RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

ORAZIO PUGLISI
On outer automorphisms of Cernikov p-groups

Rendiconti del Seminario Matematico della Universita di Padova,
tome 83 (1990), p. 97-106

<http://www.numdam.org/item?id=RSMUP_1990__ 83 97_0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1990, tous
droits réservés.

L’acces aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1990__83__97_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/
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On Outer Automorphisms of Cernikov p-Groups.

ORAZIO PUGLISI (*)

0. Introduction.

As is well known, every finite p-group that is not cyclic of order p,
has non inner p-automorphisms. This theorem, proved by Gaschiitz
in [1], was later made more precise by Schmid and then extended by
Menegazzo and Stonehewer. In [2] in fact, Schmid proves that, apart
from some exceptions, Out G has a normal p-subgroup (always in the
hypothesis that @ is a finite p-group) while in [3] Menegazzo and
Stonehewer prove an analogous theorem to that one of Gaschiitz in
the case of infinite nilpotent p-groups. Even in the case that @ is
infinite the normal p-subgroups of Out G have been studied and in [4],
Marconi has reached an analogous result to the one obtained by
Schmid. In this paper the problem of the existence of outer p-auto-
morphisms is studied in the hypothesis that G is an infinite Cernikov
p-group, obtaining an affirmative answer for a certain class of such
groups. To be more precise, if @ is a Cernikov p-group, indicating with
G, its finite residual and with Fit G its Fitting subgroup, we have the
following

THEOREM. — Let G be a non nilpotent Cernikov p-group. If
Fit > G, and G,N Z(Q@) is divisible then G has outer p-auto-
morphisms.

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata,
Via Belzoni 7 - 35121 Padova (Italy).
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Even the case Fit @ = G, is examined obtaining

THEOREM. — Let @ be a non nilpotent Cernikov p-group and assume
Fit @ = G, and Z(Q) divisible. Then G has non inner p-automorphisms
or H(G/G,, G,)) = 0 and the natural image of G/@, in Aut G, is a Sylow
p-subgroup of Aut G,.

The last section of this work is devoted to the construction of
some examples which show what can happen if Fit G = G,, Z(G)
is divisible and the image of G/G, in Aut G, is a Sylow p-subgroup.

1. Preliminaries.

If G is a Cernikov p-group we shall indicate from now on with G,
its finite residual that is an artinian divisible abelian group and with
Fit G the Fitting subgroup of G¢. It is worth while remembering that
G/G, is a finite group so that |G|<N,, while Fit @ = C,(G,) is nilpotent
and its centralizer in @ coincides with Z(Fit ). In the proof of theo-
rem 2.1, we shall use the results about nilpotent p-groups cited in the
introduction, which are here below listed for the readers’ use.

THEOREM 1.1 (Gaschiitz [1]). If @ is a finite p-group that is not
cyclic of order p, then G has a non inner p-automorphism.

THEOREM 1.2 (Schmid [2]). Let G be a finite non abelian p-group.
Then p divides the order of Coue(Z(@)).

THEOREM 1.3 (Menegazzo-Stonehewer [3]). Let G be a nilpotent
p-group. If G is neither cyclic of order » nor isomorphic to a direct
product of k quasi-cyclic p-groups with k¥ <p— 1, then G has an
outer automorphism of order p.

THEOREM 1.4 (Marconi [4]). Let H be an infinite nilpotent p-group
Then 0,(Out H) = 1 if and only if one of the following conditions
holds:

i) H is elementary abelian

ii) H is divisible and p is odd
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iii) H is the central product of ,(@) and of a quasi cyclic p-group
with £,(G) extra special of exponent p = 2.

First of all we want to prove that a Cernikov p-group always has outer
automorphisms, a fact which comes easily from the following theorem

THEOREM 1.5 (Pettet [5]). Let @ be periodic and H <@ a Cernikov
group such that |G: Ng(H)| is finite. If Oy q(H) is finite or countable
and Oy g(H) is Cernikov, then @ is Cernikov and G, = HE.

COROLLARY 1.1. Let G be an infinite Cernikov p-group. Then
|Aut G| > N,. In particular Out G = 1.

Proor. If |[Aut G| = N, then, with the same notations of Theo-
rem 1.5 let H = 1. H and G satisfy the hypotheses of Theorem I.5
s0 G,= Hy =1, a contradiction. So |Aut G|>N, and, therefore,
Out G # 1. #

The proof of theorem 2.1 is based in great part on the following
fact concerning the cohomology groups of G/Fit G.

LEMMA 1.1. Let G be a Cernikov p-group, G, its finite residual,
F = Fit G. Suppose G, N Z(G) divisible. If H(G/F, Z(F)) = 0 then
H™(G[F, Z(F)) = 0 Vm > 0.

Proor. Let K = G/F and A = Z(F). F is nilpotent so 4>G,
and therefore we can write A = G, L, where L, is finite. Also
Z(@) = D@ L, with D divisible and L, finite. Let p* = max {|L,|, |[K|}
and consider the following short exact sequence in G-Mod (and there-
fore in K-Mod)

0—A[pr] - A4 1> G,—0

where j is the multication by p». We have also the related long exact
sequence

0 - H(K, A[p"]) - H (K, A) -~ H(K, G,) —
-~ HY (K, A[p"]) — ...~ H™(K, A[p"]) -~ H"(K, A) —....
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For every K-module we have H(K, M) = {me M: m* =m V& e K},
so that we can rewrite this sequence as follows
0 — A[p*] N Z(@) - Z(G) - G, N Z(G) & HY (K, A[p"]) —

-0~ HYK, @) - H¥K, A[p*]) - ... > H™(K, A[p~]) —

-~ H™(K, A) - H"(K, &) -~ H*(K, A[p"]) -~ H"(K, A) — ...
because H'(G/F, Z(F)) = 0. Now 0 is surjective and G, N Z(G) is
divisible, so H'(K, A[p"]) = 0 because it is a finite group. Then,
by [1], H™(K, A[p"]) =0 Vm >0 so that, as it is easy to see,

HYK,@G,) =0 and H™(K, A) is isomorphic to H™(K, G,) Vm > 0.
Now consider the exact sequence

0—Gy[pr] - G- Gy—0

where j is the multiplication by p», and the related cohomology
sequence

0 — Go[p"] N Z(G) - G, N Z(G) - Gy N Z(G) — HY(K, G,[p"]) —
— HYK, G,) i~ HY(K, F,) > HX(EK, G,[p*]) —> ...~ H™(EK, G;[p"]) —
- H™(K, G,) -~ H™(K, G,) ~ H™\(K, G,[p"]) > H™HK, G;) — ... .

As before we can see that H™(K, G,[p"]) =0 Vm >0 so that,
Vm >1, we have

0> H™K, &) i> H*(K, G,) -0 .

But j is the trivial morphism because the exponent of H™(K, G,)
divides |K| and therefore H™(K, G,) = 0 = H™(K, A) as claimed. #

2. Main theorems.

By theorem 1.3 we can limit ourselves to the case in which G is
non nilpotent. The principal result obtained is the following

THEOREM 2.1. Let @ be a non nilpotent Cernikov p-group, @, its
finite residual. If Fit. @ > G, and G, N Z(@) is divisible then G has
outer p-automorphisms.
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ProOOF. Consider the extension ¢:1 —->F —-G — K —>1 where
F =TFit @ = Cy(@,) and K = G/F. F is characteristic in G so
Out ¢ = Out @&. The Wells sequence (Wells [6]) associated to e is

0 — HY(K, Z(F)) — Out @ — Noy, 5(D)/D —~ H*(K, Z(F)) .

Here D is the image of K in Out F obtained by the natural morphism
x: K — Out F associated to the extension ¢. K ~: D because C,(F) =
= Z(F)<F. If H(K, Z(F)) = 0 then it is easy to construct a non
inner p-automorphism of G choosing an outer derivation ¢6: K — Z(F)
and setting z* = a(xF)°. It is well know that « is an outer p-auto-
morphism of ¢. Then we may assume H(K, Z(F)) = 0. By lem-
ma 1.1 we have H?(K, Z(F)) = 0 so that the Wells sequence becomes
Out G = Ngy p(D)/D. Our purpose is now to prove that N, z(D)/D
has non ftrivial p-subgroups. The first step is to show that
0,(Out )51 using Theorem 1.3. Surely F doesn’t satisfy conditions
i) or ii) of that theorem. Furthermore, G being non nilpotent,
12G,>p— 1 so that rg G, >1 and F doesn’t satisty condition iii).
Two cases are to be examined:

a) 0,(0ut F)<D.

We can write F' — BZ(F) with B a finite characteristic subgroup
such that F/B divisible. If B is abelian so is F.

C = Opu 5(F|Gy, Gy) = Hom (F|G,, Gp) # 1

is a normal p-subgroup of Aut F = Out F so it is contained in D.
But this is impossible because the only element in D centralizing @,
is 1. Then B cannot be abelian. By Theorem 1.2 there exist an outer
p-automorphism « of B centralizing Z(B)>B N Z(G). We can extend
this automorphism « to an automorphism g of F setting zf = 2~ if
c€B, 2 =2 if xe Z(G)\B. B is well defined, it is outer and has
the same period of «. This implies that H = Coyp(Z(F)) has non
trivial p-subgroups. If o€ Cayr(Z(F)) there exist an integer n such
that «r is the identity on F/Z(F), that is a® € Cun p(Z(F), F|Z(F)) =
~H'(F|Z(F), Z(F)) that is a p-group of finite exponent. So Cyy r(Z(F))
is periodic and therefore H is finite. D acts on H by conjugation,
then it normalizes a non trivial p-Sylow subgroup of H, say P. D is
strictly contained in PD because D N H =1 and therefore Np,(D)>
> D. This implies that Ngup(D)/D has non ftrivial p-subgroups.
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b) 0,(Out F) ¢ D.

Let T = 0,(Out F)D. T is a Cernikov p-group so D is strictly
contained in its normalizer and, for this reason, N,u;r(D)/D has
non ftrivial p-subgroups. #

We are then left to examine the case in which G,= Fit G. In
these hypotheses the existence of outer p-automorphisms in no longer
certain. We have in fact

THEOREM 2.2. Let @ be a non nilpotent Cernikov p-group, G, its
finite residual and assume Fit @ = Cy(@,) = Gy, H(K, Z(F)) = 0 and
Z(@) divisible. Then G has outer p-automorphisms if and only if the
natural image of G/G, in Aut G, is not a Sylow p-subgroup of Aut G,.

ProoF. — As in the proof of Theorem 2.1 we obtain Out G ~
~N s q,(D)/D. If D is not a Sylow p-subgroup of Aut G,, then there
exists a p-subgroup P of Aut G, such that D < P. P is finite so D <
< Np(D), hence Npyq,(D)/D has non trivial p-subgroups. On the
other hand, if G has an outer p-automorphism then da€ Nyyy g (D)/D
such that «?= 1, then the group R = {(«)D is a p-group, B> D and,
therefore, D cannot be a Sylow p-subgroup of Aut G,. #

COROLLARY 2.1. Let G be a non nilpotent Cernikov p-group.
Suppose Cy(&) = Gy, Z(G) divisible and that the image of G/@, in
Aut G, is a Sylow p-subgroup of Aut G,. Then G has outer p-auto-
morphisms if and only if HY(G/G,, G,) 5~ 0.

3. Examples.

Corollary 2.1, though establishing a necessary and sufficient con-
dition for the existence of outer p-automorphisms, doesnt allow to
establish the existence of Cernikov p-groups for which this condition
is verified. In this section we shall construct some examples which
prove how, if a group satisfies the hypotheses of corollary 2.1, we
can have either H!(G/G,,G,) =0 or HY(G|G,,G,)#* 0. From here
onwards we shall indicate with R, and @, respectively the ring of
p-adic integer and its field of fractions. Let also remember that
if Gy= (Z(p))", then Aut G ~ GL(n, R,). The results about the struc-
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ture of Sylow p-subgroups of GL(n, @,) we shall use, have been proved
by Vol'vacev in [7].

REMARK. If p = 2 there are no Cernikov 2-groups satisfying the
hypotheses of Corollary 2.1. In fact, if « is the element of Aut G,
sending every element a of @, in its inverse a~!, o belongs to the
centre of Aut @, so, if D (the image of G/@, in Aut G,) is a Sylow
2-subgroup of Aut G, then it contains «. Hence there is an element ¢
of G such that a* = a* Vae G,. Then Z(@F) cannot be divisible
because

Z(G)< Cq(9) = (@) .

ExaMpLE 1. Let p>3. Let C be the companion matrix of the
polynomial 1 4+ ¢+ 24 .... ' and set 4= (110...0).

Consider X = (g (1)) where 0 is a column of p — 1 zeroes. If
s ; ci 0

B;= Y 0/ we have X':( ) The Sylow p-subgroups of
i=o0 4B; 1

GL(p, @,) have order p because p >3, hence <X) is a Sylow p-subgroup
of GL(p, R,). Consider the group @ = G,{(x) where G,= (Z(p))”
the direct sum of p copies of Z(p®) and x is the automorphism rep-
resented by the matrix X. An easy calculation shows that G satisfies
‘the hypotheses of Corollary 2.1. We claim that HY(G/G,, G,) = 0.
Let o, 7: G, > G, be the morphisms defined by

o= [a,x] and & = ]_[ YaeG,.
We know that
HYG/Gy, G,) ~Kert/Imo, Imo =~ G,/Z(Q) = (Z(p®))**.

More difficult is to find Ker 7. The matrix associated to = is

Y=14+X+ X2+ ..+ X1 that is ¥ = (g ;) for some B e Ry
We cla.im that the first element of B is p— 2. Infact we have
»—1i—1

B= AZB)—(EEO” —A(z(p—-@——l )C?). The elements of

i=1j=0
place (1,1) and (2,1) of the matrix z(p — 11— 1)C* are, respectively,
p—1 and — 1 so that the first element of B is p— 2 as claimed.
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Let a = (a,, ..., a,) be an element of G,, a, € Z(p>). By a direct cal-

2—1
culation we see that a*= (0,0, ..., (p — 2)a,+ > A.a;+ pa,) ALER,.
But p — 2 is a unit in R, so we have =2

—1 [r=1
Ker 7 = {(al, vy @) = —— [ > hai+ pa,,]} .
P— 21,
Define
A= {(5_—:—2 @y 0y ooy Gy oeny 0); an(p‘”)} .

i-th place

A, is, obviously, a divisible subgroup of @, of rank 1. Furthermore

A,N > A;=0 so that Ker 7 is the direct sum of the subgroups A,
iF#i
and, therefore, is divisible of rank p — 1. Hence HY(G/G,, @) =0

and G has no outer p-automorphisms.

ExAwvpLE 2. Let p > 3. With the same notations of example 1,

let E = (fi (1)) and X = ({;’ 2) X is an element of GL(p + 1, R,).

(X), as in example 1, i3 a Sylow p-subgroup of GL(p + 1, R,) 80
the group G = Gy(x) (where G,= (Z(p~))**' and x is the auto-
morphism induced by X) satisfies the hypotheses of corollary 2.1.
Using the same arguments of example 1 we can see that Im ¢ is a
divisible group of rank p — 1.

If a = (a4, ..., 4,1,) €EG,, then

V4
@ = (0, 0y ey (p— 2)a, + Zl}.‘a‘, paﬁl) .
F4
So Kerr = (@ A;)@B where B is cyeclic of order p. Then, in this
i=2

case, H{(G@/@,, G,) = 0 and @ has non inner p-automorphisms.

Exampre 3. In this example we will construct a group G such
that the image of G/@, is a Sylow p-subgroup of GL(n, R,) but not
of GL(n,Q,), as it was in the previous examples. Let p = 3 and

0o 1 o0 O
—-1-1 0 O
X = XeGL(4,Q;) and X3=1.
i 1 1 0
0o 0 0 1
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(X is not a Sylow 3-subgroup of GL(4, @;) because they are elementary
abelian of order 9. Suppose there exists Ye GL(4, R;) s.t. Y*=1 and
KX, ¥ = 9. Set G, = (Z(3~))*. Let # and y be the automorphisms
of G, induced by X and Y. Cq (x) ={(0, 0, @, b): a, beZ(3°)}. Cg (x)' =
= Og(a¥) = Cg () and therefore Y has the form ¥ = ( JIL[ 1(:7)
L, M, N e M2, R).

From this point on we set § = (_g _i) and 7 = (3 (1)) Using
the relation 2¥—= 2 we deduce that L-*SL = § and a routine cal-
culation proves that the only possibilities are L = I, 8, S2. If L = 82
the first block of Y2 is S, so we can reduce our discussion to the cases
L=1or L=S_8. Note that N*= 1 and that « acts as the identity
on the last two components of G, so we may assume N = S or N = I.
Four cases are to be examined:

pr-(5 )

M:(? :")wy:yw@TS—l—M=MS+ST<?("”"”7"’8)iSa‘so'

lution, in R,, of the equations
m+n=1 m—2n=0

r+s=1 r—28=20.

But these equations have no solutions in R;.

b3 )

vy=yr<>IT8+ M=M8+T < MS—1)=TS8—1)<> M=T
and this gives z =y

or=(i

oy=9yr<>T+ M= M8+ 8T < (m,n,r,8) is a solution of the
following equations

m+n=—1 m—2n=1
r+s=-—1 r—2s=1.
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But the solution of these equations is not in R,.

or=(i )

cy=yr<>T 4+ M=MS8S+T < MS—1I)=0< M=0.

This proves that (X) is a Sylow 3-subgroup of GL(4, R,). Now,
as in example 2, we deduce that HY(G/@,, G,) is cyclic of order 3 so
that G has outer 3-automorphisms.
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