RENDICONTI del Seminario Matematico della Università di Padova

F. Ancona

G. COLOMBO

Existence of solutions for a class of nonconvex differential inclusions

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 71-76

http://www.numdam.org/item?id=RSMUP_1990_83_71_0

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 83 (1990)

Existence of Solutions for a Class of Nonconvex Differential Inclusions.

F. ANCONA - G. COLOMBO (*)

SUMMARY - We prove existence of solutions for the Cauchy problem

 $\dot{x} \in F(x) + f(t, x)$, $x(0) = \xi$,

where F is upper semicontinuous and F(x) is contained in the subdifferential $\partial V(x)$ of a convex continuous function V, while f is a Carathéodory single valued map.

1. Introduction.

ŧ

It is well known that the initial value problem for the differential inclusion $\dot{x} \in F(x)$ may not have solutions when F is upper semicontinuous but has not necessarily convex values. Bressan, Cellina and Colombo have recently [2] given a condition ensuring existence for the Cauchy problem

(1)
$$\dot{x} \in F(x)$$
, $x(0) = \xi \in \mathbb{R}^n$.

They assume F to be upper semicontinuous with values contained in the subdifferential ∂V of a convex function $V: \mathbb{R}^n \to \mathbb{R}$. This function permits to estimate the L^2 -norm of the derivatives of approximat-

(*) Indirizzo degli AA.: F. ANCONA: Via Trieste 1 - 35100 Padova (Italy); G. COLOMBO: S.I.S.S.A., Strada Costiera 11 - 34014 Trieste (Italy). ing polygonals and to obtain their strong L^2 -convergence from the weak one.

We extend here the technique of [2] to the differential inclusion

$$\dot{x} \in F(x) + f(t, x) ,$$

where F is as in [2] and f is a Carathéodory single valued map. So we obtain a result that contains Peano's existence theorem as a particular case.

2. The result.

We consider the Cauchy problem

2)
$$\dot{x}(t) \in F(x(t)) + f(t, x(t)), \quad x(0) = \xi \in \mathbb{R}^n,$$

under the following assumptions:

i) F is an upper semicontinuous multifunction from \mathbb{R}^n into the compact nonempty subsets of \mathbb{R}^n (i.e. for every x and for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x'| < \delta$ implies $F(x') \subseteq F(x) + \varepsilon B$, where B is the unit ball of \mathbb{R}^n ;

ii) there exists a convex continuous function $V: \mathbb{R}^n \to \mathbb{R}$ such that

$$F(x) \subseteq \partial V(x)$$
 for every $x \in \mathbb{R}^n$,

where $\partial V(x)$ denotes the subdifferential of V at x;

iii) $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is Carathéodory, i.e. for every $x \in \mathbb{R}^n$, $t \mapsto f(t, x)$ is measurable, for a.e. $t \in \mathbb{R}$, $x \mapsto f(t, x)$ is continuous and there exists $m \in L^2(\mathbb{R})$ such that

$$|f(t, x)| \leq m(t)$$
 for a.e. $t \in \mathbb{R}$, for all $x \in \mathbb{R}^n$.

We recall that, under the assumption i), F satisfies ii) if and only if it is cyclically monotone [2].

By a solution of our Cauchy problem we mean an absolutely continuous function x which satisfies (2) a.e. On the space of solutions

 $\mathbf{72}$

we consider the H^1 topology, which coincides with the topology induced by the sup norm on x and the L^2 norm on \dot{x} . The following is our existence result.

C

THEOREM. Let F and f be maps satisfying i), ii) and iii). Then there exists T > 0 such that on [0, T] the Cauchy problem (2) admits a nonempty set of solutions, which is compact in the $H^1(0, T)$ topology.

PROOF. We first define a family of approximate solutions similar to a construction of Tonelli [4, vol. 1 p. 42-45/vol. 2 p. 129-130] and then prove that a subsequence converges to a solution of (2).

By i) there exist R > 0 and M > 0 such that for every $x \in B(\xi, R)$ and for every $y \in F(x)$ we have $|y| \leq M$ [1, Proposition 1.1.3]; by iii) there exists T > 0 such that $\int_{0}^{T} (m(t) + M) dt < R$.

We define on [0, T] a sequence of approximate solutions x_n :

$$egin{aligned} &x_n(0)=\xi\ ,\ &x_n(t)=x_n\left(i\,rac{T}{n}
ight)+\int\limits_{iT/n}^tfig(s,\,x_n\left(i\,rac{T}{n}
ight)ig)ds+ig(t-i\,rac{T}{n}ig)y_i\,,\ &i=0,\,\ldots,\,n-1\ ,\ t\inig[i\,rac{T}{n},\,(i+1)\,rac{T}{n}ig]\,, \end{aligned}$$

where $y_i \in F(x_n(iT/n))$. Set, for $t \in [iT/n, (i+1)T/n[, i = 0, ..., n-1,$

(3)
$$f_n(t) = f\left(t, x_n\left(i\frac{T}{n}\right)\right), \quad g_n(t) = y_i.$$

Then, $|x_n(t) - \xi| \leq \int_0^t |f_n(s) + g_n(s)| ds \leq \int_0^T (m(s) + M) ds < R$, by our choice of T. Moreover, for all $t, t' \in [0, T]$,

$$|x_n(t') - x_n(t)| \leq \left| \int_t^{t'} |\dot{x}_n(s)| \, ds \right| \leq \left| \int_t^{t'} (m(s) + M) \, ds \right|,$$

so that the sequence $(x_n(\cdot))_n$ is equiuniformly continuous. Notice also that $\int_0^T |\dot{x}_n(s)|^2 ds = \int_0^T |f_n(s) + g_n(s)|^2 ds$ and therefore the sequence $(\dot{x}_n(\cdot))_n$ is bounded in $L^2(0, T)$. Hence there exists a subsequence, still denoted by $(x_n)_n$, and an absolutely continuous function $x: [0, T] \to \mathbb{R}^n$ such that x_n converges to x in the sup norm topology and \dot{x}_n converges to \dot{x} in the weak topology of L^2 .

Since $(f_n(\cdot))_n$ converges to $f(\cdot, x(\cdot))$ in L^2 and, for $t \in [i(T/n), (i+1)T/n[, i=0, ..., n-1,$

(4)
$$\lim_{n\to\infty} d\big((x_n(t), \dot{x}_n(t) - f_n(t)), \operatorname{graph}(F)\big) \leq \lim_{n\to\infty} \left|x_n(t) - x_n\left(i\frac{T}{n}\right)\right| = 0,$$

by Theorem 1.4.1 in [1] we obtain that x is a solution of the convexified differential inclusion

(5)
$$\dot{x} \in \mathrm{co}(F(x)) + f(t, x), \quad x(0) = \xi$$

By our assumption ii) we then have that

(6)
$$\dot{x}(t) - f(t, x(t)) \in \partial V(x(t))$$
 for a.e $t \in [0, T]$.

Since the maps $t \mapsto x(t)$ and $t \mapsto V(x(t))$ are absolutely continuous, we obtain from Lemma 3.3 in [3, p. 73] and (6) that $(d/dt)(V(x(t))) = \langle \dot{x}(t), \dot{x}(t) - f(t, x(t)) \rangle$ a.e. on [0, T]; therefore,

(7)
$$V(x(T)) - V(\xi) = \int_{0}^{T} |\dot{x}(s)|^2 ds - \int_{0}^{T} \langle \dot{x}(s), f(s, x(s)) \rangle ds$$
.

On the other hand, notice that, by (3),

$$\dot{x}_n(t) - f_n(t) = y_i \in \partial V\left(x_n\left(i \, rac{T}{n}
ight)
ight)$$
 for $t \in \left]i \, rac{T}{n}, \, (i+1) \, rac{T}{n}
ight[, \ i = 0, ..., n-1,$

and so the properties of the subdifferential of a convex function imply, for every $t \in [iT/n, (i+1)T/n[$,

$$egin{aligned} &Vigg(x_nigg((i+1)rac{T}{n}igg)igg) - Vigg(x_nig(irac{T}{n}igg)igg) &> \ &> igg\langle\dot{x}_n(t) - f_n(t), \, x_nigg((i+1)rac{T}{n}igg) - x_nigg(irac{T}{n}igg)igg
angle\,; \end{aligned}$$

since this last expression equals

$$\left\langle y_{i}, \int_{iT/n}^{(i+1)T/n} \dot{x}_{n}(s) \, ds \right\rangle = \int_{iT/n}^{(i+1)T/n} \langle y_{i}, \dot{x}_{n}(s) \rangle \, ds = \int_{iT/n}^{(i+1)T/n} \langle \dot{x}_{n}(s) - f_{n}(s), \dot{x}_{n}(s) \rangle \, ds = \int_{iT/n}^{(i+1)T/n} \langle \dot{x}_{n}(s) |^{2} \, ds - \int_{iT/n}^{(i+1)T/n} \langle f_{n}(s), \dot{x}_{n}(s) \rangle \, ds \, ,$$

by adding we obtain

(8)
$$V(x_n(T)) - V(\xi) \ge \int_0^T |\dot{x}_n(s)|^2 ds - \int_0^T \langle f_n(s), \dot{x}_n(s) \rangle ds$$

The convergence of $(f_n)_n$ in L^2 -norm and of $(\dot{x}_n)_n$ in the weak topology of L^2 implies that

$$\lim_{n\to\infty}\int_0^T \langle f_n(s), \dot{x}_n(s)\rangle \, ds = \int_0^T \langle f(s, x(s)), \dot{x}(s)\rangle \, ds \; .$$

By passing to the limit for $n \to \infty$ in (8) and using the continuity of V, a comparison with (7) yields

$$\|\dot{x}\|_{2}^{2} \ge \limsup \|\dot{x}_{n}\|_{2}^{2};$$

since, by the weak lower semicontinuity of the norm,

$$\|\dot{x}\|_{2}^{2} \leq \liminf \|\dot{x}_{n}\|_{2}^{2}$$

we have that $\|\dot{x}\|_2^2 = \lim_{n \to \infty} \|\dot{x}_n\|_2^2$, i.e. \dot{x}_n converges to \dot{x} strongly in $L^2(0, T)$ [5, p. 124]. Hence there exists a subsequence \dot{x}_n which converges pointwisely a.e. to \dot{x} . Recalling (4), we have that

$$dig(ig(x(t),\dot{x}(t)-f(t,x(t))ig), ext{graph}\left(F
ight)ig)=0 \quad ext{ for a.e. } t\in[0,\,T];$$

since the graph of F is closed [1, p. 41],

$$\dot{x}(t) \in F(x(t)) + f(t, x(t))$$
 a.e.,

and so problem (2) does have solutions.

Let now $(x_n)_n$ be a sequence of solutions of (2). Using the same argument as for the approximate solutions we obtain that there exist an absolutely continuous function x and a subsequence $(x_n)_n$ such that x_n converges to x in C and \dot{x}_n converges to \dot{x} weakly in L^2 . Both xand the x_n are solutions of the convexified differential inclusion (5) and so formula (7) holds for x as well as for the x_n . By passing to the limit we obtain that $\|\dot{x}\|_2^2 = \lim_{n \to \infty} \|\dot{x}_n\|_2^2$ and so, by the same arguments as before, x is a solution of (2).

Aknowledgement. We wish to thank Prof A. Cellina for some useful suggestions. The first author also thanks S.I.S.S.A. for the kind hospitality.

REFERENCES

- [1] J. P. AUBIN A. CELLINA, *Differential Inclusions*, Springer-Verlag, Berlin and Heidelberg, 1984.
- [2] A. BRESSAN A. CELLINA G. COLOMBO, Upper semicontinuous differential inclusions without convexity, Proc. Am. Math. Soc. 106 (1989) 771-775.
- [3] H. BRÉZIS, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
- [4] G. SANSONE, Equazioni differenziali nel campo reale, Voll. 1, 2, Zanichelli, Bologna, 1941.
- [5] K. YOSIDA, Functional Analysis, sixth ed., Springer-Verlag, Berlin, 1980.

Manoscritto pervenuto in redazione il 6 marzo 1989.