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On the Interior Differentiability of Weak Solutions
of Parabolic Systems

with Quadratic Growth Nonlinearities.

J. NAUMANN (*)

1. Introduction. Statement of the result.

Let S~ (n &#x3E; 2) be a bounded open set, let 0  T  + oo and

Q = Q X (0, T).
By (m = 1, 2, ... , 1  p  + oo) we denote the usual So-

bolev space (i.e. the subspace of those functions in with general-
ized partial derivatives up to order m in Given 06ly
let be the subspace of all functions such that

Define

Next, let 1  ~  + oo and - co, and let X be

(*) Indirizzo dell’A.: Sektion Mathematik, Humboldt-Universitat zu Ber-
lin, 1086 Berlin, PSF 1297, DDR.

Lavoro eseguito parzialmente con contributo finanziario del G.N.A.F.A.
del C.N.R.

(1) Throughout uxa = denotes the classical or generalized deriv-

ative, respectively, of u with respect to the space variable xa (a = 1, ... , n).
Analogously, ut = au/at.
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normed vector space. Then LP(a, b ; X) denotes the vector space of
all (classes of equivalent) Bochner-measurable functions u: (a, b) - X
such that

In all that follows, we shall identify the spaces

Let denote

Finally, y set

We consider the following system of partial differential equations:

... , Vu = ( = matrix of spatial derivatives
of u). For the time being, suppose that A" and Bi are Caratheodory
functions (4) on Q X RN X RN satisfying

(2) This identification is justified by virtue of the linear isometry

(3) Without further reference, throughout repeated Greek (resp. Latin)
indices imply summation over 1, ... , n (resp. 1, ..., N). By || we denote the
Euclidean norm in g$k.

(4) A real function f on is called a Carath6odory function
if is measurable on Q for each and

(U, ~) H- f (x, t, u, ~) is continuous on RN x for almost all (x, t) E Q.
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Under these hypotheses, a vector function u E W2’2 (Q ; RN) r’1
n LOO(Q; is called a bounded weak solution of (1.1) (regardless
of whether or not ~c satisfies any boundary or initial condition) if

f or E RN) r1 L°’(Q ; IEgN) with supp (99) c Q.
The aim of the present paper is to study the interior differen-

tiability of bounded weak solutions of (1.1). Counter examples in-
dicate that bounded weak solutions of elliptic systems need not have
locally square integrable second derivatives. It is known, however,
that H61der continuous weak solutions of strongly elliptic systems
with quadratic growth nonlinearities possess second derivatives in

(cf. [2]). In what follows, we therefore confine ourselves to
the study of H61der continuous weak solutions of (1.1). This is also
motivated by the fact that any bounded weak solution of (1.1) is

partially H61der continuous in Q (i.e. H61der_ continuous in an open
set Qo c Q with meas (QBQo) = 0) provided that the above condi-
tions on A’ and Bi are fulfilled, that are uniformly bounded
Carath6odory functions on satisfying (1.6) below, and
that the solution under consideration possesses a certain regularity
property with respect to t and meets the well-known smallness con-
dition on its Z°°-norm (cf. [6]). An analogous result for a special case
of A~‘ has been presented in [4].

In order to state our main result we sharpen the conditions on A"
and B i as follows:

for each M &#x3E; 0 there exist constants ck = &#x3E; 0 (k = 1, 2) such
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that

for all I

Then we have the f ollowing

THEOREM. Let (1.4)-(1.10) be satisfied. Let u E RN) be a
weak solution of (1.1 ) such that

Then:

COROLLARY. Let the assumptions of the T heorem be fulfilled. T hen :

(1.14) V u is partially Hölder continuous in Q .

We note that once we have (1.12), statement (1.13) can be easily
deduced from (1.3) by the aid of the nowadays classical method of
difference quotient (cf. step 20 of the proof below); we therefore dis-
pense with further details. Then (1.14) follows immediately from [5]
when taking into account (1.11) and (1.13)..

(1) That is, there exists a constant C &#x3E; 0 such that
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REMARKS. 1) The above theorem obviously continues to hold
when and their derivatives occuring in (1.4)-(1.10), are Ca-
rath6odory functions on Moreover, (1.12) remains true
for any bounded weak solution u RN) n L°°(Q_; RN) such
that u e CY(Q’ ; RN) (~ C y C 1 ) for each subcylinder Q’ c Q’ c Q. This
can be readily seen by minor technical modifications of our reasoning
below.

2) Let (1.4), (1.6)-(1.8) be fulfilled, and let Bi be a Carath6odory
function on Q satisfying (1.2) only. Then [3; Theorem 3.111]
implies that any H61der continuous weak solution of (1.1) is in

L2( 1 + 8) (t’, T ; yyp (,S~’ ; RN)) for all 0’ 0  1, 0  T and D’ c l7’ c D,
where 2  p  (2(1 + 20y) (y = H61der exponent of the so-
lution under consideration) (cf. step 10 of the proof below). This

result does not, however, give (1.12).

3) In [1], fractional differentiability properties with respect to t

for weak solutions of parabolic systems have been established (cf.
(2.18) below). The method of proof in that paper rests upon results
for evolution equations in Hilbert spaces and seems not to work for
(1.1) under our assumptions on A" and B, (cf. e.g. [7] and the lite-
rature therein).

2. Proof of the Theorem.

We divide the proof into five steps.

10 Let ,~’ be an open set such that Let 0  t’  T
be arbitrary. From [3] we obtain

for all 0  0  1, where c depends on v, CI, C2 (cf. (1.6)-(1.10)),
as well as on 0, t’ and dist (D’7 aS2) (c -~ + oo as 0 - 1,

t’ --~ 0 or dist (Q’, 3,Q) ~ 0, respectively) .
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t H Vu(., t) is Bochner measurable f rom (t’, T ) into _

with c depending on the same parameters as the constant in (2.1)
and additionally on N, meas Q and T. 

_ _

To begin with, we fix an open set such that Q’ c S~" c Q" c S~.
From [2; Theorem 2.1] we get

for all v E -W"0(12’) n OY(Q"). Here c depends on n, 0, p and
dist (SZ’, aS2), while lVl is a bound for v on SZ" : ~v(x) ~  ~1 = const
for all (cf. also [3; p. 756]) (6).

Indeed, let .g be any open cube in Rn. From [2; Theorem 2.1]
one easily derives estimates of the type (2.4) and (2.5) with K in
place of SZ’ and S~". Then we consider a finite number of mutually

_ 

m

disjoint, open cubes (j = 1, ..., m) in Rn such that Q’ c c Q"
j=1

(m depending on dist (Q’, 8Q") and employ the estimates just de-
rived with I~ _ K; (j = 1, ..., m) to obtain (2.4) and (2.5).

We are now going to apply (2.4) and (2.5) to each component of
the mollification of u. To this end, let denote

Define

(6) Note that (2.4) and (2.5) are true for any 0  y  1.
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where al and an are determined by

Next, given h &#x3E; 0, set

Finally, y let S~* be an open set such that S~* c S~* c S2.
We extend u by zero onto (Q X (- oo, 0)) U + oo)) and

denote this extension again by u. Consider

for any and

By standard calculations,

and
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for all t E (t’, T ) and 0  h  dist 8Q* ).
Further, it is easily seen that

for all t E (t’, T) and 0  h  dist aS2*).
Thus, inserting (2.7)-(2.10) into (2.6), integrating over (t’, T ) and

using (2.1) (with Q* in place of we obtain

for all 0 C h  dist (Q", 
Observing that strongly in as h - 0,

from the latter estimate we infer that

Whence (2.2) (cf. footnote 2).
Finally, taking into account (2.1) (with (J" in place of Q’), esti-

mate (2.3) is readily deduced from (2.5). a

20 Let n RN) have its

support in ,Q x (0, tl). We extent q by zero onto (Q X (- oo, 0 )) u
U (SZ X (T, + oo)) and denote this extension again by ~. Define

It is easy to verify that possesses the generalized derivatives



63

for a.a. (a = 1, ... , n ; ~, &#x3E; 0 ) . On the other hand, given
f E LP(Q) (l ~ p  + oo), we get by a straightforward application of
Fubini’s theorem

for all 0~,T-tl.
The function is admissible in (1.3). Letting denote

we obtain

for all 
_

Next, let Q’ be any open set such that Q’ c Q. Without loss of

generality, we may assume that is sufhciently smooth (so that
the Sobolev imbedding theorem applies to S~’). Fix any integer
m &#x3E; n/2. E T~’$ (S~’ ; RN) (7) be arbitrary. We extend tp by zero
onto and maintain the notation for the extension. Finally,
let 17 E C1((o, tl)) with supp (r¡) c (0, tl). Inserting t) :_ tp(x)17(t)
((x, t) E Q) into (2.11) we get by a standard argument

for a.a. t e (0, tl) (0  1  T - tx), where the exceptional set possibly
depends on 1Jl. However, the space 1~(~’; RN) being separable, (2.12)
is in fact true for any 1Jl e y~2 (S~’; RN) and independently for a.a.

t E (o, tl).

here n denotes the unit outward normal along aS2’.
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Now, by an approximation argument (via mollification ; cf. the

preceding step) it is readily seen that (2.12) continues to hold for any
’W ~ ( S~ ; f1 RN) with supp (1J’) 
30 Let S~’ and S~" be open sets such that Q’ c Q" c lJ" c Q, and

let ( E OC»(Rn) be a cut-off function for D", i.e. ~ = 0 in R"BD%
0 ~ ~ ~ 1 in and ~ =1 in Q’. Let 0  t’  t1  T be arbi-

trary, let Ihl  min ~t’, T - ti~ and fig t2 with ti + h ~  T.

Let denote

We consider (2.12) with t2 in place of t1 (0  1  min ~t$ - t1 - ih I,
T - t~~, form the difference under the integral sign for a.a.

t E (t’, t,) and insert = t)) (2(T) ((x, t) e Q x (t’, t1)) therein.
Integration over (t’, t1) gives

To proceed, we note that for any f E LP(Q) (1  p  + oo) there
holds fk - f strongly in X (0, t2)) as 1 - 0. On the other hand,
a simple calculation shows

for all (x, t) X (t’, tl) (0  ~1  min ~t~ - t1-- Ihl, T - t2~) . Thus, ne-
glecting the first term on the left of (2.13) and letting tend 1 --~ 0
we obtain
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for all h ~  min ~t’, T - here we have used the ellipticity condi-
tion (1.6) as well as the differentiability properties of A" :

for a.a. , where the dots ... represent the variables

We evaluate the integrals on the right hand side of (2.14). By (1.7 ),

(c = const depending on v and ci only). To evaluate 7z we use again
(1.7) and employ the H61der continuity of u to obtain

where the constant c depends on v, C1 and The evaluation
of 13 follows the same lines when taking into account once more the
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above representation of L1hA:. We find

the constant c being dependend on v, ci, meas Q and 
(without loss of generality, we may assume that |h| 1).

Next, making use of the differentiability of Bi we represent
dhBi in terms of three integrals over the interval (0, 1) (cf. the rep-
resentation of above). Combining (1.9), (1.10) and the H61der
continuity of u one obtains 

.

here c depends on v, C2 and Finally,

Inserting these estimates into (2.14) gives

for all Ihl  min where c3 depends on i

Then (2.15) implies
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40 From (2.16) we deduce the higher integrability of Vu via
its fractional differentiability with respect to t. To this end, let
0 be arbitrarily chosen. Define ~o : = min ~1, to , T - 
Then there exists an integer m &#x3E; 0 such that

Suppose (2.17) is true for m = 0, i.e. Obviously, y
(to , tl ) c (t - ~o , t + 60) for all (to , tl ), and t’ = to , 3 = 60 are admis-
sible in (2.16). Employing Fubini’s theorem and changing variables
gives

When (2.17) fails for m = 0, we may assume that it is true f or m == 1,
for all

We distinguish two cases. Firstly, if to = 30 we argue exactly
as in the preceding step to obtain (2.18). Secondly, if 30
then t’ - ti - 30 and d = d0( min t’, T - t-1) are admissible in

(2.16). Thus, by the same argument as above,

It remains to derive an estimate over the interval (to, tl - 60). Set

t’ - to and d1 = t1- to - d0. We find (to , tl - c (t - 31 , t + 31 ) for
all t E (to, to -f- 6,), and ðl  bo = min {I, t’, T - (for t1-  to).
Hence t’ and bi are admissible in (2.16) and we obtain
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Thus, if 30, in place of (2.18) we obtain analogous es-

timates over the intervals (to, tl- ðo) and (tl- tl).
The preceding argument can be repeated if (2.17) is true for

m = 2 etc. More precisely, there exist an integer 1  k  m + 1
and reals

such that and

(i = 0, 1, ... , m). Finally, applying the Sobolev imbedding theorem
on each interval (tri, and summing over i = 0, 1, ... , m we obtain

where the constant c depends on the same parameters as c4 and ad-
ditionally on m (8 ) .

(8) Note that m -~ -~- oo when to -~ 0 or tl -~ T, respectively.
(9) Recall that n &#x3E; 2 and I  y  1.
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Next, we choose 8 such that

Hence

Finally, set

Then, equivalently,

Now, the first inequality in (2.20) guarantees (2.3), while the second
one implies q &#x3E; 4. On the other hand, (2.21) permits to apply the
classical Riesz-Thorin interpolation theorem to

at the value p. Thus, by (2.3) and (2.19),

where the latter constant c depends on the same parameters as the
constants in (2.3) and (2.19) as well as on Iz.0
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