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On Bounded Solutions of One-Dimensional

Compressible Navier-Stokes Equations.

V. LOVICAR - I. STRA0160KRABA- A. VALLI (*)

SUMMARY - It is shown that if a solution (u, v) of one-dimensional compres-
sible Navier-Stokes equations in Lagrangian mass coordinates is bounded
for t (i.e. u E L2(o, 1)) and 0  v(x, t)  oo, where u is

the velocity and v the specific volume of a fluid), then u = 0, v = v(x)
(i.e. (u, v) = (0, v) is a stationary solution).

1. - Introduction.

In the present work we study bounded solutions of one-dimensional
compressible Navier-Stokes equations in ,the Lagrangian form:

(*) Indirizzo degli AA.: V. Lovicar e I. Stra0161kraba: Matematicky Ú8tav
CSAV, Zitna 25, 115 67 Praha 1, Czechoslovakia; A. Valli: Dipartimento di
Matematica, UniversitA di Trento, 38050 Povo (Trento), Italy.
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Here u is the velocity, y v the specific volume, u = const &#x3E; 0 the
viscosity of the fluid, f = f(x), f E C([0y 1]) a forcing term, which is
supposed to be independent of time.

Global existence theorems for the equations (1.1)-(1.5) with Cauchy
data at t = to for t ~ to have been given in [4], [7].

Having global existence of solutions for the problem (1.1)-(1.5) we
would like to know some qualitative properties of the solutions. In

the system (1.1 ), (1.2) the equation (1.1) has a dissipative term
- which is known to cause a dissipation of energy due to
viscosity. This suggests a question: Does the system (1.1)-(1.5) have
the usual properties of dissipative equations? To be more specific,
we would like to know e.g. whether the following assertions are true:

(a) If (u, v) is a bounded solution (see Definitions 2.3, 2.7) then
(u, v) is stationary;

 (b) any solution converges to a stationary one (with a precise
rate of convergence) as t - oo.

Some results close to these assertions have already been proved.
See [4] for f - 0, [5], [6] for f = f (x, t), p(v) special. These results are
reviewed in [7], where (for f = f (x)) we have proved that if there
exists a sufficiently smooth solution (u, v) of the system (1.1)-(1.5)
on [to , m) which is bounded in the sense that

then it converges to the stationary solution in as t ~ 00.

The result has been obtained by the help of a series of apriori estimates
for the solution and its derivatives in L2-spaces on [to, m) which allo-W-
us to choose a subsequence ~c( ~ , tn ), v( ~ , t~ ) converging in .S~(0,l) to
a limit (u, v) of the form u = 0, v = vex). This limit is shown to be
a stationary solution to (1.1)-(1.5). 

’

In view of the results of Shelukhin [6], who, as mentioned above,
under some special assumptions proved the existence of a bounded
solution we tried to prove it for more general p. But bur~
result in [7] implies that (for f = f (x)) a bounded solution cannot exist
on [to , oo) unless there exists a stationary one. This suggests the
hypotheses that if the solution satisfies (1.6) on R and 

’
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then u = 0, v = v(x) is stationary. This is exactly what we prove
in this paper. The condition (1.7) must be added since for t -~ - o0

i

the boundedness of t) 2dx does not follow from (1.6) and in
0

general need not hold. One has to remark however that the sta-

tionary solution was proved to exist if and only if f and p(v) satisfy
suitable compatibility condition (see [1 ], Theorem 5.3, rewritten here
as Lemma 2.9). Hence our result says that a (u, v)-bounded solution
on .R cannot exist if f and p(v) do not satisfy such a condition.

After this manuscript has been finished the authors acquainted
with the most recent results of Beirao de Veiga contained in two
preprints [2], [3]. It is proved that any stationary solution is expo-
nentially stable under small perturbations and that there is a positive
threshold for the norms of initial conditions uo , vo and the L--nor
of the right hand side f under which the solution satisfies estimate (2.1)
below for J = [0, oo). These results improve substantially under-
standing the large time behavior of the solution especially in the
physically significant case p(v) = Av-Y, y E (1, 2).

In what follows we adopt the usual notation, namely Co for spaces
of smooth functions with a compact support, for the Sobolev

spaces, in particular H$ = Ws,2, go = .L2, 7 WS,2, = 11 
(.tf -1)’ = H--,; or Hs(J; B) for H~s-functions with values in a Banach
space B and the like.

2. - Basic notions and results.

Let the problem {1.1)-(1.~) be given with p = p(v) and f = f (x}
satisfying the following assumptions:

For denote Iw(x) = f w(E) dE.
0

2.1 DEFINITION. By a solution of the problem (1.1)-(1.5) on an
interval J C R we mean a couple of functions (u, v) such that
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for any t E J everywhere on [0, 1], u, v satisfy (1.1) in the sense

of H--(O, 1), (1.2) in the sense of HO(O, 1) and (1.4) for t E J.

2.2 THEOREM. Let the functions p and f satisfy the assumptions
(i), (ii). Then for any interval bounded from below there exists,
a solution to (1.1)-(1.5) (having assigned the initial value 
E HI(O, 1), v(., to) E HI(O, 1) at t = to a unique one).

The proof for initial data in can be found in [7]. For

u(-, to) E HO(O, 1), v(., to) E HI(O, 1 ) it is shown in [2], Theorem 4.1,
that a solution can be constructed as a limit of solutions with smooth
initial data. Uniqueness of such a solution is proved in [2], Theorem 5.3
under the assumption that p’ is locally Lipschitz continuous and
f E j,2(J; j,2(o,1)~ 0(0)+1([0, 1])) .

2.3 DEFINITION. By a v-bounded solution of (1.1)-(1.5) on J we
mean a solution (u, v) of (1.1)-(1.5) on J such that

where a, fl are constants.

A proof of the following theorem can again be found in [7].

2.4 THEOREM. Under the assumptions (i), (ii) for any bounded
interval there exists a v-bounded solution of (1.1)-(1.5) on J
(having assigned the initial values u( ~ , to) E 1ÎI(O, 1 ), v( ~ , to) E H"(O, 1 )
at t = to a unique one).

Denote

for any solution of (1.1)-(1.5). Here A&#x3E; 0 is an arbitrary constant to
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be chosen in what follows so that A - .F’(Iv) is non-negative. (Iv(t)
stands for fv($, t) dE.) Note that P(n) &#x3E; 0 for q &#x3E; 0.

0

2.5 LEMMA. For any v-bounded solution of (1.1)-(1.5) on an in-
terval the function E(t) is non-increasing on J and for any
t, s E J, the inequalities

hold.

PROOF. We can prove analogously as in [7], Lemma 2.2 that

The only distinction is that, handling with the equation (1.1), instead
of pairing in HO(O, 1) the pairing between I~1(o, l ) and H-1(0, 1) must
be used. According to (2.6) the inequalities (2.5) follow from (2.1)
by integration.

2.6 LEMMA. Let (u, v) be a v-bounded solution of (1.1)-(1.5) on J,
A &#x3E; 0 in (2.4) sufficiently large. Then the following assertions are
equivalent:

PROOF. 1~ ~ 2~ : By (2.4), (2.1) we for suf-

ficiently large A &#x3E; 0 (but fixed). The implications 1°=&#x3E; 3° and 30 + 1°
are easy consequences of (2.5), (2.6). Finally, 20 =&#x3E; 10 follows from

(2.4) and (2.1). ·

2.7 DEFINITION. A v-bounded solution of (1.1)-(1.5) is called (u, v)-
bounded if one of the conditions 10-30 from Lemma 2.6 holds.
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2.8 LEMMA. A couple (u, v) is a stationary v-bounded solution
of (1.1)-(1.5) if and only if u(t) ~ 0 and v(t) ~ v, where w = Iv is the
(unique) solution of the problem

with some constants a, fl.

PROOF. By (2.6), for the stationary v-bounded solution we have
u = 0, v E HI(O, 1), 0   oo. Hence

and (2.10) holds. Equation (1.1) can be interpreted in L2(0,1) since
By the assumptions (i) and (ii), (2.7) easily follows from

(2.8) and (2.10). The reverse implication is trivial.

Define as in [1] (see also [7])

2.9 LEMMA ([1], Theorem 5.3). The problem (2.7)-(2.10) has a
(unique) solution if and only if

and
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3. - Main results.

In this section we shall prove some properties of v-bounded and
(~c, v)-bounded solutions. To this purpose we need some auxiliary
results.

3.1 LEMMA. Let f E 0°([0, 1]) and HO(O, 1) be such that

for 11, =1, 2, ..., 1jJ E C0oo(0, 1) and some Then there exists a solu-
tion w of (2.7)-(2.10) and in H°(o,1). ,

PROOF. From (3.1 ) we have

so that

for where we have denoted

is arbitrary then

This implies that
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bounded sequence, we can extract a subsequence of gn (denoted again
by gn) such that M(gn) converge to some constant 7~. Hence we have

p (vn ) - - k in HO(O, 1). Since If(Ivn) is compact in H°(o,1 ),
there exists z E HO(O, 1) such that p(vn) - z in H°(o,1 ), and 

Put v = p-’(z). Then

from where we get vn -+ V in Thus p(v) - I f (Iv) = k. Dif-

ferentiating the last equality for w = Iv we get the equation (2.8).
The conditions (2.7), (2.9), (2.10) are now easy to verify. Since by
Lemma 2.9 the solution of the problem (2.7)-(2.10) is unique we find
that not only some subsequence of but all the sequence
converges to v in 

3.2 LEMMA. Let V, H be Hilbert spaces V dense in H,
for with some constant c. Then for any a, b E R,

a  b we have

for any u e Je.

PROOF. The result is well-known. Let us just prove (3.2). For

UEJe we have

Since there exists a t* E b] such that
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we get

3.3 REMARK.

then the best c is c _ 

The following theorem has been proved in [7], Remark 3.19 for
smoother solutions by the method of apriori estimates.

3.4 THEOREM. Let (u, v) be a v-bounded solution of (1.1)-(1.5)
on (a, 00), (a E R), p E oo)), f E C([0,1]). Then u(t) - 0 in

HO(O, 1) as t - oo, there exists a solution w of the problem (2.7)-(2.10)
and v(t) -+ w’ in H°(0,1) as t -~ 00.

Since the proof of Theorem 3.4 is quite analogous to the proof of
the subsequent Theorem 3.5 we do not present it in this place.

3.5 THEOREM. Let (u, v) be a (u, v)-bounded solution of (1.1)-(1.5)
on (- oo, b) (b E R), p E C1((0, 00)), f E C([0,1]). Then u(t) - 0 in
H0(0, 1) as t - - oo, there exists a solution w of the problem (2.7)-
(2.10) and v(t) - w’ in 1) as t - - oo.

PROOF. Let (u, v) be a (u, v)-bounded solution of (1.1)-(1.5) on
(- 00, b). Then by (2.5) we oo, &#x26;); J~~(0,1)) and if we
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put then

From the equation (1.1) we find

Hence clearly

Lemm a 3.2 and (3.4) yield

from where by the help of (3.3) we get u(t) --~ 0 in H°(o,1) as t - - oo.
To prove the other part of the assertion we shall make use of Lem-

ma 3.1. Obviously, it suffices to show that there exists a non-negative
function 3(t) with lim b(t) = 0 such that

t-+o - 00

for all ~eC~(0,l)..
Let pECoo0(-1, 0) be a fixed non-negative function with 

By (1.1), integration by parts, (3.5), the Schwartz and the Poincaré
inequality, (denoting .,. &#x3E; pairing between ’H’ 1(0, 1) and H-"(O, 1)) 1
for any 1p e C’(0, 1) we have
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Further, by easy calculations with help of (1.2), we find
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Since for it is

we have

where co is a modulus of continuity of f on [0, 1]. Thus

By (3.7), (3.8) we get (3.6) with

3.6 THEOREM. Let p E C1((0, e C([0, 1]). Then any (u, v)-
bounded solution of (1.1)-(1.5) on .R is stationary.

PROOF. Let (u, v) be such a solution. Then by Theorems 3.4, 3.5
u(t) - 0, v(t) 2013~ w’ in E2(07 1) as It I -?- oo. As w is determined uniquely
and (2.10) holds, by the Lebesgue theorem we have
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Since E is nonincreasing by Lemma 2.5, it is constant. So by (2.6),
u _--_ 0 and (1.1 ) together with Lemma 2.8 yield v = ~/. ~

An immediate consequence of Theorem 3.6 and Lemma 2.9 is
the following

3.7 THEOREM. Under the assumption of Theorem 3.6 a (u, v)-
bounded solution on R exists if and only if the conditions (2.13), (2.14)
are satisfied.

3.8 REMARK. If the assumptions of Theorem 3.6 are satisfied,
(u, v) is a solution e.g. on 9oo= (0, 1) X [0, 

(as, for instance, in the case and

then there exists an a &#x3E; 0 such that

Thus, in this case, v-boundedness follows just from boundedness of v
from above. This leads to an obvious version of Theorem 3.4 which
the reader can formulate himself easily. The above implication is

proved in [2], Theorem 7.5. Before this fact came to our attention
we found a proof which, we believe, still has a sense to present in this
context. We multiply (1.1) by (log and integrate with respect to x
over (0, 1). After standard calculations we get
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Put . From (2.4), (2.6) we get

with some constant Cl. The identity (3.12) yields

Since inf [- vp’(v)] &#x3E; 0 in virtue of (3.9), (3.10), choosing E &#x3E; 0 suf-

ficiently small and making use of (3.13) we find

with some positive constants Multiplying (3.14) by inte-

grating over (o, t), multiplying the result by c- c’, t and integrating by
parts the last term we get

In the last inequality we have used (2.4), (2.6). Now, from (3.13),
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(3.15) the estimate

follows. From (3.16) the estimate (3.11) is obtained in a standard
manner (see e.g. [7], proof of Lemma 2.3). The estimate (3.11) for
generalized solutions in the sense of Definition 2.1 can be obtained
via weak* limit of smoother solutions.
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