RENDICONTI del Seminario Matematico della Università di Padova

ALAIN ESCASSUT The equation y' = fy in \mathbb{C}_p when f is quasi-invertible

Rendiconti del Seminario Matematico della Università di Padova, tome 86 (1991), p. 17-27

http://www.numdam.org/item?id=RSMUP_1991__86__17_0

© Rendiconti del Seminario Matematico della Università di Padova, 1991, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 86 (1991)

The Equation y' = fy in C_p when f is Quasi-Invertible.

ALAIN ESCASSUT(*)

SUMMARY - Let K be a complete algebraically closed extension of C_p . Let D be a clopen bounded infraconnected set in K, let H(D) be the Banach algebra of the analytic elements on D, let $f \in H(D)$ and let S(f) be the space of the solutions of the equation y' = fy in H(D). We construct such a set D provided with a T-filter \mathcal{F} such that there exists a quasi-invertible $f \in H(D)$ such that S(f) has non zero elements g which approach zero along \mathcal{F} . In extending this construction we show that for every $t \in N$, we can make a set D and an $f \in H(D)$ such that S(f) has dimension t. That answers questions suggested in previous articles.

I. Introduction and theorems.

Let K be an ultrametric complete algebraically closed field, of characteristic zero and residue characteristic $p \neq 0$.

Let D be an infraconnected bounded clopen set in K and let H(D) be the Banach algebra of the Analytic Elements on D (i.e., H(D) is the completion of the algebra R(D) for the uniform convergence norm on D)[$E_1, E_2, E_3, K_1, K_2, R$].

Recall that a set D in K is said to be infraconnected it for every $a \in D$ the mapping $x \to |x-a|$ has an image whose adherence in \mathbb{R} is an interval; then H(D) has no idempotent different from 0 and 1 is and only if Dis infraconnected $[\mathbb{E}_2]$ On the other hand, an open set D is infraconnected if and only if f' = 0 implies f = ct for every $f \in H(D)[\mathbb{E}_6]$. Let $f \in H(D)$; we denote by $\mathcal{E}(f)$ the differential equation y' = fy (where $y \in H(D)$) and by $\mathcal{E}(f)$ the space of the solutions of $\mathcal{E}(f)$.

In [E₇] we saw that S(f) has dimension 1 as soon as it contains

(*) Indirizzo dell'A.: Université Blaise Pascal (Clermont II), Département de Mathématiques Pures, 63177 Aubière Cédex, France. a g invertible in H(D). If H(D) has no divisor of zero, S(f) doesn't have dimension greater than one.

In $[E_8]$ we saw that if the residue characteristic of K is zero, then S(f) never has dimension greater than one.

But when the residue characteristic p is different from zero, in $[E_9]$ we saw that there does exist infraconnected clopen bounded sets with a T-filter $\mathcal{F}[E_4]$ and an element f annulled by \mathcal{F} such that the solutions of $\mathcal{E}(f)$ are also annulled by \mathcal{F} . Thanks to such T-filters, for every $n \in \mathbb{N}$ we could construct infraconnected clopen bounded sets D with $f \in H(D)$ such that $\mathcal{E}(f)$ has dimension n, and we even constructed sets D with $f \in H(D)$ such that $\mathcal{E}(f)$ is isomorphic to the space of the sequences of limit zero.

Thus $[E_8]$ suggested that a situation where the solutions of $\mathcal{E}(f)$ were not invertible in H(D) should be associated to a non quasi-invertible element f, and so should be spaces $\mathcal{E}(f)$ of dimension greater than one.

(Recall that f is said to be quasi-invertible in H(D) if it factorizes in the form P(x)g(x) where P is a polynomial the zeros of which are in D and g is an invertible element of H(D)) [E₁, E₂, E₃, E₄].

Here we will prove this connection does not hold in constructing an infraconnected clopen bounded set D with a T-filter \mathcal{F} and a quasi-invertible element $f \in H(D)$ such that $\mathcal{E}(f)$ has solutions strictly annulled by \mathcal{F} .

Next, for every fixed integer t, an extension of that construction will provide us with a set D and a quasi-invertible $f \in H(D)$ such that $\dim S(f) = t$.

THEOREM 1. There exist an infraconnected clopen bounded set D with a T-filter \mathcal{F} and quasi-invertible elements $f \in H(D)$ such that $\mathcal{E}(f)$ has solutions strictly annulled by \mathcal{F} and $\mathcal{E}(f)$ has dimension 1.

More precisely, we will concretely construct such a set D and $f \in H(D)$ in Proposition B.

THEOREM 2. Let $t \in \mathbb{N}$. There exist an infraconnected clopen bounded set D and quasi-invertible elements $f \in H(D)$ such that $\dim(S(f)) = t$.

Theorem 2 will also be proven by a concrete construction.

REMARK. We are not able to construct an infraconnected clopen bounded set D with a quasi-invertible $f \in H(D)$ such that S(f) has infinite dimension. By then, the following conjecture seems to be likely. CONJECTURE. If f is quasi-invertible, S(f) has finite dimension.

The following Proposition A will demonstrate Theorem 1 by showing how to obtain the set D, the *T*-filter \mathcal{F} , and the element f.

PROPOSITION A. Let $(b_m)_{m \in \mathbb{N}}$ be a sequence in $d^-(0, 1)$ such that $|b_m| < |b_{m+1}|$, and let $(p_m)_{m \in \mathbb{N}}$ be a sequence of integers in the form p^{q_m} where q_m is a sequence of integers satisfying

(1)
$$\lim_{m \to \infty} q_m = +\infty$$

(2)
$$|p_1| > |p_m|$$
 whenever $m \ge 2$,

(3)
$$\lim_{m \to \infty} \left| \frac{b_m}{b_{m+1}} \right|^{p_{m+1}} = 0.$$

 $\begin{array}{l} \mbox{Let R be \geq1, and let $D=d(0,R) \smallsetminus \left(\bigcup_{m=1}^{\infty} d^{-}(b_{m},|b_{m}|)\right)$. For each $m \in \mathbb{N}^{*}$ let } \end{array}$

$$h_m = \prod_{j=1}^m \frac{1}{(1-x/b_j)^{p_j}} \in R(D).$$

Then the sequence (h_m) converges in H(D) to a limit h that is strictly annulled by the increasing T-filter \mathcal{F} of center 0 of diameter 1, and $h \in S(\mathcal{F})$.

The series $\sum_{m=1}^{\infty} p_j/(b_m - x)$ converges is H(D) to a limit f quasi-invertible in H(D) and h is a solution of $\mathcal{E}(f)$.

II. The proof of Proposition A

The proof of proposition will use the following Lemma B.

LEMMA B. Let q and n be two integers such that $C < n \le p^q$. Then $|C_{(p^q)}^n| \le p^{-q}/|n|$.

PROOF. If n is a multiple of some p^h , then $p^q - n$ is obviously multiple of p^h . Let b the bijection from $\{1, ..., n\}$ onto $\{(p^q - n + 1), ..., p^q\}$ defined by $b(j) = p^q - j + 1$. By the last sentence, when j is divisible by p^h , b(j+1) is also divisible by p^h hence $|b(j+1)| \leq |j|$ therefore $|(p_q - 1)(p_q - 2) \dots (p^q - n + 1)| \leq |(n-1)!|$ and finally $|C_{p^q}^h| \leq p^{-q}/|n|$.

PROOF OF PROPOSITION A. Since $\lim_{m\to\infty} |b_m/b_{m+1}|^{p_{m+1}} = 0$ we have $\lim_{m\to\infty} (p^{q_{m+1}}\log|b_{m+1}/b_m|) = +\infty$. Thus we can easily define a sequence of integers l_m such that $\lim_{m\to\infty} (q_m-l_m) = +\infty$ and $\lim_{m\to\infty} (p^{l_{m+1}}\log|b_{m+1}/b_m|) = = +\infty$. We put $t_m = p^{l_m}$, $\omega_m = |p_m/t_m|$, $\varepsilon_m = |b_{m-1}/b_m|^{t_m}$. Then we have $\lim_{m\to\infty} \omega_m = \lim_{m\to\infty} \varepsilon_m = 0$.

As the holes of D are in the form $d^{-}(b_{m}, |b_{m}|)$ it is easily seen that

(4)
$$\left\|\frac{1}{1-x/b_j}\right\|_D \leq 1.$$

Let us consider $|h_{m+1}(x) - h_m(x)|$ when $|x| \ge |b_m|$. We have

(5)
$$|h_m(x)| \leq \prod_{j=1}^{m-1} \frac{1}{|1-x/b_j|^{p_j}} \leq \varepsilon_m$$

and in the same way $|h_{m+1}(x)| \leq \epsilon_m$ hence

(6)
$$|h_{m+1}(x) - h_m(x)| \le \varepsilon_m$$

Now let us consider $h_{m+1}(x) - h_m(x)$ when $|x| < |b_m|$ and let us put

$$u(x) = \frac{1}{\left(1 - \frac{x}{b_{m+1}}\right)^{p_{m+1}}} - 1 = -\frac{\sum_{j=1}^{p_{m+1}} \binom{p_{m+1}}{j} \left(-\frac{x}{b_{m+1}}\right)^j}{\left(1 - \frac{x}{b_{m+1}}\right)^{p_{m+1}}}$$

Then it is clear that $|u(x)| \leq \max_{1 \leq j \leq p_m} \left| \binom{p_{m+1}}{j} \right| \cdot \left| \frac{b_m}{b_{m+1}} \right|^j$ and then for $1 \leq j \leq t_{m+1}$, as $|j| \geq |t_{m+1}|$, we obtain $\left| \binom{p_{m+1}}{j} \right| \leq \left| \frac{p_{m+1}}{t_{m+1}} \right|$ by Lemma B.

Now for $j > t_{m+1}$ we see that $\left| \frac{b_m}{b_{m+1}} \right|^j \le \left| \frac{b_m}{b_{m+1}} \right|^{t_{m+1}} = \varepsilon_m$ and then

every term $\binom{p_{m+1}}{j} \left(-\frac{x}{b_{m+1}}\right)^j$ is upper bounded by max $(\omega_{m+1}, \varepsilon_m)$ and

therefore $|u(x)| \leq \max(\omega_{m+1}, \varepsilon_m)$ whenever $x \in D \cap d(0, |b_m|)$.

Finally by (6) we see that $||h_{m+1} - h_m||_D \le \max(\omega_{m+1}, \varepsilon_m)$ hence the sequence h_m converges in H(D) to the convergent infinite product

$$h(x) = \prod_{j=1}^{\infty} \frac{1}{(1-x/b_j)^{p_j}} \, .$$

By (3) and by the definition of D it is easily seen that the increasing filter \mathcal{F} of center 0, of diameter 1, is a *T*-filter and it is the only one *T*-filter on $D[\mathbf{E}_4]$.

On the other hand, by (5) we have $|h(x)| \leq \varepsilon_m$ whenever $x \in D \setminus d^-(0, |b_m|)$ and therefore *h* is clearly annulled by \mathcal{F} , and it is strictly annulled by \mathcal{F} (because \mathcal{F} is the only *T*-filter on *D*), and h(x) = 0 whenever $x \in \mathcal{P}(\mathcal{F})$ hence $h \in \mathcal{J}_0(\mathcal{F})$.

Now let us consider the series $\sum_{j=1}^{\infty} p_j/(b_j - x)$. Since $\lim_{m \to \infty} |p^m| = 0$, by (4) we see that series series converge to a limit $f \in H(D)$. Moreover, it is easily seen that $\lim_{\substack{\{|x| \to 1^- \\ x \in D \\ \\ \end{bmatrix}}} |p_j/(b_j - x)| = |p_j|$ for every $j \in \mathbb{N}^*$, hence, by (2),

we have $\lim_{\substack{|x| \to 1^- \\ x \in D}} |f(x)| = p_1$, hence f is not annulled by \mathcal{F} .

Since \mathcal{F} is the only *T*-filter, *f* is then quasi-invertible.

At last, we shortly verify that h is solution of $\mathcal{E}(f)$.

By Corollary of $[E_6]$ we know that $h' \in H(D)$ and the sequence h'_m converges to h' in H(D)'. On the other hand, it is easily seen that

$$h'_{m} = \left(\sum_{j=1}^{m} \frac{p_{j}}{(1 - x/b_{j})^{p_{j}}}\right) h_{m} = h_{m} \sum_{j=1}^{m} \frac{p_{j}}{b_{j} - x}$$

hence

$$\lim_{m \to \infty} h'_m = h\left(\sum_{j=1}^{\infty} \frac{p_j}{b_j - x}\right) = hf$$

and therefore h is a solution of $\mathcal{E}(f)$, and that ends the proof of Proposition A.

III. The proof of Theorem 2.

LEMMA C. Let q, n be integers such that 0 < n < q. Then $|q!/n!| \leq p^{1-(q-n)/p}$.

Alain Escassut

PROOF. q!/n! has q-n consecutive factors. It is easily seen among these q-n factors, the number of them that are multiple of p, is at least $\operatorname{Int}(q-n)/p$ and therefore $v(q!/n!) \ge \operatorname{Int}((q-n)/p) > (q-n)/p - 1$ and that ends the proof of Lemma C.

LEMMA D. Let $R \in [p^{-1/p}, 1[$, let $\varepsilon \in]0, 1/p[$ and let $\varphi(x) = \sum_{-\infty}^{+\infty} a_n x^n$ be a Laurent series convergent for |x| = R, such that $\sup |a_n| R^n = |a_n| R^q$ with q < 0. Then φ does not satisfy the inequality

(1)
$$\left| \frac{\varphi'(x)}{\varphi(x)} - 1 \right| < \varepsilon \quad \text{for all } x \in C(0, R).$$

PROOF. We suppose φ satisfies (1) and we put $M = |a_q|R^q$. By (1) it is easily seen that

(2)
$$|na_n - a_{n-1}| R^{n-1} \leq \varepsilon M$$
 for every $n \in \mathbb{Z}$.

If q = -1, relation (2) gives $|-a_{-1}|/R \le \varepsilon |a_{-1}|/R$ hence $\varphi = 0$. We will suppose q < -1 and we will prove that (3) $|a_n| = |a_q(-n-1)!|/|(--q-1)!|$ for n = q + 1, q + 2, ..., -2, -1. Indeed, suppose it has been proven up to the range t with $q \le t < -1$ and let us prove it at the range t + 1. By (2) we have

(3)
$$|(t+1)a_{t+1} - a_t|R^t \le \varepsilon |a_q|R^q$$
 hence $|(t+1)a_{t+1} - a_t| \le \frac{\varepsilon |a_q|}{R^{t-q}}$

hence by (3)

(4)
$$|(t+1)a_{t+1} - a_t| \leq \frac{\varepsilon |a_t||(-q-1)!|}{R^{t-q}|(-t-1)!|}$$

Now by Lemma C we know that $|(-q)!/(-t)!| \leq p^{1-(t-q)/p}$. Since $R \geq p^{-1/p}$, we see that $R^{t-q} \geq p^{-(t-q)/p}$; hence $|(-q)!/(-t)!| \leq pR^{t-q}$ and therefore $\varepsilon |(-q)!/(-t)!| \leq R^{t-q}$. Then by relation (4) we have

(5)
$$|(t+1)a_{t+1}-a_t| < |a_t|$$
 hence $|(t+1)a_{t+1}| = |a_t|$,

and therefore

$$|a_{t+1}| = \left|\frac{a_t}{t+1}\right| = \frac{|a_q||(-t-2)!}{|(-(t+1)!)|}$$

so that relation (3) is proven at the range t+1. It is then proven for every n up to -1. Then relation (2) for n=0 gives us $|a_{-1}|R^{-1} \leq \varepsilon |a_q|R^q$, hence by (3) we have $|a_q|/|(-q-1)!| \leq \varepsilon R^{q+1}|a_q|$ and therefore

(6)
$$\varepsilon |(-q-1)!| R^{q+1} \ge 1$$

but we know that $R^{q+1}|(-q-1)!| \le p^{-(q+1)/p}p^{1+(q+1)/p} < 1/\varepsilon$ hence (6) is impossible.

Lemma D is then proven.

The following lemma was given in $[S_5]$, in constructing the «Produits Bicroulants» (twice collapsing meromorphic products).

LEMMA E. Let $\rho, R', R'', R \in R_+$ with 0 < R' < R'' < R. There exist sequences $(b'_n)_{n \in \mathbb{N}}$ and $(b''_n)_{n \in \mathbb{N}}$ in $\Gamma(0, R', R'')$ with $|b'_n| > |b'_{n+1}|$, $\lim_{n \to \infty} |b'_n| = R'$, $|b''_n| < |b''_{n+1}|$, $\lim_{n \to \infty} |b''_n| = R''$, such that, if we denote by D the set $d(0, R) \setminus \left[\left(\bigcup_{n=1}^{\infty} d^-(b'_n, \rho) \right) \cup \left(\bigcup_{n=1}^{\infty} d^-(b''_n, \rho) \right) \right]$ the algebra H(D) has an element $\varphi \in H(D)$ satisfying $\lim_{\substack{\{|x| \to R' \\ x \in D}} \varphi(x) = 1$ and $\lim_{\substack{\{|x| \to R'' \\ x \in D}} \varphi(x) = 0$. PROOF OF THEOREM 2. Let $\omega_1, ..., \omega_t$ be points in d(0, 1) such that

$$\begin{split} & (q_m)_{m \in \mathbb{N}} \text{ for Theorem 2. Flet } b_1, \dots, b_t \text{ be points in } u(0, t) \text{ such that } \\ & (\omega_1 = 0, \ |\omega_i - \omega_j| = 1 \text{ whenever } i \neq j. \text{ Let } r \in [0, 1[\text{ and let } (b_m)_{m \in \mathbb{N}} \text{ be a sequence in } d^-(0, t) \text{ such that } |b_m| < |b_{m+1}| \text{ and } \lim_{m \to \infty} |b_m| = r \text{ and let } \\ & (q_m)_{m \in \mathbb{N}} \text{ be a sequence of integers such that } q_1 < q_m \text{ for all } m > 1, \\ & \lim_{m \to \infty} q_m = +\infty \text{ and } \lim_{m \to \infty} \prod_{j=1}^{m-1} |b_j/b_m|^{(p^{q_j})} = 0. \text{ Let } T_m = d^-(b_m, |b_m|), \text{ let } \\ & p_m = p^{q_m} \text{ and let } A = d^-(0, r) \smallsetminus \left(\bigcup_{m=1}^{\infty} T_m\right). \end{split}$$

It is easily seen that A admits a T-sequence $(T_m, q_m)[S_1]$. Let \mathcal{T} be the increasing T-filter of center 0, of diameter r on A. First we will construct an infraconnected clopen set included in d(0, 1), of diameter 1, satisfying the following conditions:

(1) $\Omega \cap d^{-}(0, r) = A$.

(2) Ω has an increasing *T*-filter \mathcal{F} of center 0, of diameter 1.

(3) Ω has a decreasing *T*-filter \mathcal{G} of center 0, of diameter $R \in]r, 1[$.

(4) The only T-filters of Ω are $\mathcal{T}, \mathcal{F}, \mathcal{G}$.

(5) There exists φ and $\psi \in H(\Omega) \setminus \{0\}$ such that

$$\varphi(x) = 1, \quad \psi(x) = 0 \quad \text{for } x \in \Omega \cap d(0, R)$$

and

$$\varphi(x) = 0, \quad \psi(x) = 1 \quad \text{for } x \in \Omega \setminus d^-(0, 1).$$

Let $\rho \in [0, f[$. By Lemma E there exist sequences $(\beta'_n)_{n \in \mathbb{N}}$ and

 $(\beta_n'')_{n \in \mathbb{N}}$ in $\Gamma(0, R, 1)$ such that

$$egin{aligned} R < |eta_{n+1}'| < |eta_n'|, & \lim_{n o \infty} eta_n' = R \ , \ |eta_n''| < |eta_n''| < 1, & \lim_{n o \infty} |eta_n''| = 1 \end{aligned}$$

and such that the set

$$\Lambda = d(0,1) \smallsetminus \left[\left(\bigcup_{n=1}^{\infty} d^{-}(\beta'_{n},\rho) \right) \cup \left(\bigcup_{n=1}^{\infty} d^{-}(\beta''_{n},\rho) \right) \right],$$

defines an algebra $H(\Lambda)$ that contains elements φ satisfying $\varphi(x) = 1$ for $|x| \leq R$, $\varphi(x) = 0$ for |x| = 1. Let us put $\psi = 1 - \varphi$ and let Ω be the set $A \cup (\Lambda \setminus d^{-}(0, r))$.

 Ω has clearly three *T*-filter:

the filter \mathcal{T} on A

the increasing filter \mathcal{F} of center 0, of diameter 1 that strictly annulls φ .

the decreasing filter \mathcal{G} of center 0, of diameter R that strictly annulls ψ .

It is easily seen these three T-filters are the only T-filters on Ω , and Ω , φ , ψ are then defined.

Let
$$f(x) = \left(\sum_{m=1}^{\infty} p^{q_m}/(1-x/b_m)\right)$$
 and let $f_1(x) = \varphi(x)f(x) + \psi(x)$.

Then $f_1(x) = f(x)$ when $x \in \Omega \cap d(0, R)$ and $f_1(x) = 1$ when $x \in \Omega \setminus d^-(0, 1)$. We can deduce that f_1 is a quasi-invertible element in $H(\Omega)$. Indeed, by Proposition B, f is not annulled by \mathcal{T} and by \mathcal{G} , hence f_1 is not annulled by \mathcal{T} and by \mathcal{G} either; on the other hand, as $f_1(x) = 1$ when |x| = 1, f_1 is not annulled by \mathcal{T} ; hence f_1 is not annulled by any one of the three T-filters on Ω so that it is quasi-invertible in $H(\Omega)$.

By Proposition B $\mathcal{E}(f_1)$ has a solution $g_1 = \prod_{m=1}^{\infty} 1/(1-x/b_m)^{p_m}$. Now, for each y = 2, ..., t let $\Omega_j = \omega_j + \Omega = \{x + \omega_j | x \in \Omega\}$ and let

Now, for each y = 2, ..., t let $\Omega_j = \omega_j + \Omega = \{x + \omega_j | x \in \Omega\}$ and let $f_j \in H(\Omega_j)$ defined by $f_j(x + \omega_j) = f_1(x)$. In Ω_j the equation $\mathcal{E}(f_j)$ has a solution g_j defined by $g_j(x + \omega_j) = g_1(x)$. Let $D = \bigcap_{j=1}^{t} \Omega_j$ and let $f(x) = \prod_{j=1}^{t} f_j(x) \in H(D)$. Obviously, $f(x) = f_j(x)$ when $|x - \omega_j| < 1$ and f(x) = 1 when $|\xi - \omega_l| = 1$ for every l = 1, ..., t. Each one of the f_j is quasi-invertible in H(D) so that f is also quasi-invertible.

24

Now each g_j $(1 \le j \le t)$ is a solution of $\mathcal{E}(f)$. Indeed, when $|x - \omega_j| < 1$ we have $g'_j(x) = f_j(x)g_j(x) = f(x)g_j(x)$ and when $|x - \omega_j| = 1$, $g_j(x) = 0$.

On the other hand, the g_j clearly have supports two by two disjointed, hence they are linearly independent, and that shows S(f) has dimension $\geq t$.

We will end the proof in showing that $\{g_1, ..., g_t\}$ generates S(f).

Log will denote the real logarithm function of base p. Let v be the valuation defined in K by $v(x) = -\log |x|$ when $x \neq 0$ and $v(0) = +\infty$. When A is an infraconnected set containing 0, and $f \in H(A)$ we put

$$v(f,\mu) = \lim_{\substack{v(x) \to \mu \\ v(x) \neq \mu \\ x \in D}} v(f(x)) [\mathbf{E}_2, \mathbf{E}_3, \mathbf{E}_4].$$

For each j = 1, ..., t, let $D_j = d^-(\omega_j, 1) \cap D$ and $B_j = d^-(\omega_j, R)$; let $D' = D \setminus \bigcup_{j=1}^{t} D_j$. By definition of f we see that f(x) = 1 for all $x \in D'$ and $d^-(\alpha, 1) \subset D'$ for every $\alpha \in D'$. Then it is well known that the equation y' = y has no solution y in $H(d^-(\alpha, 1))$ but the zero solution. Let $h \in S(f)$. For every $\alpha \in D'$, the restriction of h to $d^-(\alpha, 1)$ is a solution of the equation y' = y that belongs to $H(d^-(\alpha, 1))$ hence we see that h(x) = 0 for all $x \in D'$. Since D' is equal to $d(0, 1) \setminus \bigcup_{j=1}^{t} d^-(\omega, 1)$ we see that

$$(6) v(h,0) = +\infty.$$

Now let us consider h(x) when $x \in B_1$.

Since $D_1 = \Omega \cap d^-(0, 1)$ the three *T*-filters $\mathcal{T}, \mathcal{F}, \mathcal{G}$ of Ω are secant to D_1 and they are the only *T*-filters on D_1 . Then \mathcal{T} is the only one *T*-filter on B_1 because \mathcal{F} and \mathcal{G} are not secant to d(0, R). The algebra $H(B_1)$ has no divisor of zero. Consider the restriction \tilde{f}_1 of to D_1 and the restriction \hat{f}_1 to B_1 . In $H(B_1)$ the space $\mathcal{S}(\hat{f}_1)$ has dimension one by Theorem 3 of [E₇], hence there exists $\lambda_1 \in k$ such that $h(x) = \lambda_1 g_1(x)$ whenever $x \in B_1$.

Since $g_1 \in \mathfrak{Z}_0(\mathcal{J})$, that implies h(x) = 0 whenever $x \in \Gamma(0, r, R)$ hence $v(h, -\log R) = +\infty$. We will deduce that $v(h, \mu) = +\infty$ whenever $\mu \in [0, -\log R]$.

Indeed, suppose this is not true. Then h is strictly annulled by an increasing *T*-filter of center 0, of diameter >R, hence h is strictly an-

Alain Escassut

nulled by \mathcal{F} . Since $\lim_{\substack{||x| \to 1^- \\ x \in D}} \varphi(x) = \lim_{\substack{|x| \to 1^- \\ x \in D}} \psi(x) = 1$. there exists $s \in]R, 1[$

(7)
$$\left|\frac{h'(x)}{h(x)} - 1\right| \leq \frac{1}{p^2} \quad \text{for } x \in D \cap \Gamma(0, s, 1).$$

On the other hand, it is easily seen that h(x) is equal to a Laurent series in each annulus $\Gamma(0, |b_n''|, |b_{n+1}''|)$ and for every s < 1 there exist intervals $[r', r''] \subset]s$, 1[such that the function $v(h, \mu)$ is strictly decreasing in $[-\log r'', -\log r']$ and such that h(x) is equal to a Laurent series $\sum_{-\infty}^{+\infty} a_n x^n$. Let $\rho \in]r', r''[$, since $v(h, \mu)$ is strictly decreasing in $[-\log r'', -\log r']$ there exists q < 0 such that $|a_q|\rho^q = \sup_{n \in \mathbb{Z}} |a_n|\rho^n$. Then h satisfies the hypothesis of Lemma D and relation (7) is impossible. But then $v(h, \mu) = +\infty$ for every $\mu \in [0, -\log r]$ It follows that h(x) = 0for every $x \in \Gamma(0, R, 1)$ because if there existed a point $\alpha \in \Gamma(0, R, 1)$ with $h(\alpha) \neq 0$, α should be the center of an increasing *T*-filter that would annull h but the unique *T*-filter of center α is \mathcal{F} and we have just seen that \mathcal{F} does not annull h.

Thus we have now proven that h(x) = 0 for all $x \in B_1$ such that $r \leq |x| < 1$. Since $g_1(x) = 0$ whenever $x \in \Gamma(0, r, 1)$, the relation $h(x) = \lambda_1 g_1(x)$ is then true in all B_1 . In the same way, for each j = 2, ..., t, we can show there exists $\lambda_j \in K$ such that $h(x) = \lambda_j g_j(x)$ for every $x \in B_j$ and then $h(x) = \sum_{j=1}^t \lambda_j g_j(x)$ is true in $\bigcup_{j=1}^t B_j$, and of course in D', hence it is true in all D. That finishes proving $\{g_1, ..., g_t\}$ is a base of $\mathcal{S}(f)$.

REFERENCES

- [A] AMICE Y., Les nombres p-adiques, P.U.F. (1975).
- [D] DWORK B., Lectures on p-Adic Differential Equations, Springer-Verlag, New York-Heidelberg-Berlin.
- [E₁] ESCASSUT A., Algèbres de Krasner, C.R.A.S. Paris, 272 (1971), pp. 598-601.
- [E2] ESCASSUT A., Algèbres d'éléments analytiques en analyse non archimédienne, Indagationes Mathematicae, 36 (1974), pp. 339-351.
- [E₃] ESCASSUT A., Eléments analytiques et filtres percés sur un ensemble infraconnexe, Ann. Mat. Pura Appl. Bologna, 110 (1976), pp. 335-352.
- [E4] ESCASSUT A., T-filtres, ensembles analytiques et transformations de Fourier p-adique, Ann. Inst. Fourier, Grenoble, 25 (1975), pp. 45-80.

- [E₅] ESCASSUT A., Algèbres de Krasner intègres et noethériennes, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 78, no. 4 (1976), pp. 109-130.
- [E₆] ESCASSUT A., Derivative of Analytic Elements on Infraconnected Clopen Sets, Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 92, no. 1 (1989), pp. 63-70.
- [E₇] ESCASSUT A. SARMANT M. C., The differential equation y' = fy in the algebras H(D), Collectanea Mathematica, **39**, no. 1 (1988), pp. 31-40.
- [E₈] ESCASSUT A. SARMANT M. C., The equation y' = fy in zero residue characteristic, Glasgow Mathematical Journal, 33 (1991) p. 149-153.
- [E₉] ESCASSUT A., The equation y' = fy in C_D when f is not quasi-invertible, Revista di Matematica Pura ed Applicata, no. 6 (1990), pp. 81-92.
- [G] GARANDEL G., Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, Indagationes Mathematicae, 37, no. 4 (1975), pp. 327-341.
- [K₁] KRASNER M., Prolongement analytique dans les corps valués complets: préservation de l'analyticité par la convergence uniforme et par la dérivation; théorème de Mittag-Leffler généralisé pour les éléments analytiques, C.R.A.S. Paris, 244 (1957), pp. 2570-2573.
- [K2] KRASNER M., Prolongement analytique uniforme et multiforme dans le corps valués complets. Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand 1964, pp. 97-141. Centre Nationale de la Recherche Scientifique (1966) (Colloques internationaux du C.N.R.S., Paris, 143).
- [R] ROBBA PH., Fonctions analytiques sur les corps valués ultramétriques complets, Prolongement analytique et algèbres de Banach ultramétriques, Astérisque, 10 (1973), pp. 109-220.
- [S₁] SARMANT M. C. ESCASSUT A., *T-suites idempotentes*, Bulletin de Sciences Mathématiques, 106, no. 3 (1982), pp. 189-303.
- [S2] SARMANT M. C., Décomposition en produit de facteurs de fonctions méromorphes, C.R.A.S., 292 (1981), pp. 127-130.
- [S₃] SARMANT M. C., Produits méromorphes, Bulletin des Sciences Mathématiques, 109 (1985), pp. 155-178.
- [S4] SARMANT M. C. ESCASSUT A., Prolongement analytique à travers un Tfiltre, Studia Scientiarum Mathematicarum Hungarica, 22 (1987), pp. 407-444.
- [S5] SARMANT M. C. ESCASSUT A., Fonctions analytiques et produits croulants, Collectanea Mathematica, 36 (1985), pp. 199-218.

Manoscritto pervenuto in redazione il 13 giugno 1990.