RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

R. K. RAINA

An application of fractional calculus

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 7-12

http://www.numdam.org/item?id=RSMUP_1990__83__7_0

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

An Application of Fractional Calculus.

R. K. RAINA (*)

SUMMARY - The object of this note is to show how fractional calculus approach can be employed to derive a formula expressing a generalized hypergeometric function in terms of a finite sum of lower order functions. Another representation of this formula is also given.

1. Introduction.

In his paper Karlsson [2] gave a formula for the generalized hypergeometric function $_pF_q$ with positive integral differences between certain numerator and denominator parameters in terms of a finite sum of lower order functions. This result [2, p. 270, eqn. (1)] is given by

$$(1.1) _{p}F_{q}\begin{bmatrix} b_{1}+m_{1},...,b_{n}+m_{n},a_{n+1},...,a_{p};\\ b_{1},...,b_{n},b_{n+1},...,b_{q} &; \end{bmatrix} =$$

$$= \sum_{j_{1}=0}^{m_{1}}...\sum_{j_{n}=0}^{m_{n}}C(j_{1},...,j_{n})z^{J_{n}}{}_{p-n}F_{q-n}\begin{bmatrix} a_{n+1}+J_{n},...,a_{p}+J_{n};\\ b_{n+1}+J_{n},...,b_{q}+J_{n}; \end{bmatrix},$$

where

$$(1.2) C(j_1, ..., j_n) = \binom{m_1}{j_1} ... \binom{m_n}{j_n} \cdot \frac{(b_2 + m_2)_{J_1} ... (b_n + m_n)_{J_{n-1}} (a_{n+1})_{J_n} ... (a_p)_{J_n}}{(b_1)_{J_1} ... (b_n)_{J_n} (b_{n+1})_{J_n} ... (b_p)_{J_n}},$$

and

$$(1.3) J_n = j_1 + ... + j_n,$$

(*) Indirizzo dell'A.: Department of Mathematics, C.T.A.E., Udaipur, Rajasthan, India 313001.

 m_i (i = 1, ..., n) are positive integers, and $n \le \min(p, q)$, provided that $p \le q$ (|z| < 1), if p = q + 1), and no denominator parameter is a negative integer or zero.

A simpler proof of (1.1) was given by Srivastava [7]. Our purpose in this paper is to extend (1.1) to the case when the differences m_i (i=1,...,n) between the numerator and denominator parameters are arbitrary. This formula is obtainable in a straightforward manner by applying the results well known in the theory of fractional calculus. A new representation of the result is also considered.

2. Extension of (1.1).

For any bounded sequence of real or complex numbers $\{A_n\}$, define a function f(z) by the power series

(2.1)
$$f(z) = \sum_{n=0}^{\infty} A_n z^n, \quad |z| < R.$$

A widely used basic formula in the fractional calculus is the formula

$$(2.2) D_z^{\beta}\{z^{\alpha-1}\} = \frac{\Gamma(\alpha)}{\Gamma(\alpha-\beta)} z^{\alpha-\beta-1}, \quad \operatorname{Re}(\alpha) > 0,$$

valid for all values of β .

Also, for arbitrary β , the Leibniz rule is given by ([3, p. 263])

(2.3)
$$D_z^{\beta}\{u(z)v(z)\} = \sum_{n=0}^{\infty} {\beta \choose n} D_z^{\beta-n}\{u(z)\} D_z^n\{v(z)\},$$

where u(z) and v(z) are functions of the form $z^{a-1}h(z)$ and $z^{b-1}k(z)$, respectively, where h(z) and k(z) are analytic in the disc $|z| < \varrho$, provided that Re(a) > 0 and Re(a + b) > 0.

Let us write

(2.4)
$$z^{\alpha+\beta-1}f(z) = \sum_{n=0}^{\infty} A_n z^{\alpha+\beta+n-1},$$

and operate D_z^{β} on both the sides, then (2.4) in conjuction with (2.2) and (2.3) gives

(2.5)
$$\sum_{n=0}^{\infty} \frac{(\alpha+\beta)_n}{(\alpha)_n} A_n z^n = \sum_{n=0}^{\infty} {\beta \choose n} \frac{z^n}{(\alpha)_n} D_z^n \{f(z)\},$$

provided that Re $(\alpha + \beta) > 0$, the arbitrary sequence of real or complex numbers is bounded, and |z| < R.

The fractional derivative operator D_z^{β} can be applied term-wise to the right side of the series of (2.4) in view of the result mentioned in a recent monograph of Srivastava and Monacha [9, p. 289, Theorem 2], under, of course, the hypotheses surrounding the above equation (2.5).

As a consequence of the relation (2.5), we now derive a formula expressing a generalized hypergeometric function in terms of a finite sum of lower order. To this end, if we spacialize the arbitrary sequence $\{A_n\}$ by setting

(2.6)
$$A_n = \frac{\prod_{i=2}^{p} (a_i)_n}{n! \prod_{i=2}^{q} (b_i)_n}, \quad n \geqslant 0,$$

then (2.5) is seen (on slight adjustment of parameters) to yield the result

$$(2.7) _{p}F_{q}\begin{bmatrix} b_{1}+\beta_{1}, a_{2}, \dots, a_{p}; \\ b_{1}, \dots, b_{q} & ; \end{bmatrix} = \sum_{j_{1}=0}^{\infty} \binom{\beta_{1}}{j_{1}} \frac{(a_{2})_{j_{1}} \dots (a_{p})_{j_{1}}}{(b_{2})_{j_{1}} \dots (b_{q})_{j_{1}}} z^{j_{1}} \cdot \cdots \cdot \sum_{j_{p-1}F_{q-1}} \begin{bmatrix} a_{2}+j_{1}, \dots, a_{p}+j_{1}; \\ b_{2}+j_{1}, \dots, b_{q}+j_{1}; \end{bmatrix},$$

provided that $p \leqslant q$ (and |z| < 1, if p = q + 1), Re $(b_1 + \beta_1) > 0$, and no denominator parameter is zero or a negative integer.

The repeated application of (2.7) to each of its R.H.S. when $a_i = b_i + \beta_i$ (i = 2, ..., n) gives the result

$$(2.8) _{p}F_{q}\begin{bmatrix}b_{1}+\beta_{1}, \dots, b_{n}+\beta_{n}, a_{n+1}, \dots, a_{p}; \\b_{1}, \dots, b_{n}, b_{n+1}, \dots, b_{q}\end{bmatrix} = \\ = \sum_{j_{1}=0}^{\infty} \dots \sum_{j_{n}=0}^{\infty} \binom{\beta_{1}}{j_{1}} \dots \binom{\beta_{n}}{j_{n}} \frac{(b_{2}+\beta_{2})_{J_{1}}(b_{3}+\beta_{3})_{J_{1}} \dots (b_{n}+\beta_{n})_{J_{n-1}}}{(b_{1})_{J_{1}}(b_{2})_{J_{2}} \dots (b_{n})_{J_{n}}} \cdot \frac{(a_{n+1})_{J_{n}} \dots (a_{p})_{J_{n}}}{(b_{n+1})_{J_{n}} \dots (b_{q})_{J_{n}}} z^{J_{n}}_{p-n} F_{q-n} \begin{bmatrix} a_{n+1}+J_{n}, \dots, a_{p}+J_{n}; \\ b_{n+1}+J_{n}, \dots, b_{q}+J_{n}; \end{bmatrix},$$

provided that p < q (and |z| < 1, if p = q + 1), n being any positive integer such that $n < \min(p, q)$, where J_n is given by (1.3), and $\operatorname{Re}(b_i + \beta_i) > 0$ for i = 1, ..., n.

The result (2.8) immediately reduces to (1.1) if the arbitrary parameters β_i (i=1,...,n) are replaced by the positive integers m_i (i=1,...,n). It must be stated here that (2.8) is precisely the same result obtained earlier by Chakrabarti [1, p. 200, eqn. (1.4)] by following a different line of approach employing essentially the Vandermond's convolution theorem [8, p. 243].

3. Another representation of (2.8).

Consider the generalized Leibniz rule due to Osler [5, p. 2, eqn. (3.1)] (see also [3, p. 264])

$$(3.1) \qquad D_z^{\alpha}\{u(z)v(z)\} = \sum_{n=-\infty}^{\infty} a \begin{pmatrix} \alpha \\ an + \varepsilon \end{pmatrix} D_z^{\alpha-an-\varepsilon}\{u(z)\} D_z^{an+\varepsilon}\{v(z)\},$$

where 0 < a < 1, α and ε are arbitrary (real or complex) numbers. Then in view of a known special case of a fractional derivative formula due to Raina and Koul [6, p. 99, eqn. (7)] (see also [4, p. 374]), the following result can easily be arrived at:

$$(3.2) _{p}F_{q}\begin{bmatrix} b_{1}+\beta_{1}, a_{2}, ..., a_{p}; \\ b_{1}, b_{2}, ..., b_{q} & ; \end{bmatrix} = \\ = \sum_{j_{1}=-\infty}^{\infty} c_{1} \binom{\beta_{1}}{c_{1}j_{1}+\epsilon_{1}} \frac{1}{(b_{1})_{c_{1}j_{1}+\epsilon_{1}}\Gamma(1-c_{1}j_{1}-\epsilon_{1})} \cdot \\ \cdot _{p}F_{q}\begin{bmatrix} 1, a_{2}, ..., a_{p} & ; \\ 1-c_{1}j_{1}-\epsilon_{1}, b_{2}, ..., b_{q}; \end{bmatrix},$$

provided that $p \leqslant q$ $(p = q + 1, \text{ if } |z| < 1), <math>0 < c_1 \leqslant 1, \epsilon_1$ is any arbitrary complex number, and none of the denominator parameters is a negative integer or zero.

When $c_1 = 1$, $\varepsilon_1 = 0$, (3.2) does not apparently seem to be reducible to (2.7). However, a slight simplification on the right side of

the resulting equation, or else, using the simple identity

$$(3.3) \quad \frac{1}{\Gamma(1-j)} {}_{p}F_{q} \begin{bmatrix} 1, a_{2}, \dots, a_{p} & ; \\ 1-j, b_{2}, \dots, b_{q}; \end{bmatrix} = \\ = \frac{(a_{2})_{j} \dots (a_{p})_{j}}{(b_{2})_{j} \dots (b_{q})_{j}} z^{j}{}_{p-1}F_{q-1} \begin{bmatrix} a_{2}+j, \dots, a_{p}+j; \\ b_{2}+j, \dots, b_{q}+j; \end{bmatrix},$$

makes (3.2) (when $c_1 = 1$ and $\varepsilon_1 = 0$) reducible to (2.7). The repeated application of (3.2) for each $a_i = b_i + \beta_i$ (i = 2, ..., n)yields the result

$$(3.4) _{p}F_{q}\begin{bmatrix}b_{1}+\beta_{1},...,b_{n}+\beta_{n},a_{n+1},...,a_{p};\\b_{1},...,b_{n},b_{n+1},...,b_{q};\end{bmatrix} = \\ = \prod_{i=1}^{n}\left\{\sum_{j_{i}=-\infty}^{\infty}c_{i}\binom{\beta_{i}}{c_{i}j_{i}+\varepsilon_{i}}\frac{1}{(b_{i})_{c_{i}j_{i}+e_{i}}\Gamma(1-c_{i}j_{i}-\varepsilon_{i})}\right\} \cdot _{p}F_{q}\begin{bmatrix}1,...,1,a_{n+1},...,a_{p}\\1-c_{1}j_{1}-\varepsilon_{1},...,1-c_{n}j_{n}-\varepsilon_{n},b_{n+1},...,b_{q};\end{bmatrix},$$

provided that $p \leqslant q$ (and for p = q + 1, |z| < 1), ε_i (i = 1, ..., n) are arbitrary complex numbers, and $0 < c_i \le 1$ (i = 1, ..., n).

Acknowledgement. The author is thankful to the University Grants commission, India, for the financial support.

REFERENCES

- [1] M. CHAKARBARTI, Formulae expressing generalized hypergeometric function in terms of lower order, Nederl. Akad. Wetensch. Proc. Ser. A77 = Indag. Math., 36 (1974), pp. 199-202.
- [2] P. W. Karlsson, Hypergeometric functions with integral parameter differences, J. Math. Phys., 12 (1971), pp. 270-271.
- [3] J. L. LAVOIE T. J. OSLER R. TREMBLAY, Fractional derivatives and special functions, SIAM Rev., 18 (1976), pp. 240-268.

- [4] H. L. MANOCHA B. L. SHARMA, Fractional derivatives and summation, J. Indian Math. Soc., 38 (1974), pp. 371-382.
- [5] T. J. OSLER, A further extension of the Leibniz rule to fractional derivatives and its relation to Parseval's formula, SIAM J. Math. Anal., 3 (1972), pp. 1-16.
- [6] R. K. RAINA C. L. KOUL, Fractional derivatives of the H-functions, Jñānabha, (Professor Charles Fox Memorial Volume), A 7 (1977), pp. 97-105.
- [7] H. M. SRIVASTAVA, Generalized hypergeometric functions with integral parameter differences, Nederl. Akad. Wetensch. Proc. Ser. A, 76 = Indag. Math., 35 (1973), pp. 38-40.
- [8] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, London and New York, 1966.
- [9] H. M. SRIVASTAVA H. L. MANOCHA, A Treatise on Generating Functions, Ellis Horwood (U.K.), 1984.

Manoscritto pervenuto in redazione il 19 luglio 1988.