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The Equation y’ = fy in Cp when f is Quasi-Invertible.

ALAIN ESCASSUT (*)

SUMMARY - Let K be a complete algebraically closed extension of Cp . Let D be a
clopen bounded infraconnected set in K, let H(D) be the Banach algebra of
the analytic elements on D, let f E H(D) and let be the space of the solu-
tions of the equation y’ = fy in H(D). We construct such a set D provided with
a T-filter lX such that there exists a quasi-invertible f E H(D) such that 8(f)
has non zero elements g which approach zero along T. In extending this con-
struction we show that for every t E N, we can make a set D and an f E H(D)
such that 8(f) has dimension t. That answers questions suggested in previous
articles.

I. Introduction and theorems.

Let K be an ultrametric complete algebraically closed field, of char-
acteristic zero and residue characteristic p # 0.

Let D be an infraconnected bounded clopen set in K and let H(D) be
the Banach algebra of the Analytic Elements on D (i. e. , H(D) is the
completion of the algebra R(D) for the uniform convergence norm on
D) [E1 , E2 , E3 , K1 , K2, R].

Recall that a set D in K is said to be infraconnected it for every a E D
the mapping a ) has an image whose adherence in R is an inter-
val ; then H(D) has no idempotent different from 0 and 1 is and only if D
is infraconnected [E2] On the other hand, an open set D is infraconnect-
ed if and only if f’ = 0 implies f = ct for every f E H(D) [E6 ]. Let

f E H(D); we denote by 8(f) the differential equation y’ = fy (where
y E H(D)) and by the space of the solutions of 8(f ).

In [E 7 ] we saw that has dimension 1 as soon as it contains

(*) Indirizzo dell’A.: Universite Blaise Pascal (Clermont II), D6partement
de Math6matiques Pures, 63177 Aubi6re C6dex, France.
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a g invertible in H(D). If H(D) has no divisor of zero, 8( f) doesn’t
have dimension greater than one.

In [E ] we saw that if the residue characteristic of K is zero, then
never has dimension greater than one.

But when the residue characteristic p is different from zero, in [E ]
we saw that there does exist infraconnected clopen bounded sets with a
T-filter F[E4] and an element f annulled by Y such that the solutions of
8( f ) are also annulled by M Thanks to such T-filters, for every n E N
we could construct infraconnected clopen bounded sets D with f E H(D)
such that S(f) has dimension n, and we even constructed sets D with
f E H(D) such that is isomorphic to the space of the sequences of
limit zero.

Thus [Eg ] suggested that a situation where the solutions of 
were not invertible in H(D) should be associated to a non quasi-invert-
ible element f, and so should be spaces S(f) of dimension greater than
one.

(Recall that f is said to be quasi-invertible in H(D) if it factorizes in
the form P(x) g(x) where P is a polynomial the zeros of which are in D
and g is an invertible element of H(D)) [E i , E2 , E3 , E4 ].

Here we will prove this connection does not hold in constructing an
infraconnected clopen bounded set D with a T-filter Y and a quasi-in-
vertible element f E H(D) such that 8(f) has solutions strictly annulled
by M

Next, for every fixed integer t, an extension of that construction
will provide us with a set D and a quasi-invertible f E H(D) such that
dim S(f) = t.

THEOREM 1. There exist an infraconnected clopen bounded set D
quasi-invertible elements f E H(D) such that 8(f)

has solutions strictly annulled by T and S(f) has dimension 1.

More precisely, we will concretely construct such a set D and
f E H(D) in Proposition B.

THEOREM 2. Let t E N. There exist an infraconnected clopen
bounded set D and quasi-invertible elements f E H(D) such that
dim (S( f )) = t.

Theorem 2 will also be proven by a concrete construction.

REMARK. We are not able to construct an infraconnected clopen
bounded set D with a quasi-invertible f E H(D) such that 8(f) has infinite
dimension. By then, the following conjecture seems to be likely.
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CONJECTURE. If f is quasi-invertible, 8(f) has finite dimen-
sion.

The following Proposition A will demonstrate Theorem 1 by show-
ing how to obtain the set D, the T-filter ~, and the element f.

PROPOSITION A. Let N be a sequence in d - (0, 1) such that
I bm I  I bm + 1 I, and let (Pm)m E N be a sequence of integers in the form p qm
where qm is a sequence of integers satisfying

Let R be , 1, and let D = d(O,
let

For each m E N*

Then the sequence converges in H(D) to a limit h that is strictly
annulled by the increasing Tlilter ff of center 0 of diameter 1, and
h E S(,T). 00

The series Y- pj/(bm - x) converges is H(D) to a limit f quasi-in-
m=1 1

vertibLe in H(D) and h is a solution of 8(f).

II. The proof of Proposition A

The proof of proposition will use the following Lemma B.

LEMMA B. Let q and n be two integers such that C  n ~ pq. Then

PROOF. If n is a multiple of some p , then pq - n is obviously mul-
tiple of ph. Let b the bijection from {1, ..., n} onto {(pq- n+ 1), ..., pq }
defined by b( j) _ ~q - j + 1. By the last sentence, when j is divisible
by ph, b( j + 1) is also divisible by p~ hence therefore

!(p,-l)(p,-2)...(p~-~+l)!~!(~-l)!! I and finally IC;q 
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PROOF OF PROPOSITION A. Since we have

Thus we can easily define a sequence of

integers 1,,, such that and

We put Then we have

As the holes of D are in the form d - it is easily seen
that

Let us consider We have

and in the same way hence

Now let us consider hm+ 1 (x) - (x) when I x  ~ Ibm and let us put

Then it is clear that lu(x)1 I and then for

we obtain by Lemma B.

we see that and then

every term is upper bounded by 

therefore u(x) ~ ~ whenever x E D n bm 1).
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Finally by (6) we see that hence the

sequence hm converges in H(D) to the convergent infinite product

By (3) and by the definition of D it is easily seen that the increasing
filter T of center 0, of diameter 1, is a T-filter and it is the only one T-
filter on D [E4 ].

On the other hand, by (5) we have whenever

x E DBd - (o, ~ Ibm I) and therefore h is clearly annulled by £ and it is
strictly annulled by T (because .1-r is the only T-filter on D), and h(x) = 0
whenever X E hence h E ðo (Y).

Now let us consider the series Since

(4) we see that series series converge to a limit f E H(D). Moreover, it is
easily seen that for every j E N* , hence, by (2),

we have , hence f is not annulled by M

Since Y is the only T-filter, f is then quasi-invertible.
At last, we shortly verify that h is solution of 8(f ).
By Corollary of [E6 ] we know that h’ E ,. H(D) and the sequence h:n

converges to h’ in H(D)’ . On the other hand, it is easily seen that

hence

and therefore h is a solution of 8(f), and that ends the proof of Proposi-
tion A.

III. The proof of Theorem 2.

LEMMA C. Let q, n be integers such that 0  n  q. Then

|q!/n!|  p1-(q-n)/p.
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PROOF. q! / n! has q - n consecutive factors. It is easily seen among
these q - n factors, the number of them that are multiple of p, is at
least Int (q - n)/p) and therefore v(q! /n!) * Int ((q - n) /p) &#x3E; (q -
- n)/p - 1 and that ends the proof of Lemma C.

LEMMA D. Let R ~ I and let

be a Laurent series convergent for I x = R, such that sup an IR n =
= with q  0. Then p does not satisfy the inequality

PROOF. We suppose rp satisfies (1) and we put 
By (1) it is easily seen that

If q = -1, relation (2) hence g = 0. We
will suppose q  -1 and we will prove that (3) 1 a,,, = 
- q -1)!| 1 for n = q + l, q + 2, ..., -2, -1. Indeed, suppose it has been
proven up to the range t with q  t  -1 and let us prove it at
the range t + 1. By (2) we have

hence by (3)

Now by Lemma C we know that ( - q) ! /( - t) ! ~  ~ 1- ~t - q~~P . Since

R &#x3E; ~ro -1 ~p , we see that R t - q &#x3E; ~ -~t - q)lP ; hence 
and Then by relation (4) we have

and therefore

so that relation (3) is proven at the range t + 1. It is then proven
for every n up to -1. Then relation (2) for n = 0 gives us

hence by (3) we have I
and therefore
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but we know that hence

(6) is impossible.
Lemma D is then proven.
The following lemma was given in[55], in constructing the

«Produits Bicroulants» (twice collapsing meromorphic products).

LEMMA E. Let p, R ’ , R ", R E R + with 0  R ’  R "  R . There exist

sequences and with
such that, if we denote by

has an element p E H(D) satisfying

PROOF OF THEOREM 2. Let c~1, ..., wt be points in d(o,1) such that
= 1 whenever i =1= j. Let r E ]o,1[ and let (bm)m E N be a

sequence in d - (o, t) such that I bm  | bm + 1 | 1 and lim = r and let

N be a sequence of integers such that q1  qm for all m &#x3E; 1,

and Let let

~m = pom and let

It is easily seen that A admits a T sequence (Tm , qm ) [S1 ]. Let T be
the increasing T-filter of center 0, of diameter r on A. First we will con-
struct an infraconnected clopen set included in d(o,1), of diameter 1,
satisfying the following conditions:

(1) 

(2) 0 has an increasing T-filter f1 of center 0, of diameter 1.

(3) D has a decreasing T-filter g of center 0, of diameter

R E ]r, 1[.
(4) The only T-filters of 0 are 1Q ~ g.
(5) There exists p such that

and

Let By Lemma E there exist sequences 
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( ~n )n E N in r(0, R,1 ) such that

and such that the set

defines an algebra that contains elements p satisfying = 1 for

g~(r) = 0 for Ixl = 1. Let us put § =1- ~ and let Q be the set
A u (A "’-d - (0, r)).

Q has clearly three T-filter:
the filter ~’ on A

the increasing filter T of center 0, of diameter 1 that strictly an-
nulls p.

the decreasing filter G of center 0, of diameter R that strictly an-
nulls Y.

It is easily seen these three T-filters are the only T-filters on 0, and
Q, p~ ~ are then defined.

Then f1 (x) = fix) when x E Q n d(O, R) and f1 (x) = 1 when
x E S2Bd- (0,1). We can deduce thatf1 is a quasi-invertible element in
H(Q). Indeed, by Proposition B, f is not annulled by T and by f1, hence
f1 is not annulled by 1F and by either; on the other hand, as f, (x) = 1
when I x = 1, flis not annulled by ~; hence fi is not annulled by any one
of the three T-filters on S2 so that it is quasi-invertible in 

By Proposition B ~( fl ) has a solution

Now, for each let and let

defined by. In Qj the equation has a sol-

ution gj defined by Let and let f(x) =

Obviously, f(x) when Ix - Cùj  1 and f(x) = 1

when Iç- - wll = 1 for every 1 = 1, ..., t. Each one of the.fj is quasi-invert-
ible in H(D) so that f is also quasi-invertible.
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Now each gj (1 ; j  t) is a solution of 8(f). Indeed, when |x -
 1 we have gj’ (x) _ , f (x) = and when x - Wj 1= 1,
= 0.

On the other hand, the gj clearly have supports two by two disjoint-
ed, hence they are linearly independent, and that shows has di-
mension : t.

We will end the proof in showing that {gl , ... , gt ~ generates
S(f).

Log will denote the real logarithm function of base p. Let v be the
valuation defined in K by I when r # 0 and v(o) _ + 00.
When A is an infraconnected set containing 0, and f E H(A) we put

For each j =1, ..., t, let Dj = d - 1) n D and Bj = d - R); let D’ =

By definition of f we see that f(x) = 1 for all x E D’ and

d - (~, 1) c D’ for every « E D’. Then it is well known that the equation
y’ = y has no solution y in H(d - (~, 1» but the zero solution. Let
h E s( f ). For every a E D’, the restriction of h to d - (a, 1) is a solution of
the equation y’ = y that belongs to H(d - (a, 1)) hence we see that

h(x) = 0 for all X E D’. Since D’ is equal to i we see

that

Now let us consider h(x) when x E B1.
Since D, = 0 n d - (0, 1) the three T-filters 1Q £ g of Q are secant to

D1 and they are the only T-filters on D1. Then J is the only one T-filter
on B1 because F and S are not secant to d(O, R). The algebra H(B1 ) has
no divisor of zero. Consider the restriction/i of to D1 and the restriction
f, to B1. In H(B1 ) the space 8( fl ) has dimension one by Theorem 3
of [E7 ], hence there exists À1 E k such that h(x) = À1g1 (x) whenever
x E B1.

Since gl E ðo (9), that implies h(x) = 0 whenever x E r(0, r, R) hence
v(h, -log R) _ + 00 . We will deduce that v(h, ,u) = + 00 whenever

[0, -log R].
Indeed, suppose this is not true. Then h is strictly annulled by an

increasing T-filter of center 0, of diameter &#x3E; R, hence h is strictly an-
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nulled by F. Since there exists s E ]R 1[
such that

On the other hand, it is easily seen that h(x) is equal to a Laurent ser-
ies in each annulus r(0j&#x26;~~+i~) and for every s  1 there exist
intervals [r’ , r" ] c ]s,1 [ such that the function v(h, IA) is strictly decreas-
ing in [ - log r" , -logr’] and such that h(x) is equal to a Laurent

series since v(h, g) is strictly decreasing in

[ - log r" , -log r’ ] there exists q  0 such that = sup an Ipn. Then
n E Z

h satisfies the hypothesis of Lemma D and relation (7) is impossible.
But then = +00 for every g E [0, -log r] It follows that h(x) = 0
for every x E r(O, R,1) because if there existed a point a E r(O, R, 1)
with 0, « should be the center of an increasing T-filter that would
annull h but the unique T-filter of center a is F and we have just seen
that F does not annull h.

Thus we have now proven that h(x) = 0 for all X E B1 such that
1. Since gl (x) = 0 whenever x E r(0, r, 1), the relation h(x) _

= xi gi (x) is then true in all B1. In the same way, for each j = 2, ... , t, we
can show there exists Aj E K such that h(x) = Àjgj (x) for every X E Bj and

then is true in , and of course in D’, hence it is

true in all D. That finishes proving {gl , ..., gt } is a base of S( f ).
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