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REND. SEM. MAT. UNIV. PADOVA, Vol. 83 (1990)

On the Interior Differentiability of Weak Solutions
of Parabolic Systems
with Quadratic Growth Nonlinearities.

J. NAUMANN (*)

1. Introduction. Statement of the result.

Let QcRY (n = 2) be a bounded open set, let 0 << T < + oo and
Q= 02x(0,T).

By W;(2) (m =1,2,...,1<p <+ o) we denote the usual So-
bolev space (i.e. the subspace of those functions in L?({) with general-
ized partial derivatives up to order m in L?(Q)). Given 0<6 <1,
let W2(2) be the subspace of all functions w e L*(£) such that

2 [u(z) — u(y)[?
lulo,g::gfgf dedy< + oo.

Define

With(Q):= {ue WiQ): u,,e WiR) (x =1, ...,m)} (V).

Next, let 1=p <+ o0 and — co<<a < b <+ oo, and let X be

(*) Indirizzo dell’A.: Sektion Mathematik, Humboldt-Universitit zu Ber-
lin, 1086 Berlin, PSF 1297, DDR.

Lavoro eseguito parzialmente con contributo finanziario del G.N.A.F.A.
del C.N.R.

() Throughout w, = du/dx, denotes the classical or generalized deriv-
ative, respectively, of u with respect to the space variable x, (x =1, ...,7%).
Analogously, u, = ou/ot.
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normed vector space. Then L*(a, b; X) denotes the vector space of
all (classes of equivalent) Bochner-measurable functions %: (a4, b) -~ X
such that

b
1l 0= [ )% dt < + o0

a

(cf. e.g.[8]). In all that follows, we shall identify the spaces
L»(0, T; L»(RQ)) and L*(Q) (3).
Let denote

W3°(Q) := {u e LQ): u,, € L*(Q) (x =1,...,%)} .
Finally, set
Wi(Q; RY) := [WR(Q), WyQ; RY):= [W;*(@)]" ete.
We consider the following system of partial differential equations:

out 0 ) .
(1.1) —a{—BTA?(”’ t, u, Vu)= By(x, t, u,Vu) in @ (3) (1 =1,...,N)
where u = {u', ..., w"}, Vu = {u}} (= matrix of spatial derivatives
of ). For the time being, suppose that A; and B; are Carathéodory
functions (4) on @ XRY X R¥ satisfying

VM >0 3¢ = o(M)> 0:
(1.2) |47 (@, ty u, )| S e(1 + &), |Bil@, 8, u, O = e(1 + [&]%)
Y(x,t,u, £) €Q XRYXR™  with |u|< M

(e =1,...,n; i=1,...,N).

(2) This identification is justified by virtue of the linear isometry
L»(0, T'; L*(Q)) =~ L?(Q) .

(3) Without further reference, throughout repeated Greek (resp. Latin)
indices imply summation over 1,...,n (resp. 1,..., N). By || we denote the
Euclidean norm in RF.

(4) A real function f on @ xXR¥ xR"¥ ig called a Carathéodory function
if @, t) > f(x, t, u, &) is measurable on @ for each (u, &) € R¥xXR"Y, and
(% &) > f(x, t, u, &) is continuous on R¥ xR for almost all (x, t) € Q.



On the interior differentiability of weak solutions etc. 57

Under these hypotheses, a vector function ue Wy*(Q; RY) N
N L>(Q; RY) 4is called a bounded weak solution of (1.1) (regardless
of whether or not u satisfies any boundary or initial condition) ¢f

(1.3) — f w'ldedi —l—fAf.‘(w, ¢, u, V) g, dadt =fB,-(w, iy, u, V)¢ dz dt
@ a a

for all p € W3(Q; R¥) N L>(Q; R¥) with supp (p) C Q.

The aim of the present paper is to study the interior differen-
tiability of bounded weak solutions of (1.1). Counter examples in-
dicate that bounded weak solutions of elliptic systems need not have
locally square integrable second derivatives. It is known, however,
that Holder continuous weak solutions of strongly elliptic systems
with quadratic growth nonlinearities possess second derivatives in
L} (2) (cf.[2]). In what follows, we therefore confine ourselves to
the study of Holder continuous weak solutions of (1.1). This is also
motivated by the fact that any bounded weak solution of (1.1) is
partially Holder continuous in @ (i.e. Hélder. continuous in an open
set @, c Q@ with meas (Q\@,) = 0) provided that the above condi-
tions on A7 and B; are fulfilled, that 0A;/0£} are uniformly bounded
Carathéodory functions on @ xR¥ xR#¥ gatisfying (1.6) below, and
that the solution under consideration possesses a certain regularity
property with respect to ¢ and meets the well-known smallness con-
dition on its L®-norm (cf. [6]). An analogous result for a special case
of A7 has been presented in [4].

In order to state our main result we sharpen the conditions on A}
and B; as follows:

(1.4) A7 € CYQ xRY x R™);
oB; 0B, 0B;
. Tt 4 N nNY .
(1.5) Thrn ’auf’agfﬂEC(QXR XR™¥);
0AY

@ (@, 1, u, 5)77;77;3 = ”l"?lz

V(w,t, u, &) e @ XR¥XR?Y ,  VneR?Y (y= const > 0);

(1.6)

for each M > 0 there exist constants ¢, = ¢,(M)> 0 (k =1, 2) such
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that

(1.7) 21| S | | | B | e+ s
(1.8) ‘%?g < ey

(1.9 B, | 5| || = 0 + e
(1.10) l%" < e (1 + [£])

for all (z,t, u,&)€Q@QXRYXR™ with [u|< M (4, f=1,..,n;4j=
=1,..,N)
Then we have the following

THEOREM. Let (1.4)-(1.10) be satisfied. Let ue Wy°(Q; RY) be a
weak solution of (1.1) such that

(1.11) we C"(@Q; RN (A <y<1) ().
Then:
(1.12) Vue LL (Q; R) .

COROLLARY. Let the assumptions of the Theorem be fulfilled. Then:

(1.13) Uy gy g € L (@; RY)  (¢,f=1,..,0),

(1.14) Vu is partially Holder continuous in Q .

‘We note that once we have (1.12), statement (1.13) can be easily
deduced from (1.3) by the aid of the nowadays classical method of
difference quotient (cf. step 2° of the proof below); we therefore dis-
pense with further details. Then (1.14) follows immediately from [5]
when taking into account (1.11) and (1.13). m

(°) That is, there exists a constant C > 0 such that
Jul, 1) — u(y, 9)| < Oz — y[” + |t — s]"*)
for all (=, t), (y,s) €Q.



On the interior differentiability of weak solutions etc. 59

REMARKS. 1) The above theorem obviously continues to hold
when A7, B; and their derivatives occuring in (1.4)-(1.10), are Ca-
rathéodory functions on @ XR¥ xR»¥. Moreover, (1.12) remains true
for any bounded weak solution ue W3;°(Q; R¥) N L°(Q; R¥) such
that e C”(Q'; R¥) (3} <y < 1) for each subcylinder @' c @' c Q. This
can be readily seen by minor technical modifications of our reasoning
below.

2) Let (1.4), (1.6)-(1.8) be fulfilled, and let B, be a Carathéodory
function on @ X R¥ X R*¥ satisfying (1.2) only. Then [3; Theorem 3.I11]
implies that any Holder continuous weak solution of (1.1) is in
L2a+0, T Wi(Q'; RY)) for all 0:< 0<1,0<t'<Tand QcO'c,
where 2 < p < (2(1 + 0)n)/(n — 26y) (y = Holder exponent of the so-
lution under consideration) (cf. step 1° of the proof below). This
result does not, however, give (1.12).

3) In [1], fractional differentiability properties with respect to ¢
for weak solutions of parabolic systems have been established (cf.
(2.18) below). The method of proof in that paper rests upon results
for evolution equations in Hilbert spaces and seems not to work for
(1.1) under our assumptions on A7 and B; (cf. e.g. [7] and the lite-
rature therein). m

2. Proof of the Theorem.

We divide the proof into five steps.

1o Let £’ be an open set such that 2'c Q. Let 0 <t < T
be arbitrary. From [3] we obtain

we LAt', T'; Wito(Q'; RY)),

(2.1) o ' ,
t[wu]‘,,g dt < 0(1 +Qf|vu; dwdt)

for all 0 <6 <1, where ¢ depends on »,¢,¢ (cf. (1.6)-(1.10)),
|#]cv@;rry as well as on 6,1t and dist (£',02) (¢ -+ oo as 6 -1,
¢ — 0 or dist (2', 02) — 0, respectively).
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Let 0 <0<1, and fix 2 <p < (2(1 + 0)n)/(n — 20y). We have:

(2.2)  t > Vu(-,t) is Bochkner measurable from (¢', T) into L?(2'; R™Y),

T

(2.3) [ 190188 @t < o (1 + [|Vulraat)
Q

v

with ¢ depending on the same parameters as the constant in (2.1)
and additionally on N, meas 2 and 7.

To begin with, we fix an open set 2’ such that Q'c Q"'c Q" c Q.
From [2; Theorem 2.I1 we get

(2.4) V] raimm = e([0] oy + [vlov@n) -

(2.5) | Vo llf;;‘(;f)‘.’;)w) < 0{(Mzo + ”1)”3%@0 ||v“%7§+e(g.) -+ M2(1+0)}

for all ve Wi%Q")N ¢"(2"). Here ¢ depends on =,0,p and
dist (2, 002), while M is a bound for v on Q": |v(z)| < M = const
for all x € Q" (cf. also [3; p. 756]) (°).

Indeed, let K be any open cube in R». From [2; Theorem 2.I]
one easily derives estimates of the type (2.4) and (2.5) with K in
place of Q' and Q'. Then we consider a finite number of mutually

- m
disjoint, open cubes {K,} (j =1, ..., m) in R such that Q' c| K, c Q"

i=1
(m depending on dist (£2', 022") and employ the estimates just de-
rived with K = K; (j =1, ..., m) to obtain (2.4) and (2.5).
‘We are now going to apply (2.4) and (2.5) to each component of
the mollification of . To this end, let denote

1
exp(—f-_——i) ifost<1,
T(t) :=
0 ift=1.

Define

o(t) := at(t?), (@) = an7(j0]?)

(6) Note that (2.4) and (2.5) are true for any 0 <y <1.
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(teR!, zeR" (n=2)) where a, and a, are determined by

[o‘dt =fwd.’v =1.
R: R

Next, given h > 0, set

o) i = % o ({) . on(@) = hl ® (%)

(teRY, zeR®).

Finally, let 2* be an open set such that Q"c Q*c Q*c Q.

We extend u by zero onto (2X(— oo,0)) U (2X(T, + o)) and
denote this extension again by u. Consider

(@, t) :=[ ot — 5)( [ont@— )uty, 5) ay) ds
R! R"

for any € Q", te(t', T) and 0 < h < dist (2", 002*). Clearly, w,€
€ C°(Q"x (', T)). From (2.4) we get

2.6) ([ IVuata, t)ldo) e < o(|un(t) pgeoarsm + ln(®)dramm) -
9'

By standard calculations,

[, 1o < [oret— o) ( [luty, 9)dy) ds <
R o+

o
(2.7 < meas 2*|u| ¢@s x, 11; RY) »
(2.8) f [Vau(@, 1) |2 do < f onlt — s)( f [Vu(y, S)Izdy) ds
o R! (o
and
[Vaua(z, 1) — Va(y, t)[2
f |w — y|+20 =
Q" Qr
1 2
<1 % _
= f w(h){ fo,.a 5
{z:|z] <h} R!
|Vu(x — 2, 8) — Vu(y — 2z, 8)|? <
X | — y|+2 dwdy ) dsp dz =
Q27 Q7

. [Vu(&, s) — Vu(&, s)|? ,
(2.9) < |out s)( f f E— g d§d§)ds
R Qv Q+



62 J. Naumann

for all te (¢, T) and 0 < h < dist (27, 0Q*).
Further, it is easily seen that

(2.10) lua@®) | ev@: Ry = %] or(ae i, 72: Y

for all te (t, T) and 0 < h < dist (2", 0Q2*).
Thus, inserting (2.7)-(2.10) into (2.6), integrating over (¢, T') and
using (2.1) (with £* in place of Q') we obtain

fT ( [, tipac)”at < of lula -+ f [Ivurawat + fTIVulz,a.dt)s
’ v ae v

o
= 0(1 + "’M”zcy(a',RN)—l—J'IVuldedt)
2
for all 0 < h < dist (27, 02*).

Observing that w,— u strongly in L?(Q"x (¢, T); R¥) as h — 0,
from the latter estimate we infer that

T

f( I|Vu|’dw)2/pdt< 4 oo.

i Q

Whence (2.2) (cf. footnote 2).
Finally, taking into account (2.1) (with 2" in place of '), esti-
mate (2.3) is readily deduced from (2.5). =

20 Let 0<t,<T. Let e Wy@; R¥) N L*(Q; R¥) have its
support in 2x(0,%). We extent ¢ by zero onto (£2X(— oo, 0)) U
U (2% (T, 4+ o)) and denote this extension again by ¢. Define

i
@i(2, 1) := lI f«p(w, s)ds for a.a. (z,t)e@, Vix>0.
=2

It is easy to verify that ¢; possesses the generalized derivatives
Piea(@y 1) = (2, )i (2 1)

Fale, ) = 3 (pla, ) — glo, 1 — 1)
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for a.a. (x,t)eQ (x=1,...,m; A>0). On the other hand, given
felr,(Q) 1=p= -+ o), we get by a straightforward application of
Fubini’s theorem

ty t+4

ff(w, t)pi(x, t)dedt = % ff (ff(x, 3)ds)¢p(w, t) dx dt
Q 02 i

for al 0 < A< T —¢,.
The function ¢; is admissible in (1.3). Letting denote

t+24

e, 0= [fe, 0ds (>0
¢

‘we obtain
(2.11) f [t awar + f 1 [0 dodt = f l [B)gtdwar
02 02 0 Q

for all 0 <A< T —t,.

Next, let £’ be any open set such that Q'c 2. Without loss of
generality, we may assume that 00’ is sufficiently smooth (so that
the Sobolev imbedding theorem applies to £'). Fix any integer
m>nf2. Let pe Vf’;"(Q’; RY) (*) be arbitrary. We extend y by zero
onto O\ Q' and maintain the notation for the extension. Finally,
let ne C*((0,%)) with supp (n)c (0,¢). Inserting ¢(z,?):= y(x)y(t)
(=, t) €Q) into (2.11) we get by a standard argument

@12)  [ul(o, Hy'@)dm +[(4); @ )4, 0)do = [ (B, @, 1) (@) do
Qf (224

Q'

for a.a. t€(0,¢,) (0 < A< T —1t,), where the exceptional set possibly
depends on y. However, the space Vf’;"(!.?’; R¥) being separable, (2.12)
is in fact true for any ype Vf’;"(!)'; R¥) and independently for a.a.
te(0,t,).

0 W)= ewp@y 0= 2 T2
) 2 =V E 2 )-’U-—E"',—...—anm_l

here n» denotes the unit outward normal along 00’.

= 0 a.e. on 8!)'}
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Now, by an approximation argument (via mollification; cf. the
preceding step) it is readily seen that (2.12) continues to hold for any
pE W3(2; RY) N L>(2; RY) with supp (p)c 2. =

30 Let ' and Q" be open sets such that 2'c Q"' c Q" c £, and
let ¢ e C~°(R") be a cut-off function for 27, i.e. {=0 in R\ Q’,
05¢<1in O\ 2" and (=1 in Q'. Let 0<t'<t,<T Dbe arbi-
trary, let |h| <min {#', T —1,} and fix ¢, with ¢, 4 |[b| <t,<T.

Let denote
M f(@, ) := f(w, t + b)— f(=, 1) .
We consider (2.12) with ¢, in place of #, (0 < A< min {t,—t,— |h|,
T —t;}, form the difference A, under the integral sign for a.a.

te (¥, t,) and insert yp(x) = (dyuy(, 1)) (3(x) ((x,t) € R2X(#,¢,)) therein,
Integration over (t',¢,) gives

i
(2.13) ;—flAhum, )2 (e) do + f [y )z asa -
=-—2J' f (A(AD) A EL,, dwdt +

+ff(A V) (Anud) 2 da dt + = ﬁA,,u,L (@, ') [2C3 (@) dow .

To proceed, we note that for any fe L?(Q) (1 = p < + oo) there
holds f, — f strongly in L#(22X(0,%,)) as 4 —0. On the other hand,
a simple calculation shows

lAhui.(wy t) - Ahu(w; t)l = 2 "“ﬂov(a;wv)
for all (z,t)e QX (#',t) (0 < A< min {,— &, — |b|, T—1,}). Thus, ne-

glecting the first term on the left of (2.13) and letting tend 4 — 0
we obtain

t ty [\]
(2.14) va.IA,.VuPZ;"dwdté——ff (f 8;;, (...)ds) (Anul ) dxdt h—
t’ Q t 2 1
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——ff( BA"‘ )ds)(A,,uxa)(Ahu’)Czd:cdt—

l ‘l
—2 f f (A0 AS)(Ayu) L, Aot + f f (AuB)(Ayut)E2dndt +
v Q2 t’ Q
1
+5 [Mauta, oy =
2

5
=31,
k=1

for all |h| < min {¢’, T — #,}; here we have used the ellipticity condi-
tion (1.6) as well as the differentiability properties of A;:

1 1
N 0A? 0A? ; 0Af
A, A2 =f 5 (...)ds h —{—f S (...)ds A,u —|—f (...)ds Ayul,
(1] V]

0&;
for a.a. (z,t) e 2x(t,t), where the dots ... represent the variables

(@, t + sh, u(z, 1) + s(u(@, t + k) — u(z, 1)), Vu(e, 1) +
+ s(Vu(z, t + h) — Vu(z, 1)) (s€(0,1)).

We evaluate the integrals on the right hand side of (2.14). By (1.7),
4
I, g%’ ff;A,,Vumzdxdt + cj(l + |Vul?) da dt bt
t Q2 Q

(¢ = const depending on » and ¢, only). To evaluate I, we use again
(1.7) and employ the Holder continuity of » to obtain

I,<- ff]AhVu] {daedt + c!(l + |Vu|?) dedt|h|” .

where the constant ¢ depends on », ¢, and |u]¢»@;rv . The evaluation
of I, follows the same lines when taking into account once more the
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above representation of A4,47. We find

L2 ffmhvupcmdur

+ c(ma.x |VZ|* 4+ max |VC|f(1 + [Vu)) dxdt) [B]” .
Rn R»
Q

the constant ¢ being dependend on »,¢,, meas @ and [u|cvg;rv)
(without loss of generality, we may assume that |h| < 1).

Next, making use of the differentiability of B; we represent
A,B; in terms of three integrals over the interval (0,1) (cf. the rep-
resentation of 4,47 above). Combining (1.9), (1.10) and the Hélder
continuity of # one obtains '

£y ty
Iégffm,,vupczdxdt + cff(l + \Vul?) dodt|h]?;
t Q2 t" 2

here ¢ depends on v, ¢, and |%[cvg.r~ (as above, [h| <1). Finally,
I; < } (meas Q)[u|rg; rm k[ -

Inserting these estimates into (2.14) gives
: ' f
(2.15) |4, Vul2dzdt < 5|1 | |Vu|2dw dt) ||
I ()

for all |h| < min {1,¢, T — t,}, where ¢, depends on ¥, ¢, ¢;, meas @,
|| ova. ryy and dist (27, 02) (¢, — + oo as dist (2', 92) — 0).
Let 0 < o <y/2. Then (2.15) implies

P) t
(2.16) fm_llfzq(ffm,,vupdxdt)dhg q, (1 +f|vu|2dxdt)
oy} Q' Q

2¢,07%
for all 0 < 6 < min {1, #, T—"tx}( y03—29)' u
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40 From (2.16) we deduce the higher integrability of Vu via
its fractional differentiability with respect to ¢&. To this end, let
0 <t,<t,<T be arbitrarily chosen. Define é,:= min {1, ¢, T — t,}.
Then there exists an integer m = 0 such that

(2.17) t— (m 4 1)8,< ty < t,— md, .

Suppose (2.17) is true for m =0, i.e. t,— d,<t,. Obviously,
(toyt1) C (t— Goyt + &) for all t € (t,,1t,), and ¢’ =1,, 6 = J, are admis-
sible in (2.16). Employing Fubini’s theorem and changing variables
gives

8y ty
(2.18) fl—h;—ﬁ;(fflzlhvmzdxdt)dhg
-0, ty 2’

i by
. 2
= f f ( 'V“(”’}:)_ tIZ"::”’ ul dm)dsdt.
to to Q'

When (2.17) fails for m = 0, we may assume that it is true for m = 1,
ie. t,— 20, <ty =t,— 6,. Then (¢, — d,,%)C (t— b,¢+ 6, for all
1€ (ty— 0oy t).

We distinguish two cases. Firstly, if {,=t,— d, we argue exactly
a8 in the preceding step to obtain (2.18). Secondly, if ¢, <<, — J,
then t' =1t,— &, and 6 = (< min {1,¢, T — t,}) are admissible in
(2.16). Thus, by the same argument as above,

f|h|l+2°( f f|A Vu|2dxdt)dh>
|Vu(x, s) — Vu(x, t)|?
f f(f |s——t|1+20 dr|dsdt .

t1—8o 4;—8

It remains to derive an estimate over the interval (¢,?, — d,). Set
t'=1t, and 6,=t,— t,— 6,. We find (%, % — &)C (¢t — 6,, ¢ + ;) for
all t€ (tyyto+ 6,), and 6, < dy=min{1,t, T — t,} (for t,— 28,<?,).
Hence t' and §, are admissible in (2.16) and we obtain

8, t,
-6, to, K2’
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t1—8, t+

8
g"' ( J‘ |Vu(z, 8) — Vu(x, t)lzdxds) it>
6

Is _t|1+2g

0 ‘—1

ti— 8y t,—8,
|Vu(z, s) — Vu(z, 1)
2f f (f T dx ) dsdt.
fo to

Q'

Thus, if ¢,<?,— d,, in place of (2.18) we obtain analogous es-
timates over the intervals (¢,,%,— J,) and (¢,— &, t,).

The preceding argument can be repeated if (2.17) is true for
m = 2 etc. More precisely, there exist an integer 1<=k=m -+ 1
and reals

=t<ii<fi<..<tF =t

such that ¢f — X< ¢, tf,—tF =06, 1 =1,...,m if m=2) and

12

* gk
tha

\Y y 8)— \% y )] 2
[ 3 (et agunsafo e
o Q

¥

(¢ =0,1,...,m). Finally, applying the Sobolev imbedding theorem
on each interval (£, ¢*,) and summing over ¢ =0, 1, ..., m we obtain

[t 2/1—29) o\ 7202 b
(2.19) [V | z2q; Revy B8 <c{1+||Vu|2drdt
fo Q

where the constant ¢ depends on the same parameters as ¢, and ad-
ditionally on m (8). |

50 We fix 4 < p < 4nf/(n— 2y) and } < o <9/2 (°), and define
x:= (p— 4)/(4 + 2(p — 4)). Then

n(p—2) 1 1 —4xp

<1 0< < = <1.
2(n + py) ’ 2’

2 1 — 2%(1 — 2p)

(8) Note that m — + co when ¢, — 0 or ¢, — T, respectively.
(®) Recall that » =2 and }<y<1.
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Next, we choose 6 such that

{n(p—2) 1—4xp
m

2(n —f—py)’l——2x(l—2g)}< f<1.

Hence

2(1 + On 1—0

(2.20) P=% 26y 21— +0)1—20)]

< x%.

Finally, set

L 1—906 q-__‘?@
Beosn—a+oa—201" 1T 0—wFpu
Then, equivalently,
1—p | p(1—20) 1 l—p p_1
(2.21) 2(1+6)+ 2 Ty P +§“q‘

Now, the first inequality in (2.20) guarantees (2.3), while the second
one implies ¢ > 4. On the other hand, (2.21) permits to apply the
classical Riesz-Thorin interpolation theorem to

L2‘1+0’(to, t1; Lp(gl; RnN)) and L2/(1—2Q)(to’ t1§ Lz(gl; anv))
at the value u. Thus, by (2.3) and (2.19),

Vau € Ity ty; Lo(Q'; R))

4
( f” V| Zagar; Re) dt)‘ <

ty
(1—p)/(2(1+6)) (u(1—20))/2
14-6) |
<o ( f Il ot Wz —
to

= c(l —{—f|Vul’dxdt)
a

where the latter constant ¢ depends on the same parameters as the
constants in (2.3) and (2.19) as well as on u. W
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