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Multiple Closed Orbits for Singular
Conservative Systems via Geodesic Theory.

UGO BESSI (*)

Introduction.

The aim of this paper is to find a lower bound for the number of
closed trajectories of the following problem:

for a fixed h &#x3E; 0 and for a potential V behaving, roughly, 
2.

We are going to take advantage of a remarkable similarity between
the gradient flow of the functional employed in [2] and that of the ener-
gy functional on the manifold of closed, H 1 curves on the sphere; indeed
our main theorem, Theorem 4.1, is very close to the well-known «Theo-
rem of the three closed geodesics » . One of its consequences is the

following:

THEOREM 1. Suppose W E R) and that

(*) Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri 7,
Pisa.
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Then, VA&#x3E;0, 3K* &#x3E; 0 such that for the

problem:

has at least 2(n -1) - s -1 closed solutions, where s is the smallest in-
teger such that n - 1 = 2 k + s for some k E N.

The problem of finding one periodic solution of (1) by variational
methods has been tackled, among others, by Tonelli in [8], by Benci
and Giannoni in [4] and by A. Ambrosetti and V. Coti Zelati in [2]. A
multiplicity result has been proved in [3] with a different method and
for a different class of potentials, namely for V even and behaving,
roughly, 

The paper is organized as follows: section 1 contains the functional
setting, while section 2 contains the abstract result, which is wholly
analogous to the corresponding result for closed geodesics. Section 3 is
devoted to some estimates necessary to prove the minimal period of the
orbits we will find, while section 4 contains the applications, including
Theorem 1.

1. We begin with some notations. We will denote the euclidean
scalar product in R n by x ~ y or simply xy, the euclidean norm by Ixl;
xoy will be the angle between the two vectors x and y, and el , ..., en will
stay for an othonormal basis of R n. By supp J we will denote the sup-
port of a chain a, that is the union of the images of all its singular sim-
plexes. We define the diameter of an orbit u as:

Given a set A we denote by N(A, ~) the ~ neighbourhood
of A. We define g(n) = 2n - s -1, where s is the smallest positive inte-
ger such that n = 2k + s.

Our functional setting will be that of [2]; namely we will consider
the open set 
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with its subset:

and the functional

Now we list our hypotheses on V.

The next lemma, taken, from [2], states that our functional setting
makes sense.

LEMMA 1.1. If V satisfies (Vl), (V2), (V3) aycd h &#x3E; 0, then

1) M 0 ø, M is a C 1 manifold in H’ (S’, R n ) and a strong defor-
rrcation retract of A;

2) the sublevels {u E c} are complete for every c and f
satisfies the Palais-Smale condition on M;

3) ’flu E M f (u) ~ 0, f (u) = 0 if and only if u is a constant orbit;
the level Mo = {u E = 01 is radially homeomorphic to the unit
sphere of Rn; we will call S the image in Rn of Mo;

4) let u be a non-constant critical point of let also

Then q(t) = t) is a T-periodic solution of (1) of class C2 artd
q(t) =1= 0 Vt; viceversa, if q is a C2 solution of (1) of period T, then
u(t) = is a critical point of 

The proof of Lemma 2 is contained in [2], Lemmas 2.1, 2.3 and 3.3.
Let us remark that (2) depends heavily on the fact that {3, a &#x3E; 2. We also
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note that M is stable for the standard action of 0(2) on M: namely, if
u(.) E M then u(. + 0) E M and u( - ·) E M.

2. We are going to find critical points with the method of sub-
ordination of homology classes of Lusternik and Schnirelmann; we as-
sume that the reader is familiar with such a theory and refer, whenever
possible, to [7] or [1]. We set

LEMMA 2.1. If (Vl)-(V3) hold, then for x smell enough, f x is 0(2)-
homotopic to Mo.

PROOF. Since U E M, by (V3) we have:

from which we deduce

Thus u implies it follows readily diam (u) --

We consider = V(x) + iV’(x) x. We have that ols = h; (VI) im-
plies that the restriction of 0 to any ray through the origin is a strictly
monotone function. each of the two connected

components of R n - S and, by the mean principle, neither of them will
contain the image of any U E M:

VU E such that E S .

Thus U implies:
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From this we deduce

which implies f ’ c N(Mo , 
We will show that Mo is a compact, non-degenerate critical subman-

ifold of M and that this implies that ~8* &#x3E; 0 such that, for 0  ~  ~*,
Mo is a deformation retract of N(Mo , ~).

It is a standard fact that the map

maps diffeomorphically a neighbourhood of U E Mo in the tangent space
of M at u. Trivially ( f o ~-1 (u))’ = 0 V&#x26;eMo. We have to show
that

and that r./J -1 (ic))" is a Fredholm operator of index 0. An easy calcula-
tion yields that, for h, k E Tit 

from which it readily follows that the second derivative is Fred-
holm.

Using Lagrange multiplers, we have that k E if and

only if

and

From (2.3) we deduce k = 0, which implies Equation (2.2)
implies that k is tangent to S in u, which shows = ker f " 1M (u).
Thus for u in the domain of a chart at u, there exists a unique pair, a, b
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depending continuously and equivariantly on u, such that tp(u) = a(u) +
+ b(u) with a(©) E Til Mo and b(u) E Im f " 1M (u). The homotopy

retracts a neighbourhood of it onto Mo. Glueing the local charts togeth-
er, we get the homotopy we want. Q.E.D.

LEMMA 2.2. Let u be a non-constant critical point of f 1M of mini-
mal period 1/l, 1 ~ 2 and set w(t) = u(t/L). Then we have that w is a
critical point of and

PROOF. We take T as in (1.2). We know that q(t) = is a solu-
tion of (1) of minimal period TI 1. Setting:

we have that 4 is a solution of (2) and thus, because of Lemma 2.2,
w(t) = q((T / l) t) is a critical point of flM; (2.4) is then verified easi-

ly. Q.E.D.

In [2] it is shown that it is possible to find a continuous function
such that, given any a(u) u E M. Thus the homo-

topy

retracts A on M and is 0(2)-equivariant.
We denote by Z the set of non-constant critical points by A

the set of all circles on the unit sphere and by A the set h(I,A). We
set

The following is the translation of a classical theorem in the theory of
closed geodesics. All the homology modules we will consider are with
Z2 coefficients.

THEOREM 2.3. Let (Vl)-(V3) hold and K4k; then problem (1)
has at least g(n -1) closed solutions, all of which are prime and none
of which can be brought into the other by the 0(2) action.
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By (2.5) the identity on (~1, R’~ - {01) is 0(2)-homotopic to the re-
traction on (M, S); it is a standard fact that it is also O(2)-homotopic to
the retraction on (~1(S n -1 ), S n -1 ). Because of the 0(2)-equivariance we
can pass to the quotient and state the isomorphism

As a consequence of Lemma 2.1 we can now define a cap-product:

see for instance [7], Lemma 2.1.9 for the proof. From the isomorphism
(2.6) it now follows from [7], Theorems 2.3.4 and 2.3.5, that we have
g(n -1 ) subordinated homology classes { ~1 ~ , ... , { ~9(n -1) } for the cap
product defined above, each with a representative in hT * (A / 0(2), S).
We thus have g(n -1 ) minimax levels

with because of subordination. Since M is locally 0(2)-con-
tractible and f|M satisfies the Palais-Smale condition, it follows from a
standard minimax principle that we can find Ul, - - - 9 Ug(n) geometrically
distinct non-constant critical points.
We now notice that

Thus, ui Vi. This and Lemma 2.2 imply that each ui is of minimal
period, from which follows that none of them will cover one of the oth-
ers n times. Q.E.D.

3. In this section we will look for conditions assuring K  4k. We
will always assume that V satisfies (Vl)-(V3), and that h &#x3E; 0; it is easy
to see that in these hypotheses the set {2V’ (x) x &#x3E; h} is bounded; we
fix a positive R such that

LEMMA 3.1. Let u be a non-constant critical point of f 1M. Then Vt
u(t) E BR .
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PROOF. We set q(t) = with T defined as in Lemma I, I, and
take t such that q(t) is the aphelion. Then in q(t) q is tangent from the in-
side to the sphere of radius lq(t)l; going to second derivatives, this
translates into

Since 4(t) = -V’(q(t)) from (3.1) we get

From this the thesis follows. Q.E.D.

LEMMA 3.2. If u is a non-constant critical point if T is de-
fined as in (1.1) and q(t) = then the following equalities
hold:

PROOF. It is an easy verification.
We need a further hypothesis on our potential:

such that ’ 
I

K compact,

We introduce the following set

LEMMA 3.3. If u is a non-constant critical point of flM and (V4)
holds, then
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PROOF. From Lemma 1.2 we know that q(t) = is a C 2 solu-
tion of:

If u f 8, then we could find a vector 77 such that the image of q is con-
tained in the half-cone

From this and the periodicity of q we would deduce:

a contradiction. Q.E.D.

REMARK 3.4. We can write u(t) = p(t) w(t) with = 1. If we
denote by d the geodesic distance on the sphere sn-l, the condition
u is then equivalent to this one

It is easy to see that this condition implies

We set:

and note that (V3) implies

We are now ready to state the estimate on the minimum of the
functional.

LEMMA 3.5. If u is a non-constant critical point of flM and V(x)
satisfies (Vl)-(V4), then the follm,ving holds:
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PROOF. For any solution u (3.2) and (V3) yield:

We set = c2 s "; (3.4) and Lemma 3.1 imply
From this and Lemma 3.3 we deduce

To give an estimate on the last term, we employ a method of Giannoni -
De Giovanni (see for instance [6] or [5]). By reparametrization and the
Jensen inequality, we have:

Hence, setting

there results

It is easy to check that g is a weakly sequentially lower semicontinuous
functional. In the set e g is coercive. Indeed, we take t1 such that
lu(t1)1 = Then, as u E e, it is possible to find a time t2 such
that
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from which follows:

which implies coercitivity. We take a minimizing sequence un E 0 for g,
and its weak limit u. There are two cases: either U E A n 0, or U E aA.
In the first case, the following argument applies.
We will show that the minimum occurs on a planar orbit; indeed we

will show that, taken U E e, there exists planar and with

g(u)  g(u). As in Remark 3.2, we set u(t) = p(t) w(t) with =1.
From the same remark we know that

We define

and t* by À(t*) _ ~ / 2. We set

The orbit 16(t) will be planar and with length 4y and thus it will not be
contained in any geodesic ball of radius less than y. It follows then

readily that u(t) = p(t) w(t) is an orbit of e and f (u) f (ii) -
We denote by u the minimum of g on B; there exist tl , t2 such that

u(t1 )0~(~) ~ 2y. As the problem is invariant for translation of the time,
we set t1 = 0.

Let us suppose 4y = (m/k)27r, with m, k E N; the general case will
follow by approximation. We set ourselves on the plane on which u lies;
here we will denote by R(o) the rotation of angle 0 and by R the symme-
try which leaves fixed.

Set
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We define a new orbit z in the following way:

We have that z has degree m and period k, and thus

Setting v(t) = z(kt), we get

where 1 is defined for by

Using the fact that the Euler equation satisfied by the minimum of 1
on planar orbits of degree m is a Kepler problem, for which the inte-
grals of the kinetic energy and of the potentials are known, in [5], Lem-
ma 2.4 it has been shown that:

This and (3.5) implies

In the second case, in [6], Proposition 2.4, has been shown
that
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which yields (3.6). As in (2.1) it follows easily

Plugging (3.7) and (3.6) into (3.2)-(3.3) we get

From (3.3) we know that

plugging this into (3.8) we get

which is the result for y = (m/k) 7r; by approximation it also holds in
the general case. Q.E.D.

We are now going to derive an estimate on the minimax levels. We
recall that each of the subordinated homology classes has a representa-
tive in A / 0(2), and that each element of A is a circle u of sn-l multi-
plied by the unique a(u) such that Thus:

By (V3) and (3.4) we have

By the same argument as in Lemma 2.1 we have that the image of
a(u) u must intersect S: thus

We can now state the following lemma.
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LEMMA 3.6. If V(x) satisfies (Vl)-(V3), we have

PROOF. It suffices to plug (3.9) in the definition of f.

4. The following theorem is an immediate consequence of Theorem
2.3 and of estimates of the previous section.

THEOREM 4.1. If V satisfies (Vl)-(V4), if h &#x3E; 0 and

then system (1) has at least g(n) distinct closed trajectories.

PROOF. We are indeed in the hypotheses of Theorem 2.3; K  41~ is
nothing but (3.10).

PROOF OF THEOREM 1. By Lemma 3.3 we can take R big enough
such that BR contains in its interior every possible solution of (2) with
x = 0. We also take a smooth function ~, such that ~ = 1 in [- R, R] and
~=0 in We set

It is now easy to check (see for instance [3]) that for K small enough Vx
will verify hypotheses (Vl)-(V3) with a, ~3 tending to ~ and cl , c2 tend-
ing to 1 as K tends to 0. Analogously,

and 2r-") ~c for K-") 0. Moreover for x small enough by Lemma 3.3 we
have that all orbits of V, (x) will stay in the ball BR , and thus they will
coincide with the solutions of (2).

Thus to show Theorem 1 we have only to check that (3.9) holds for
x = 0; this is indeed the case as, for B = a = 6, c1= c2 = 1 and y = x (3.10)
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reduces to

which holds trivially. Q.E.D.
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