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Existence of Solutions for a Class
of Nonconvex Differential Inclusions.

F. ANcoNA - G. CoLOMBO (*)

SuMMARY - We prove existence of solutions for the Cauchy problem
zeF(x) + ft, x), =x(0)=E¢,

where F is upper semicontinuous and F(z) is contained in the subdiffer-
ential 8V (x) of a convex continuous function V, while f is a Carathéodory
single valued map.

1. Introduction.

It is well known that the initial value problem for the differentisl
inclusion % € F(x) may not have solutions when F is upper semi-
continuous but has not necessarily convex values. Bressan, Cellina
and Colombo have recently [2] given a condition ensuring existence
for the Cauchy problem

) ieF(z), x(O);geRn.

They assume F to be upper semicontinuous with values contained in
the subdifferential 6V of a convex function V:R"-—R. This func-
tion permits to estimate the L2-norm of the derivatives of approximat-

(*) Indirizzo degli AA.: F. ANcoNa: Via Trieste 1 - 35100 Padova (Italy);
G. CorLomMBo: S.I.8.S.A., Strada Costiera 11 - 34014 Trieste (Italy).
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ing polygonals and to obtain their strong IL-convergence from the
weak one.
We extend here the technique of [2] to the differential inclusion

@ € F(x) + f(t, ) ,

where F is as in [2] and f is a Carathéodory single valued map. So
we obtain a result that contains Peano’s existence theorem as a par-
ticular case.

2. The result.
We consider the Cauchy problem
2) () € F(a(t) + fit, o®) , @(0) = E€Rn,

under the following assumptions:

i) F is an upper semicontinuous multifunction from R» into
the compact nonempty subsets of R» (i.e. for every x and for every
€ > 0 there exists > 0 such that |z — 2’| < implies F(z') C F(x) + &B,
where B is the unit ball of R");

ii) there exists a convex continuous function ¥V: R®— R such
that

Fx)CoV(x) for every zeRn,

where 0V (x) denotes the subdifferential of V at z;

iii) f: RxR" — R is Carathéodory, i.e. for every x € R", ¢t + f(t, x)
is measurable, for a.e. t € R, 2 > f(¢, ) is continuous and there exists
m € L*(R) such that

If¢, )|<m(t) for a.e. teR, for all zeR".

We recall that, under the assumption i), F' satisfies ii) if and only if
it is cyclically monotone [2].

By a solution of our Cauchy problem we mean an absolutely con-
tinuous function x which satisfies (2) a.e. On the space of solutions
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we congider the H' topology, which coincides with the topology in-
duced by the sup norm on 2 and the L2 norm on Z.
The following is our existence result.

THEOREM. Let F and f be maps satisfying i), ii) and iii). Then
there exists T' > 0 such that on [0, T'] the Cauchy problem (2) admits
a nonempty set of solutions, which is compact in the H(0, T') topology.

ProOF. We first define a family of approximate solutions similar
to a construction of Tonelli [4, vol. 1 p. 42-45/vol. 2 p. 129-130] and
then prove that a subsequence converges to a solution of (2).

By i) there exist B > 0 and M > 0 such that for every € B(&, R)
and for every y € I'(r) we ha.V(; ly|< M [1, Proposition 1.1.3]; by iii)

there exists 7 > 0 such that f (m(t) + M) dt < R.
0

We define on [0, T'] a sequence of approximate solutions x,:

.’L‘,,(O) =§ 9

o) - [ o () (5o

iT/n
0 1.4 T . 1
t=0.,n—1,1€ z;"’(""l‘ ); ’
where y;€ F(z.(iT/n)).

Set, for te [iT/n, (¢ + 1)T/n[, ¢ = 0,...,n—1,

(3) f'n(t) = f(ty (2% ("' %)) 9 gn(t) =Y

¢ T

Then, |z,(t)— §l<f|f,.(s) -+ g,,(s)]ds<f(m(s) + M) ds< R, by our choice
(V] 0

of T. Moreover, for all ¢, ¢’ € [0, T,

[a(2") — @4(2)] < tllab,.(s)lds < ‘,(m(s) + M) ds|,
t ¢

so that the sequence (w,.( ))» is equiuniformly continuous. Notice

also that f [£a(8)|2ds = f [fn(8) + ga(s)|2ds and therefore the sequence
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(%4(*))» is bounded in L2(0,T). Hence there exists a subsequence,
still denoted by (z.)., and an absolutely continuous function
x: [0, T] — R* such that x, converges to x in the sup norm topology
and %, converges to & in the weak topology of L2

Since (fa(+))» converges to f(-,x(+)) in L* and, for te Ji(T/n),

¢4+ 1T/ ¢=0,..,n—1,
Z,(t) — @, (z %)’ =0,

by Theorem 1.4.1 in [1] we obtain that x is a solution of the con-
vexified differential inclusion

(4)  lim d((@a(t), €a(t) — fa(2)), graph ()< lim

N—> 00

(5) Zeco (F(x) + f¢t, ), x(0)=E¢&.

By our assumption ii) we then have that

(6) &(t) — f(¢, 2(t)) € 0V (x(t)) for a.e te[0, T].

Since the maps ¢ x(f) and ¢ +— V(2(t)) are absolutely continuous,

we obtain from Lemma 3.3 in [3, p. 73] and (6) that (d/dt)(V(w(t))) =
= (&(8), £(t) — f(t, 2(t))) a.e. on [0, T']; therefore,

T T

) V(@(T)) — V() = f lE(s)|2 ds — J' C(s), (s, 0()) > ds .
0 0

On the other hand, notice that, by (3),

Ea(t) — folt) = y:€ av(x,. (i %)) ' '
for te]ig—, (z+ 1) %[, t=0,.,0—1,

and so the properties of the subdifferential of a convex function imply,
for every te JiT/n, (¢ +1)T/n[,

(e (6 +03)- v (o (:2))>
> (800 = 10 0 (6 + 1 5) = 20 (1)) 5
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since this last expression equals

G+1)T/n (i+1)T/n (i+1)T/n
(36 [ &a)ds) = [ <viya@)@s = [ Cnls) = fals), dalo)> ds =
iTIn iTIn iT/n
G+1)T/n G@+1DT/n
— [ Ba@lrds— [ <fals), da(s)>ds,
iTIn iTin

by adding we obtain
T T

(8) V(@) = V(> [ealo)*ds — [<fa(s), 2als)> ds -
[1] 0

The convergence of (f,), in L2-norm and of (£,), in the weak topology
of L2 implies that

T

T

tim [<1a(0, 61> ds = <t 0(5), (60> ds .
”—>°°0 0
By passing to the limit for » — oo in (8) and using the continuity of V,
a comparison with (7) yields

|15 >1im sup [&.3;
since, by the weak lower semicontinuity of the norm,

|2 <lim inf |2, 3,
we have that |#|Z = lim |#,|2, i.e. &, converges to & strongly in

Nn— 00

L2(0, T) [6, p. 124]. Hence there exists a subsequence %, which con-
verges pointwisely a.e. to #. Recalling (4), we have that

d((w(t), #(t) — 1(t, a(t))), graph (F)) —=0 for ae. te[0,T];
since the graph of F is closed [1, p. 41],

#(t) € F(x(t)) + 1@, 2(t)) ae.,

and so problem (2) does have solutions.
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Let now (z.). be a sequence of solutions of (2). Using the same
argument as for the approximate solutions we obtain that there exist
an absolutely continuous function x and a subsequence (#,), such that
, converges to # in C and %, converges to & weakly in L2. Both
and the z, are solutions of the convexified differential inclusion (5)
and so formula (7) holds for x as well as for the z,. By passing to the
limit we obtain that |&|2 = ,1:31, |#4]% and so, by the same arguments

as before, x is a solution of (2).
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