Astérisque, 10 (1973), pp. 109-220.
[S_{1}] Sarmant M. C. - Escassut A., T-suites idempotentes, Bulletin de Sciences Mathématiques, 106, no. 3 (1982), pp. 189-303.
$\left[\mathrm{S}_{2}\right]$ Sarmant M. C., Décomposition en produit de facteurs de fonctions méromorphes, C.R.A.S., 292 (1981), pp. 127-130.
[S_{3}] Sarmant M. C., Produits méromorphes, Bulletin des Sciences Mathématiques, 109 (1985), pp. 155-178.
[S_{4}] Sarmant M. C. - Escassut A., Prolongement analytique à travers un Tfiltre, Studia Scientiarum Mathematicarum Hungarica, 22 (1987), pp. 407-444.
[S_{5}] Sarmant M. C. - Escassut A., Fonctions analytiques et produits croulants, Collectanea Mathematica, 36 (1985), pp. 199-218.

Manoscritto pervenuto in redazione il 13 giugno 1990.

